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Abstract 

This paper describes a new method for solving non-regular constrained optimization 
problems when standard methodologies do not work properly. Our method (the Rational 
Iterative Multisection Procedure, RIMP) consists of different stages that can be interpreted 
as different requirements of precision by obtaining the optimal solution. We have 
performed an application of RIMP to the case of public inputs provision under two tax 
settings. We prove that the RIMP and the standard Newton-Raphson (NR) method achieve 
the same results with regular optimization problems while the RIMP takes advantage over 
NR when facing non-regular optimization problems. 
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1 Introduction

The use of numerical methods is a standard feature in many areas of scien-
ti�c research. This is partially due to the need of obtaining unambiguous
outcomes in problems in which algebra manipulation does not lead to clear
results. In addition, numerically-developed analyses allow to reproduce the
characteristics of real situations. In this context, the choice of a determined
method for solving optimization problems becomes a crucial decision. In a
sense, one could say that there no exists the best method to solve optimiza-
tion problems. By contrast, di¤erent options have to be quali�ed according
to its suitability to the functions to be optimized and the constraints.
This paper introduces a new method for solving non-regular constrained

optimization problems which is based on evaluations of the objective function
in a multisection of the initial set of possible values, reaching the optimum
through an iterative process. We take as a basis the contribution by Casado
et al. (2000). With the procedure we propose here the level of precision
required for the solution becomes a crucial criterion. Starting from an ini-
tial set of decision variables, the Rational Iterative Multisection Procedure
(hereafter RIMP) selects the compatible values among which the constraints
are ful�lled with a determined precision. Subsequent evaluations of the ob-
jective function lead to choose the optimal values of decision variables for
each level of precision. Moreover, non-optimal solutions (and information to
assess how far they are from the local or global optima) can be obtained.
In this sense, the path followed by the iterative process towards the global
optimum is clearly shown. Although our method achieves the same results
at optimum than the Newton-Raphson (hereafter NR) procedure, it provides
a wide-ranging set of non-optimal values according to the precision required
in order to swell the discussion of results.
In addition, RIMP is una¤ected by situations in which NR method does

not properly work. For instance, the latter procedure may fail out when the
objective function has several (local) solutions or when the starting point is
in the neighbourhood of points where the derivative of the objective function
is zero. Many of these situations are linked to non-convex problems in eco-
nomics, such as increasing returns to scale in the production function. Under
these circumstances, convergence of NR method towards the global optimum
is not guaranteed.
For a better understanding of RIMP, this paper uses the debate around

the optimal level of public spending when distortionary taxation is involved.
On the basis of the paper by Atkinson and Stern (1974), contributions such as
Wilson (1991), Gaube (2000) or Chang (2002) highlight this issue employing
in many cases numerical examples (and counterexamples). The underlying
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idea is that the optimal level of public goods with distorting taxes is below
its �rst-best level.
This debate has not been translated to the case of public inputs. Feehan

and Matsumoto (2002), for instance, show the di¤erences between the �rst
and the second-best rules in the provision of public inputs, but nothing is
said about the optimal level of public input. By contrast, our paper gives
some insights on the levels of public input with distortionary taxation as a
�rst step in this debate. A further discussion on this issue can be found in
Martínez and Sanchez (2006), where the distinction between di¤erent types
of public inputs is focused.
The structure of the paper is as follows. Section 2 explains how the RIMP

works with a brief description of the problem to be solved. Section 3 presents
an application of RIMP in which a regular and a non-regular constrained
optimization problem are solved; a discussion of the results is also included.
Finally, section 4 concludes.

2 General description of the methods

In this section we locate the general framework where the problem to be
solved can be placed and the two methods used in its resolution as well. Ob-
viously, we focus our attention upon the RIMP given that the NR procedure
is a standard well-known method.

