Valoración de estrategias competitivas, acuerdos colaborativos y penalizaciones con Opciones Reales Multinomiales y Teoría de Juegos

Autores/as

DOI:

https://doi.org/10.46661/revmetodoscuanteconempresa.6092

Palabras clave:

valoración de estrategias, opciones reales multinomiales, teoría de juegos, estrategia de iniciativa, acuerdo estratégico, valoración de penalizaciones

Resumen

El diseño y elección de estrategias en entornos competitivos requiere considerar tres posibles fuentes de incertidumbre: riesgos derivados de las acciones propias, riesgos emergentes de estados de la naturaleza y riesgos derivados de las decisiones de competidores. La Teoría de Opciones Reales analiza los dos primeros riesgos, pero no incorpora la incertidumbre derivada de las acciones de los competidores. Para ello, la Teoría de Juegos debe sumarse al modelo. Se desarrolla un modelo numérico de Teoría de Juego y Opciones Reales Multinomiales, para valorar estrategias competitivas secuenciales de iniciativa (preemption) y acuerdos estratégicos (join venture). Además, para los acuerdos es desarrollado un modelo de cálculo de penalizaciones, una herramienta analítica para calcular resarcimientos monetarios ante incumplimiento contractual. Las estrategias puras y mixtas son seleccionadas con equilibrios de Nash y valoradas con opciones reales multinomiales. El marco teórico expone el modelo binomial y el multinomial para evaluar riesgo tecnológico y de mercado no correlacionado. También, son desarrollados los elementos básicos de la Teoría de Juegos y sus formas de resolución. A continuación, utilizando la metodología de casos, el modelo es aplicado para valorar casos de estrategias de iniciativa y acuerdo. Los resultados obtenidos son presentados en forma extensiva y matricial. Finalmente, se expone la valoración de multas para inducir las conductas cooperativas y cumplimiento de acuerdos. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguado, J.C. (2007). Teoría de la decisión y de los juegos. Madrid: Delta Publicaciones.

Armada, M., Kryzanowski, L., & Pereira, P. (2009). Optimal investment decisions for two positioned firms competing in a duopoly market with hidden competitors. European Financial Management, 17(2), 305-330. https://doi.org/10.1111/j.1468-036X.2009.00514.x

Arnold, T., & Crack, T. (2003). Option Pricing in the Real World: A Generalized Binomial Model with Applications to Real Options. Social Science Research Network SSRN. https://doi.org/10.2139/ssrn.240554

Axelrod, R. (1981). The Emergence of Cooperation among Egoists. The American Political Science Review, 75(2), 306-318. https://doi.org/10.2307/1961366

Axelrod, R. (1986). La Evolución de la Cooperación. Madrid, España: Alianza Editoria S.A.

Black, F., & Scholes, M. (1972). The Valuation of Options Contracts and a Test of Market Efficiency. Journal of Finance, 27(2), 399-417. https://doi.org/10.2307/2978484

Boyer, M., Laserrere, P., & Moreaux, M. (2012). A dynamic duopoy investement game without commitment under uncertainty market expansion. Interntational Journal of Industrial Organization, 30(6), 663-681. https://doi.org/10.1016/j.ijindorg.2012.07.005

Boyle, P. (1988). A lattice framework for option pricing with two state variables. Journal of Finance and Quantitative Analysis, 23(1), 1-12. https://doi.org/10.2307/2331019

Brandao, L., & Dyer, J. (2009). Projetos de Opcoes Reis com Incertezas Correlacionadas. Revista de Administracao e Contabilidade da Unisinos, 6(1), 19-26. https://doi.org/10.4013/base.2009.61.02

Brandao, L., Dyer, J., & Hahnn, W. (2012). Volatility estimation for stochastic project value models. European Journal of Operational Research, 220(3), 642-648. https://doi.org/10.1016/j.ejor.2012.01.059

Brennan, M., & Trigeorgis, L. (2000). Real options: Development and new contributions In: Project Flexibility, Agency, and Competition. New Developments in the Theory and Application of Real Options. EE.UU: Oxford University Press.

Broadie, M,. & Kaya, O. (2007). A Binomial Lattice Method for Pricing Corporate Debt and Modelling Chapter 11 Procedings. Journal of Finance and Quantitative Analysis, 42(2), 279-312. https://doi.org/10.1017/S0022109000003288

Brockman, P., & Turtle, H. (2003). A Barrier Option Framework for Corporate Security Valuation. Journal of Financial Economics, 67(3), 511-529. https://doi.org/10.1016/S0304-405X(02)00260-X

Brous, P. (2011). Valuing an Early-Stage Biotechnology Investment as a Rainbow Option. Journal of Applied Corporate Finance, 23(2), 94-103. https://doi.org/10.1111/j.1745-6622.2011.00331.x

Castro, E. (2010). El estudio de casos como metodología de investigación y su importancia en la dirección y administración de empresas. Revista Nacional de Administración, 1(2), 31-54. https://doi.org/10.22458/rna.v1i2.332

Chance, D. (2008). A Synthesis of Binomial Option Pricing Models for Lognormally Distributed Assets. Journal of Applied Finance, 18(1), 38-56. https://doi.org/10.2139/ssrn.969834

Chevalier-Roigant, B., & Trigeorgis, L. (2011). Competitive Strategy: Options and Games. Cambridge, Massachusetts, London, England: MIT Press.

