Pronosticando la inflación mensual en Colombia un paso hacia delante: una aproximación "de abajo hacia arriba"
DOI:
https://doi.org/10.46661/revmetodoscuanteconempresa.2688Palabras clave:
IPC, inflación, pronósticos, de abajo hacia arriba, Colombia, CPI, inflation, forecasts, "bottom to top"Resumen
La estructura jerárquica del Índice de Precios al Consumidor (IPC) de Colombia permite calcular la inflación como una combinación lineal de sus subcomponentes. Nuestra aproximación implica emplear modelos SARIMA para pronosticar cada componente del IPC y crear un pronóstico de la inflacióon como una combinación lineal de los pronósticos individuales; es decir, una aproximación "de abajo hacia arriba". Se evalúa el desempeño fuera de muestra de los pronósticos para el siguiente mes de 12 métodos que emplean una aproximación "de abajo hacia arriba". Estos métodos son comparados con un pronóstico agregado de la inflación empleando un modelo SARIMA para el IPC total. Nuestros resultados muestran que emplear un método "de abajo hacia arriba" para pronosticar la inflación del siguiente mes tiene un mejor comportamiento que emplear un modelo SARIMA agregado.
Descargas
Citas
Benalal, N.; del Hoyo, J. L.; Roma, M.; Landau, B. & Skudelny, F. (2004). "To aggregate or not to aggregate? Euro Area Inflation Forecasting". ECB Working Paper No. 374. European Central Bank.
Cuitiño, F.; Ganón, E.; Tiscordio, I. & Vicente, L. (2010). "Modelos univariados de series de tiempo para predecir la inflación a corto plazo". Documento de trabajo No. 008-2010. Banco Central de Uruguay.
Demers, F. & De Champlain, A. (2005). "Forecasting Core Inflation in Canada: Should We Forecast the Aggregate or the Components?". Working paper 2005-44. Bank of Canada.
Diebold, F. X. & Mariano, R. S. (1995). "Comparing predictive accuracy", Journal of Business & Economic Statistics, 13, 253–265.
Dornbusch, R. (1976). "Expectations and exchange rate dynamics", Journal of Political Economy, 84(6), 1161–1176.
Espasa, A., Senra, E. & Albacete, R. (2002). "Forecasting inflation in the European Monetary Union: A disaggregated approach by countries and by sectors", The European Journal of Finance, 8(4), 402–421.
Firth, M. (1979). "The Relationship Between Stock Market Returns and Rates of Inflation", The Journal of Finance, 34(3), 743–749.
Fritzer, F., Moser, G. & Scharler, J. (2002). "Forecasting Austrian HCPI and its Components using VAR and ARIMA Models". Working Paper 73, Oesterreichische Nationalbank.
Grunfeld, Y. & Griliches, Z. (1960). "Is aggregation necessarily bad?", The Review of Economics and Statistics, 42(1), 1–13.
Harvey, S. K. & Cushing, M. J. (2014). "Does Using Disaggregate Components Help in Producing Better Forecasts for Aggregate Inflation?", Journal of Economics and Development Studies, 2(2), 527–546.
Hendry, D. F. & Clements, M. P. (2004). "Pooling of forecasts", Econometrics Journal, 5, 1–31.
Hendry, D. F. & Hubrich, K. (2011). "Combining disaggregate forecasts or combining disaggregate information to forecast an aggregate", Journal of Business & Economic Statistics, 29(2), 216–227.
Hubrich, K. (2005). "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?", International Journal of Forecasting, 21(1), 119–136.
Hyndman, R. J., Khandakar , Y. (2008). "Automatic Time Series Forecasting: The forecast Package for R", Journal of Statistical Software, 27(3), 1-22.
Miller, K. D., Jeffrey, F. J. & Mandelker, G. (1976). "The 'Fisher effect' for risky assets: An empirical investigation", The Journal of Finance, 31(2), 447–458.
Nelson, C. R. (1976). "Inflation And Rates Of Return On Common Stocks", The Journal of Finance, 31(2), 471–483.
Pino, G., Tena, J. D., & Espasa, A. (2013). "Forecasting disaggregates by sectors and regions: the case of inflation in the euro area and Spain". Working Paper 13-08. Statistics and Econometrics Series 07. Universidad Carlos III de Madrid.
R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Viena.
Solnik, B. (1983). "The relation between stock prices and inflationary expectations: The international evidence", The Journal of Finance, 38(1), 35–48.
Svensson, L. E. O. (1997). "Inflation forecast targeting: Implementing and monitoring inflation targets", European Economic Review, 41(6), 1111–1146.
Theil, H. (1954). Linear aggregation of economic relations. North-Holland Pub. Co.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 Revista de Métodos Cuantitativos para la Economía y la Empresa
![Creative Commons License](http://i.creativecommons.org/l/by-sa/4.0/88x31.png)
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
El envío de un manuscrito a la Revista supone que el trabajo no ha sido publicado anteriormente (excepto en la forma de un abstract o como parte de una tesis), que no está bajo consideración para su publicación en ninguna otra revista o editorial y que, en caso de aceptación, los autores están conforme con la transferencia automática del copyright a la Revista para su publicación y difusión. Los autores retendrán los derechos de autor para usar y compartir su artículo con un uso personal, institucional o con fines docentes; igualmente retiene los derechos de patente, de marca registrada (en caso de que sean aplicables) o derechos morales de autor (incluyendo los datos de investigación).
Los artículos publicados en la Revista están sujetos a la licencia Creative Commons CC-BY-SA de tipo Reconocimiento-CompartirIgual. Se permite el uso comercial de la obra, reconociendo su autoría, y de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.
Hasta el volumen 21 se ha estado empleando la versión de licencia CC-BY-SA 3.0 ES y se ha comenzado a usar la versión CC-BY-SA 4.0 desde el volumen 22.