2.1 The problem

Let f be the objective function to optimize:

f : U � P � Rn � Rz �! R
(u; p) �! f(u; p);

where f is di¤erentiable1, U is the set of feasible values for the decision
variables (u) (which can be one interval or the union of several), P the set
of parameter values �xed throughout all the process (p), n the number of
decision variables, and z the number of parameters. Let R be the set of
constraints of the problem:

R : U � P � Rn � Rz �! Rm
(u; p) �! R(u; p) = (R1; :::; Rm);

1This regularity is imposed because of NR method. RIMP needs a lower level of
regularity as we explain later.
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where R is di¤erentiable and m the number of constraints2.
The problem we are interested in solving is:8<:

max f(u; p)
s:t: : R(u; p) = 0
u 2 U; p 2 P:

(1)

2.2 Newton-Raphson method

This iterative method has at least two advantages: its high convergence speed
and its simple structure. Using the properties of the gradient it is straight-
forward to achieve the point in which the objective function is maximized.
The performance of NR method is simple:
Let $ be the function to optimize:

$ : X � Rn �! Rm
x �! $(x);

where $ is di¤erentiable. The method is used to solve $(x) = 0.3 Given
x0 2 X � Rn=9r$(x0)�1, the iterative process has the following steps for
each i > 0:

1. Evaluate r$(xi).4

2. If 9r$(xi)�1, we calculate the point to be used in the next iteration:
xi+1 = xi �$(xi) � r$(xi)�1.

3. The stop criterion is de�ned as follows: given � > 0, if kxi+1 � xik < �,
then xi+1 is the root of the function; otherwise, the procedure continues
until this condition to be satis�ed5.

Further information can be found in the large bibliography existing about
this method. However, this widely-used method has some relevant caveats.
First, the existence of the solution is guaranteed if the domain of function to
be optimized is convex. Second, it is neccessary to have the gradient of func-
tion $ di¤erent to zero; otherwise, the method does not converge. Third, if
the objective function has multiple solutions, there exists the risk of jumping

2Again, the di¤erentiability asumption is necessary because of NR. This assumption is
relaxed later.

3The problem (1) has been adapted to this nomenclature using its lagrangian.
4The gradient of this function can be obtained analitically or numerically.
5There are others possibilities for setting the stopping criterion. For example, � could

be de�ned as kxi+1�xixi+1
k < �.
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from a root near the initial point to other possible solutions, neglecting closer
and more accurate solutions. And �nally, convergence problems may appear
when several local optima are involved in the problem. The procedure we
explain next overcomes these caveats.

2.3 Rational IterativeMultisection Procedure (RIMP)

The new method we propose is based on Casado et al (2000), and consists
of an iterative subdivision of the initial decision variables set. Previously,
we have selected the points of the grid that satisfy the constraints with a
determined precision in each stage. This process continues until the maxi-
mum previously-�xed precision condition is achieved. Whereas Casado et al
(2000) do not consider di¤erent levels of precision (because they use the com-
parison of values of objective function as stopping criteria), our numerical
approach has been adapted to take into account the precision with which the
constraints are hold. Hence, the constraints of the problem become specially
relevant when RIMP is applied6.
The term Rational is included in the name of the method as a result of

two features of the new procedure. First, given that the method will converge
better or worse towards the optimal values depending on the initial set of
values, it is useful to select the initial range of values with certain rationality.
Second, the iterative process followed by RIMP sorts the subsequent initial
sets according to the level of precision the problem requires. This reorga-
nization is e¢ ciently made: grouping bordering areas, which allows a more
e¤ective search of optimal values. A formal description of RIMP is next.

De�nition 1 Let f : Y ! Z be a function between the partially ordered sets
Y and Z. We de�ne f as a monotonic function of degree k if there exists

k subsets of Y : Y1; :::; Yk (Y =
k[
i=1

Yi; Yi \ Yj = ; if i 6= j), such that f is

monotonic in Yi;8i = 1; :::; k:

De�nition 2 Given the problem (1), � > 0 and the set W � U , let C(�;W )
be the set of compatible values in which the constraints are full�lled with the
precision �, i.e.,

C(�;W ) = fw 2 W j kR(w; p)kmax < �g
6Consequently, RIMP allows a better treatment of problems where the constraints play

an important role, for instance those related to public budgets.
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Translating the problem (1) to the new nomenclature, the problem to be
solved is: �

max f(c; p)
c 2 C(�; U); p 2 P (2)

The de�nition of some instrumental but essential parameters is necessary
as long as the resolution of the problem consists of using di¤erent stages in
which a determined precision and a number of subdivisions for each interval
is set.