Chevalier-Roignant, B., Flath, C., & Trigeorgis, L. (2011). Strategic investment under uncertainty: A synthesis. European Journal of Operational Research, 215(3), 639-650. https://doi.org/10.1016/j.ejor.2011.05.038

Copeland, T., & Antikarov, V. (2003). Real Options: a practitioner´s guide. New York: Cengage Learning.

Cox, J., Ross, S., & Rubinstein, M. (1979). Option Pricing: A Simplified Approach. Journal of Financial Economics, 7(3), 229-263. https://doi.org/10.1016/0304-405X(79)90015-1

Culik, M. (2016). Real options valuation with changing volatility. Pespectives in Science, 7, 10-18. https://doi.org/10.1016/j.pisc.2015.11.004

Derman, E., Kani, I., & Chriss, N. (1996). Implied Trinomial Trees of the Volatility Smile. (Goldman-Sachs, Ed.) Quantitative Strategies Research Notes, 14, 1-27.

Dixit, A., & Pindyck, R. (1994). Investment under Uncertainty (1 ed.). New Jersey: Pricenton University Press.

Dixit, A., & Nalebuff, B. (1991). Thinking Strategically: The competitive edge in business, politics and everyday life. New York, EE.UU: Norton Press.

Fudenberg, D., & Tirole, J. (1985). Preemption and rent equalization in the adoption of new technology. Review of Economics Studies, 52(3), 383-401. https://doi.org/10.2307/2297660

Fudenberg, D., & Tirole, J. (1986). A theory of exit in doupoly. Econometrica, 54(4), 943-960. https://doi.org/10.2307/1912845

Gamba, A., & Trigeorgis, L. (2007). An Improved Binomial Lattice Method for Multi-Dimensional Options. Applied Mathematical Finance, 14(5), 453-475. https://doi.org/10.1080/13504860701532237

Ghemawat, P., & Nalebuff, B. (1985). Exit. Journals of Economics, 16(2), 184-194. https://doi.org/10.2307/2555409

Graham, J. (2011). Strategic real options under asymmetric information. Journal of Economics and Dynamic Control, 35(6), 922-934. https://doi.org/10.1016/j.jedc.2011.01.001

Grenadier, S. (1996). The strategic exercise of options: Development cascades and overbuilding in real state markets. Journal of Finance, 51(5), 1653-1679. https://doi.org/10.1111/j.1540-6261.1996.tb05221.x

Grenadier, S. (2002). Option exercise games: an application to the equilibrium investement strategies of firms. Review of Financial Studies, 15(3), 691-721. www.jstor.org/stable/2696718

Grenadier, S. (2005). Options exercise games: The intersection of real options and game theory. Journal of Applied Corporate Finance, 13(2), 99-107. https://doi.org/10.1111/j.1540-6261.1996.tb05221.x

Guintis, H. (2009). Game Theory Evolving (2 ed.). United Kingdom: Princeton University Press.

Haahtela, T. (2010). Recombining trinomial tree for real option valuation with changing volatility. Social Science Research Network, 1-25. https://doi.org/10.2139/ssrn.1932411

Haahtela, T. (2011). Estimating Changing Volatility in Cash Flow Simulation Based Real Options Valuation with Regression Sum of Squared Error Method. Social Science Research Network. https://doi.org/10.2139/ssrn.1

Herath, H., & Kumar, P. (2006). Multinomial Approximating Models for Options. 1-37. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.529.6466&rep=rep1&type=pdf

Hsu, Y., & Lambrecht, B. (2007). Preemptive patenting under uncertainty and asymmetric information. Annals of Operations Research, 151(1), 5-28. https://doi.org/10.1007/s10479-006-0125-5

Jabbour, G., Kramin, M., & Young, S. (Noviembre de 2001). Two-state Option Pricing: Binomial Models Revisited. Journal of Futures Markets, 21(11), 987-1001. https://doi.org/10.1002/fut.2101

Jarrow, R., & Rudd, A. (1982). Approximate option valuation for arbitrary stochastic processes. Journal of Financial Economics, 10(3), 347-369. https://doi.org/10.1016/0304-405X(82)90007-1