De�nition 3 Let S be the number of stages, then:

� Precision path, E = [E1; :::; ES], is the vector containing the precision
required in the di¤erent stages of resolution.

� Subdivision path, D = [D1; :::; DS], is the vector formed by the number
of subdivisions considered for each interval.

Both variables are interrelated because Ds refers to the number of subdi-
visions used for achieving the precision Es in Us, i. e., the feasible values set
for the stage s.

De�nition 4 Let ~c 2 C(ES; US) be the solution to the problem (2), that is,
the value which satis�es the condition:

f(~c; p) > f(c; p);8c 2 C(ES; US) (3)

Theorem 5 Let us consider (1). If R is a monotonic function of degree k,
there exists a solution for problem (1) using the Rational Iterative Multisec-
tion Procedure.
Proof. If R is a monotonic function of degree k, then there exists k intervals
fIigki=1 such that R is monotonic in Ii; 8i: Considering these k subintervals
in the �rst stage, and after adjusting the maximum level of precision to the
function R, the solution for problem (1) is achieved.7

The implementation of this general procedure has speci�c characteris-
tics due to computational e¢ ciency reasons which depend on the number of
decision variables. The following nomenclature is used to distinguish bet-
ween them where the confusion may appear; RIMPn will refer to the RIMP
method which consider n decision variables. For instance, RIMP2 refers to

7A solution could be obtained even if R > 0, depending on the desired level of precision.
For instance, consider R / min(R) = 10�5.
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the method facing a problem with two decision variables. In order to make
easier the understanding of the general procedure, the RIMP2 is considered
next, that is, n = 2 and c = (c1 ; c2).8 Let us consider I as an arbitrary
interval of Us, i. e., the set of feasible values for the stage s.9 The resolution
for the remaining intervals is analogous to this one. Applying this particular
notation to the problem (2) yields the following:�

max f(c; p)
c 2 C(Es; I); p 2 P

(4)

With the aim of transforming the continuous problem (4) into a discrete
problem, the interval I is subdivided according to the parameter Ds. Hence,
we obtain the variables:

�Ik = maxfck jc 2 Ig
I
¯k
= minfck jc 2 Ig;

where k = 1; 2. Next we consider a particular band witdh for the �rst decision
variable, c1 :

H1
s =

�I1 � I¯1
Ds

:

Depending on the problem, it may be useful to set H2
s = H

1
s to obtain the

same scale in the di¤erent decision variables10. Finally, the vectors C1 = fc1i g
and C2 = fc2jg are built using the above information:

c1i =I¯1
+ (i� 1)H1

s ; i = 1; :::; Ds + 1

c2j =I¯2
+ (j � 1)H2

s ; j = 1; :::;
�I2 � I¯2
H2
s

+ 1

With these vectors the grid for the interval Is in this stage is Is = C1xC2.
Using these points all the variables of the problem are evaluated, constraints
R included. Thus, for each compatible value of the �rst decision variable
that satis�es the constraints R with a precision Es, the value of the other
which maximizes the objective function f is chosen. In other words, for each
c1i , the set of good values of the other decision variable c

2
j , G(c

1
i ; Es), where

the constraints are hold with a precision Es, is de�ned. Formally,

8RIMP1 is obviously simpler than RIMP2, but it would not show some speci�c steps
we are interested in explain.

9I � Us � R2:
10For instance, 10 points for c1and 40 for c2 when c1 2 [0; 1] and c2 2 [0; 4]:
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G(c1i ; Es) = fc2j 2 C2=kR(c1i ; c2j)kmax < Esg;
and grouping the di¤erent c1i�s:

G1(Es) = fc1i 2 C1=G(c1i ; Es) 6= ;g:
Using this notation, we �nd out the solution of problem (4) in the stage

s solving the next problem:

max(f(c1i ; G(c
1
i ; Es)))

s:a: : c1i 2 G1(Es)
(5)

This requires to evaluate the objective function at the points satisfying
the constraints with the precision required Es. In addition, this strategy
allows to get a ranking of results in the intermediate stages, and shows one
of key features of RIMP compared to others numerical methods11.
Whereas the general procedure has been brieftly described above, several

comments are necessary to provide some details on the step from stage s to
stage s + 1. The process must continue searching for values in which the
constraints R are hold with the required precision Es+1 starting from the

discrete set G1(Es)x
Ds+1[
i=1

G(c1i ; Es) � C(Es; Is). Thus, for each c1i , we form

areas around these values in the following way:

� For c1i , the RIMP form the interval: [c1maxfi�1;1g; c
1
minfi+1;Ds+1g].

� With respect to the second decision variable, the coordinates which
belong to G(c1i ; Es) are available

12. Grouping the consecutive numbers
obtained, the di¤erent areas where RIMP2 will search in the next stage
are obtained considering the minimum (h

¯
i
q) and the maximum (�hiq)

coordinate of each consecutive subsequence q = 1; :::; Qi, where Qi is
the number of subsequences13.

Analitically, the process could be summarized as follows: 8c1i 2 G1(Es),
8q = 1; :::; Qi , RIMP2 chooses [c2h

¯
i
q�1
; c2�hiq+1

], i. e.,

[
c1i2G1(Es)

Qi[
q=1

[c1maxfi�1;1g; c
1
minfi+1;Ds+1g]x[c

2
h
¯
i
q�1
; c2�hiq+1] � Us+1

11The intermediate solutions can be interpreted as solutions of the problem for di¤erent
levels of precision.
12Obviously, this step would not be necessary for RIMP1.
13Each consecutive subsequence will form an independent area.
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The union of all the intervals created for each interval of Us will form
Us+1, that is,

Us+1 =
[
I2Us

[
c1i2G1(Es)

Qi[
q=1

[c1maxfi�1;1g; c
1
minfi+1;Ds+1g]x[c

2
h
¯
i
q�1
; c2�hiq+1]

Finally, the optimal solution will be achieved among the values of this
interval by evaluating the objective function. For an intuitive explanation of
the transition inter-stages procedure of RIMP, see the Appendix.
RIMP has modi�ed our initial problem (1) into a discrete problem. Al-

though RIMP does not invert this process, we can compute how the objec-
tive function (and the other variables) is a¤ected when slight changes in the
variables involved are presented. The concept of elasticity can be a good
illustration of this point. The elasticity of Y with respect to the variable X
(eYX) is de�ned as follows:

eYX = (4Y=Y )=(4X=X)
Indeed, RIMP can be used to study other issues such as the sensitivity of

optimal values to changes in decision variables. Using this concept of elastic-
ity, a comparison of the e¤ects caused by desviations from the optimal values
could be carried out. Following the example of elasticity, lower absolute val-
ues of eYX imply that the solution achieved is more reliable because there exist
less incentives to take di¤erent options than the optimal values. RIMP takes
advantage here over other methods because this analysis of sensitivity can
be done without additional computations.
In the next section, RIMP is used to solve a government problem related

to the optimal choice of tax rates and productive public spending. The
theoretical model we sketch below is a simple version of that presented in
Martínez and Sanchez (2006).

3 An application: the optimal level of public
inputs

3.1 The model

We assume an economy of n identical households whose utility function is
expressed by u(x; l), where x is a private good used as a numeraire and l the

10



 
 

 
 
 

 
http://www.upo.es/econ 

labor supply14. Let Y be the total endowment of time such that h = Y � l
is the leisure. Output in the economy is produced using labour services and
a public input g according to the aggregate production function F (nl; g) :
This function satis�es the usual assumptions: increasing in its arguments and
strictly concave. The type of returns to scale does not matter at the moment,
and consequently using the Feehan�s (1989) nomenclature, the public input
can be treated as �rm-augmenting (constant returns to scale in the private
factor and the public input combined, creating rents) or as factor-augmenting
(constant retuns to the private factor, and therefore scale economies in all
inputs). Output can be costlessly used as x or g.
Labour market is perfectly competitive so that the wage rate ! is linked

to the marginal productivity of labour:

! = FL (nl; g) ; (6)

where �rms take g as given. Pro�ts may arise and de�ned as:

� = F (nl; g)� nl!; (7)

which will be completely taxed away by government given their inelastic
supply15.
We distinguish two di¤erent tax settings. First, we consider a lump-sum

tax T so that the representative household faces the following problem:

Max u (x; l) (8)

s:t: : x = !l � T ,

which yields the labour supply l (!; !Y � T ) and the indirect utility function
V (!; !Y � T ). It is to be assumed that l! � 0.
For later use, we describe some comparative statics of ! (g; T; n; Y ) and

� (g; T; n; Y )16:

!g =
FLg

1� nFLLl!
> 0 (9)

!T =
nFLLlT

1� nFLLl!
> 0 (10)

14The properties of u (x; l) are the standard ones to ensure a well-behaved function:
strictly monotone, quasiconcave and twice di¤erentiable.
15Pestieau (1976) analyzed how the optimal rule for the provision of public inputs has

to be modi�ed when these rents are not taxed away.
16Note that variables n and Y are exogenously determined. For the sake of simplicity,

we will drop them hereafter as arguments in these functions.
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�T = �
nlFLLlT
1� nFLLl!

< 0 (11)

A second scenario is that using a speci�c tax on labour � . Under this tax
setting, the consumer�s optimization problem could be expressed as:

Max u (x; l) (12)

s:t: : x = (! � �) l

obtaining l (!N ; Y ) and V (!N ; Y ), where !N = ! � � is the net wage rate.
Again for future reference we derive the following results:

!� =
�nFLLl!
1� nFLLl!

> 0 (13)

�g = Fg � (nFLLl! + 1)nlFLg R 0 (14)

�� = (1� !� )n2lFLLl! < 0 (15)

The optimization problem of government in the �rst-best scenario is as
follows:

Max
R

V (!(g); !Y �R) (16)

s:t: : g = nR,

where R = T + � (g; T ) =n is the renevue per person17.
In the second-best scenario, the optimization problem of government is

given by:

Max
R

V (!(g); !Y � TEB �R) (17)

s:t: : g = nR,

with R = � l + � (g; �) =n and TEB denoting the total excess burden.
With both tax settings and after some manipulations involving the FOC�s

of both problems and expressions (9)-(11) and (13)-(15), an important con-
dition for the optimal provision of public inputs is achieved:

Fg = 1 (18)

17It is useful here to consider that rents accrue to consumers before being taxing away
by government.
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The interpretation is straightforward. The production e¤ects of public input
must equal its marginal production cost at optimum. This result is consistent
with the extension of the production-e¢ ciency theorem by Diamond and
Mirrlees (1971). So far, we know that the provision rules are not a¤ected by
the existence of distorting taxes, but anything can be said about the level of
public spending and tax rates. Next, we solve numerically the optimization
problems (16) and (17) to shed some light on this issue.

3.2 Simulation and results18

For the sake of simplicity, we consider a standard Cobb-Douglas utility func-
tion widely-used in this literature (Atkinson and Stern, 1974; Wilson, 1991).
Speci�cally,

U(x; h) = a log x+ (1� a) log h (19)

where a 2 (0; 1).
The relevant point in our case comes from the speci�cation of the produc-

tion function because the di¤erent alternatives by de�ning how the private
and public factors enter the production function have notable implications
on the debate. The main issue here refers to the return of production func-
tion. In particular, whether this function exhibits constant returns to scale
in public and private inputs (�rm-augmenting public input) or only constant
returns to the private factors (factor-augmenting public input) have conse-
quences on the controversy.
First, we study whether the RIMP and the standard NR method achieve

the same results when the optimization problem has enough regularity pro-
perties (the case of �rm-augmenting public inputs). With the aim of study
whether the dimension of the problem has any e¤ect on the achieved re-
sults, a resolution with the dimensionality reduced is considered19. Second,
RIMP is used for solving non-regular optimization problems (such a factor-
augmenting public inputs) taking advantage over NR.
Initial set of values from which RIMP2 will begin its search is [0; 2] for