Kamrad, B., & Ritchken, P. (1991). Multinomial Approximating Models for Options with k State Variables. Management Science, 37(12), 1640-1653. https://doi.org/10.1287/mnsc.37.12.1640

Korn, R., & Muller, S. (2009). The decoupling approach to binomial pricing of multi-asset options. The Journal of Computational Finance, 12(3), 1-30. https://doi.org/10.21314/jcf.2009.207

Kreps, D., Milgron, P., Roberts, J., & Wilson, R. (1982). Rational Cooperation in Finitely Repeated Prisioner´s Dilemmas. Journal of Economics Theory, 27(2), 245-252. https://doi.org/10.1016/0022-0531(82)90029-1

Kulatilaka, N., & Perotti, E. (1998). Strategic growth options. Management Science, 44(8), 1021-1031. https://doi.org/10.1287/mnsc.44.8.1021

Lambrecht, B. (2001). The impact of debt financing on entry and exit in duopoly. Review of Financial Studies, 14(3), 765-804. www.jstor.org/stable/2696773

Lambrecht, B., & Perraudin, W. (2003). Real options and preemption under incomplete information. Journal of Economics Dynamics and Control, 27(4), 619-643. https://doi.org/10.1016/S0165-1889(01)00064-1

Lari-Lavassani, A., Simchi, M., & Ware, A. (2001). A discrete valuation of swing options. Canadian applied mathematics quarterly, 9(1), 35-73. https://doi.org/10.1.1.571.8300

Massé, P. (1963). La elección de las inversiones: criterios y métodos. Sagitario Ediciones.

Medina, R., & Rodriguez, Y. (2010). Una revisión de los modelos de volatilidad estocástica. Comunicaciones en Estadística, 3(1), 79-97. https://doi.org/10.15332/s2027-3355.2010.0001.05

Merton, R. (1973). The Theory of Rational Options Princing. Bell Journal of Economics and Management Science, 141-183.

Merton, R. (1974). On the pricing of crporate debt: the risk structure of interest rates. Journal of Finance, 29(2), 449-470. https://doi.org/10.1111/j.1540-6261.1974.tb03058.x

Milanesi, G. (2011). Flexibilidad estratégica, teoría de opciones reales y convergencia con el VAN empleando coeficientes equivalentes ciertos y probabilidades del "mundo real". SaberEs(3), 47-60. repositoriodigital.uns.edu.ar/handle/123456789/4255

Milanesi, G. (2013). Asimetría y Curtosis en el Modelo Binomial para valora Opciones Reales: caso de aplicación para empresas de base tecnológica. Estudios Gerenciales Journal of Management and Economics for Iberoamerica, 29(128), 368-378. https://doi.org/10.1016/j.estger.2013.09.011

Milanesi, G. (2019). Predicciones de fracasos financieros con opciones reales barrera: un estudio para el mercado argentino. Estudios de Administración, 26(2), 53-81. https://doi.org/10.5354/0719-0816.2019.56951

Milanesi, G. (2021). Modelo de valoración con opciones reales, rejillas trinomial, volatilidad cambiante, sesgo y función isoelástica de utilidad. Revista de Métodos Cuantitativos para la Economía y la Empresa, 32, 257-273. https://doi.org/10.46661/revmetodoscuanteconempresa.4602

Milanesi, G. (2022). Opciones reales secuenciales cuadrinomiales y volatilidad cambiante: Incertidumbres tecnológicas y de mercado en desarrollos de inversiones biotecnológicas. Revista Méxicana de Economía y Finanzas (REMEF), 17(1), 24-49. https://doi.org/10.21919/remef.v17i1.500

Milanesi, G., Pesce, G., & El Alabi, E. (2013). Technology-Based Start up Valuation using Real Opciones with Edgeworth Expansion. Journal of Financial and Accounting, 1(2), 54-61. https://doi.org/10.12691/jfa-1-2-3

Milanesi, G., Pesce, G., & El Alabi, E. (2016). Firm valuation and default probability through exotic (barrier) options. European Accounting and Management Review, 2(2), 56-76. papers.ssrn.com/sol3/papers.cfm?abstract_id=2888799 . https://doi.org/10.26595/eamr.2014.2.2.4

Milanesi, G., & Thomé, F. (2015). Un modelo consolidado de opciones reales, teoría de juegos y análisis de costos de transacción para el diseño de acuerdos contractuales. Revista de Economía Política de Buenos Aires, 14, 59-81. ojs.econ.uba.ar/index.php/REPBA/article/view/824

Milanesi, G., & Tohmé, F. (2014). Árboles Binomiales Implícitos, Momentos Estocásticos de Orden Superior y Valuación de Opciones. Revista de Economía Política (REPBA), 12(7), 45-72. ojs.econ.uba.ar/index.php/REPBA/article/view/559