t, and [100; 300] for g.20 Precision requirements we impose for searching

18The MATLAB routines used are available at
http://www.upo.es/econ/sanchez_fuentes/docs/research/RIMPv1A.zip
19This analysis has been done taking the labour supply as constant under the distorting

tax scenario. Then, the dimension of the problem is reduced from two to one.
20These intervals are large enough to obtain feasible solutions. Moreover, the largest

intervals are de�ned to include all the initial sets. For further information, see comments
on Table 4.
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solutions are given by the parameter vector E = [2; 10�1; 10�2].21 With the
aim of achieving this precision, the vector D = [30; 10; 10] will be used to
set the number of subdivisions of each interval at the di¤erent stages22. As
RIMP1 is computationally quicker, an additional stage will be considered,
i. e., the vectors D = [30; 10; 10; 10] and E = [1; 10�1; 10�2; 10�3] are taken
account when g lies within [100; 300].
With respect to the NRmethod, solutions will be extracted fromMartinez

and Sanchez (2006), where a standard implementation of this method has
been used for solving the same problem.

Firm-augmenting public input

We assume a Cobb-Douglas production function given by F (nl; g) =
(nl)�g1��, where � 2 (0; 1). This speci�cation creates �rm-speci�c rents.
As Pestieau (1976) proved, if these rents are also an argument in the con-
sumer�s indirect utility function, the optimal spending condition is not the
�rst-best one; however, recall that our model precisely establishes that all
economic rents are taxed away by the government. Indeed, the controversy
between the �rst-best and second-best level of public spending has no sense
when the �rm-augmenting public input creates rents which are completely
taxed by the government. Under this scenario, the analytical solution of our
model and its numerical resolution give the intuitive result that the optimal
level of productive public spending must be exclusively �nanced with the
economic rents.
In a sense, this situation can be compared to that of Feehan and Batina

(2004), in which a (semi)public input is equivalent to a common property re-
source. A Lindahl pricing system is then the appropriate policy instrument,
with a charge on �rms (only one in our framework) for their utilization and
according to the value of public input�s marginal contribution to the �rms�
pro�ts (Sandmo, 1972). All in all, the complete taxation of rents implies to
solve the common problem arising when public input provision is involved.
Therefore, the production e¢ ciency condition Fg = 1 applies here and, conse-
quently, the numerical solution comes from solving the simultaneous equation

21The de�nition of this vector should take into consideration not only the aim of a good
precision per se, but also the issues concerning that there a lot of points near the required
precision but not satisfying the restriction. In a sense, a trade-o¤ between precision and
number of compatible values appears.
22Note that D1 satis�es the following condition: H1

1 = 0:1 and H1
1 = H2

1 . In the
following stages, when Ds = 10 is considered, a new decimal at each stage for the decision
variables is obtained.
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system consisting of the production e¢ ciency condition for g and the govern-
ment budget constraint, with �rms and households solving their respective
optimization problems. Particularly, we have considered a = 0:5, � = 0:7
and n = 100 as the set of parameters.

INSERT TABLES 1-3 ABOUT HERE

Several comments can be drawn in viewing Tables 1-3. Table 1 compares
the results achieved by using di¤erent methods. The coincidence of results
is the main conclusion. As the lector can observe, there exists a proper level
of consistency between RIMP (both cases, RIMP1 and RIMP2) and NR. In
addition, no incentives appear to deviate from the optimal values due to the
low values of elasticities obtained.
Table 2 shows the optimal path followed by RIMP1 in the di¤erent stages.

The optimum achieved for each stage could be interpreted as the best choice
according to the required level of precision. The decreasing optimal values
obtained for the objective function in the di¤erent stages (Vmax) comes from
the existence of a trade-o¤ between the level of precision achieved and the
number of compatible values. The more precise results are demanded, the
less points satisfy these requirements. This table also shows the advantages of
this method over NR. Indeed, RIMP permits to qualify the restrictions have
to be faced by governments. For instance, consider a policy-maker forced
to provide a level of public spending g � 215. RIMP gives information
(on utility levels, for instance) about the most precise solution under these
circumstances.
Table 3 reports, for each interval, its initial point (using subindex ini), its

�nal point (using subindex �n) and the band width H used in computation
for the decision variable. In addition, the compatible values found for this
variable (g), the indirect utility (Vmax), and the government constraint R are
reported. If no compatible values are found, the minimum of the government
constraint R is showed with the aim of comparing it to the level of precision
required for the ful�llment of the constraint. This information can be used
relaxing enough the precision requirements to �nd some compatible values.
The intermediate stages of RIMP allow to detect the �good�areas, [214:8; 215]
in the second step, which will be used in the next stages23. At the same time,
the �bad� or exhausted areas where the method has �nished its searching
process are obtained.

INSERT FIGURE 1 ABOUT HERE
23Following the formal description of RIMP, the interval [214:7; 215:1] will be considered

in order to ensure that potentially close �good�points are not eliminated.
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Figure 1 shows a complementary view of the searching process followed
by the RIMP1 and already reported in Tables 2 and 3. Each stage focuses on
the search of the �good areas�detected in the previous one. By contrast, the
�bad�or exhausted areas are not taken into account. Again, the RIMP obtains
more precise solutions as the level of precision is increased and simultaneously
avoids non-e¢ cient computations.

Factor-augmenting public input

The main di¤erence between the above environment and this of factor-
augmenting lies in the assumptions on the returns to scale in the production
function. Particularly, we assume again a Cobb-Douglas production function
but exhibiting increasing returns in all the inputs (constant returns in labor):
F (nl; g) = nlg�, where � 2 (0; 1). Under this framework, the debate on the
level of public spending in alternative tax settings is reborn. Indeed, the use
of lump-sum or distorting taxes are necessary as long as rents are null. The
following scenario a = 0:5, � = 0:2 and n = 100 is considered as the set of
parameters.
Solving the government optimization problem with factor-augmenting

public inputs is not as straightforward as before. Indeed, the NR algorithm
presents some caveats when non-convex sets of constraints are involved. Note
that this is our case because we have increasing returns in the production
side of the model. Consequently, there is scope for a method such a RIMP.

INSERT TABLES 4-5 ABOUT HERE

Table 4 reports the results achieved when RIMP2 solves the two di¤e-
rent tax settings (�rst-best vs. second-best). This table justi�es the use of
the term �Rational�in the name of our method. The very di¤erent scale for
the tax rate obtained for each tax setting requires a previous knowledge for
searching the optimal values. In other words, optimal values only can be
found whether the search is done in the proper areas. At the same time,
the conclusion from the speci�c problem solved here is very similar to pre-
vious studies: there exists a higher level of provision when the government
uses lump-sum taxes. Therefore we are here in line with the mainstream of
previous literature in which the level reversal is unusual24.
Table 5 compares two di¤erent implementations of the same problem25.

It reports the tax rate (t), the level of provision of public input (g), the

24For further information, see Martinez and Sanchez (2006).
25The dimensionality of the problem has been reduced using that the labour supply is

constant when a Cobb-Douglas utility function and distorting taxes are considered.
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utility (U) and other relevant variables. The equality of results is the main
conclusion and gives more robustness to the achieved results. Low values of
elasticities implies that the solution is more reliable because it is an indication
that the objective function has enough stability around the optimal values.

4 Concluding remarks

This paper has introduced a new numerical method, the Rational Iterative
Multisection Procedure (RIMP), which is able to obtain optimal values of a
constrained optimization problem, even when the problem present some non-
regular properties. In fact, we have dealt with two optimization problems;
a problem with enough regularity properties and a non-convex problem as
examples of its application. The method is based on an multisection itera-
tive process of the initial set that evaluates the objetive function, obtaining
compatible values of the decision variables under several precision require-
ments. The more stages are considered, the more precise values are obtained.
Moreover, there exists a trade-o¤ between the number of compatible values
and the precision requirement imposed.
We have compared this newmethod to the well-known method of Newton-