Murto, P. (2004). Exit in duopoly under uncertainty. Journal of Economics, 35(1), 111-127. https://doi.org/10.2307/1593732

Nash, J. (1953). Two-Person Cooperative Games. Econometrica, 21(1), 128-140. https://doi.org/10.2307/1906951

Pareja, J., Prada, M., & Moreno, M. (2019). Volatilidad en Opciones Reales: Revisión literaria y un caso de aplicación al sector petrolero colombiano. Revista de Métodos Cuantitativos para la Economía y la Empresa, 27, 136-155. www.upo.es/revistas/index.php/RevMetCuant/article/view/2820

Pawlina, G., & Kort, P. (2006). Real options in an asymmetric duopoly: Who benefits from your competitive disadvantage? Journal of Economics and Management Strategy, 15(1), 1-35. https://doi.org/10.1111/j.1530-9134.2006.00090.x

Paxson, D., & Melmane, A. (2009). Multi factor competitive internet strategy evaluation: Search expansion, portal synergies. Journal of Modeling Management, 4(3), 249-273. https://doi.org/10.1108/17465660911006477

Paxson, D., & Pinto, H. (2003). Rivalry under price and quantity uncertainty. Review of Financial Economics, 14(3-4), 209-224. https://doi.org/10.1016/j.rfe.2005.04.002

Rendleman, R., & Bartter, B. (1979). Two State Option Pricing. The Journal of Finance, 34(5), 1093-1110. https://doi.org/10.1111/j.1540-6261.1979.tb00058.x

Rubinstein, M. (1983). Displaced Diffusion Option Pricing. Journal of Finance, 38(1), 213-217. https://doi.org/10.1111/j.1540-6261.1983.tb03636.x

Rubinstein, M. (1994). Implied Binomial Trees. Journal of Finance, 49(3), 771-818. https://doi.org/10.1111/j.1540-6261.1994.tb00079.x

Rubinstein, M. (1998). Edgeworth Binomial Trees. Journal of Derivatives, 5(3), 20-27. https://doi.org/10.3905/jod.1998.407994

Rubinstein, M. (2000). On the Relation Between Binomial and Trinomial Option Pricing Model. Berkeley, Research Program in Finance-292. California: UC Berkeley. http://haas.berkeley.edu/finance/WP/rpflist.html . https://doi.org/10.3905/jod.2000.319149

Smit, H. (2003). Infrastructure investment as a real options game: The case of European airport expansion. Financial Management, 32(4), 5-35. https://doi.org/10.2307/3666135

Smit, H., & Ankum, L. (1993). A real options and game-theoretic approach to corporate investment strategy under competition. Financial Management, 22(3), 241-250. https://doi.org/10.2307/3665941

Smit, H., & Trigeorgis, L. (2004). Strategic Investment: Real Options and Games (1 ed.). New Jersey, Estados Unidos: Princeton University Press. https://doi.org/10.1515/9781400829392

Smith, J. (2005). Alternative Approach for Solving Real Options Problems. Decision Analysis, 2(2), 89-102. https://doi.org/10.1287/deca.1050.0041

Smith, J., & Nau, R. (1995). Valuing Risky Projects: Option Pricing Theory and Decision Analysis. Management Science, 41(5), 795-816. https://www.jstor.org/stable/2633099 . https://doi.org/10.1287/mnsc.41.5.795

Thijssen, J. (2010). Preemption in a real option game with a first mover advantage and a player-specific uncertainty. Journal of Economics Theory, 145(6), 2448-2462. https://doi.org/10.1016/j.jet.2010.10.002

Tian, Y. (1993). A modified lattice approach to option pricing. The Journal of Futures Markets, 13(5), 563-577. https://doi.org/10.1002/fut.3990130509

Trigeorgis, L. (1995). Real Options in Capital Investment: Models, Strategies and Applications (1 ed.). London, United Kindgon: Praeger.

Van der Hoek, J., & Elliot, R. (2006). Binomial models in Finance. New York, United State: Springer Science. https://doi.org/10.1007/0-387-31607-8

Wilmott, P. (2009). Frequently Asked Questions in Quantitative Finance (Segunda ed.). United Kingdom: John Wiley & Sons.

Zapata, C. (2019). Valoración de opciones reales con múltiples incertidumbres mediante modelos K dimensionales. ODEON, 16, 97-121. https://doi.org/10.18601/17941113.n16.05

Descargas

Publicado

2023-06-01

Cómo citar

Milanesi, G. S. (2023). Valoración de estrategias competitivas, acuerdos colaborativos y penalizaciones con Opciones Reales Multinomiales y Teoría de Juegos. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 35, 360–388. https://doi.org/10.46661/revmetodoscuanteconempresa.6092

Número

Sección

Artículos