Raphson, when the problem had enough regularity. One of the main conclu-
sions is the coincidence of the results. In order to carry out this comparison,
we have used a simple general equilibrium model with public inputs and
taxes on labor. The government has to choose the values of �scal variables
to maximize the per capita utility of representative household. This scenario
refers to the case of �rm-augmenting public inputs.
Moreover, an optimization problem where non-convex sets of constraints

are involved has been considered. This is the case dealing with factor-
augmenting public inputs. With the aim of avoiding the problems derived
from multiple equilibria and corner solutions, we have used the RIMP, which
has relative advantages with respect to the standard NR method under these
conditions. Our numerical results are clear: the level of public input in the
�rst-best scenario always exceeds that of the second-best, in line with the
mainstream of literature dealing with public inputs. Low values of elasticity
of variables with respect to the decision variables of the model show clear
indications supporting the idea of stability of solutions achieved.
All in all, RIMP becomes a useful tool for solving constrained optimiza-

tion problems, in which relaxing constraints is a relevant issue. Under these
circumstances, RIMP takes advantage over other methods. An example of
this could be problems in which legal or constitutional arrangements imply
that the budget constraint has not to be ful�lled strictu sensu.
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Moreover, other applications of RIMP could be studied in a deeper way.
For instance, our procedure may be useful to analyze the sensitivity of cali-
brated parameters in general equilibrium models.
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A Appendix

An intuitive explanation of the inter-stages procedure of RIMP2, supported
by a graphical tool, is presented next. The �gure below shows the transition
from stage 1 to stage 2. In the �rst stage, the initial set of two decision
variables, t� g, has been discretized as a matrix 4x10.26 All these points are
candidates to be solutions of the optimization problem. Assume the points
A;B;C; J and F are the points in which the restriction is ful�lled with the
minimum precision E1. Looking for more precise solutions, the areas 1; 2; 3; 4
and 5 are built to form the initial set to be considered in the second stage.

Figure A1: Inter-stages procedure.

The way through which these areas 1-5 are formed can be illustrated
taking the coordinate t2 as a reference. The set of good values for the other
decision variable g where the constraints are satis�ed with a precision E1
is G(t2; E1) = fg3; g4; g7g. Grouping the consecutive subsequences in g, the
minimum and maximum coordinates are, respectively: h

¯
2
1 = 3;

�h21 = 4; h¯
2
2 =

�h22 = 7. Hence, the area to be used for the next stage coming from t2 will be
[t1; t3]x[g2; g5] [ [t1; t3]x[g6; g8].
However, areas 1-5 are not obtained following strictu sensu the theoretical

nomenclature explained above or considering directly the area obtained from

26For the sake of simplicity, the notation of decision variables is based on the applica-
tion�s nomenclature of section 3.
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any of the above points. By contrast, an "e¢ cient" reorganization of the
areas relative to each point is done. Therefore, RIMP2 does not duplicate
the computation in the areas which belong to more than one point as well
as avoids computations in areas where it is unlikely to �nd good values.
Obviously, the total areas are identical in both cases: following the theoretical
framework and according to the above e¢ cient reorganization.
Next, the main features of this reorganization are described. We explain

them using some particular situations regarding the above �gure.

� The areas where di¤erent coordinates are involved should be integrated
to optimize the procedure. For instance, area 2 has been built on the
basis of points A and J , which have di¤erent coordinates in t. Hence,
our method does not duplicate some evaluations corresponding to the
common area [t1; t2]x[g7; g8].

� The good areas found for the interval of coordinates [ti�1; ti+1] must be
considered in separate intervals. A good example of this issue could be
the situation of the areas 4 and 5. As long as this rule of reorganization
would not have taken place, the area [t3; t4]x[g6; g7] would have been
included in the second stage and the objective funcion, the constraints
and others would have been evaluated in this area, where it is unlikely
to �nd a compatible value in the second stage.

� The consecutive coordinates in g, which belong to the same coordinate
in t, are jointly considered in the de�nition of the area to be used in
the next stage. An illustration of this situation is given by areas 1 and
3. Points B and C belong to the same subsequence in g, with t2 as
vertical coordinate.

At this point, areas 1-5 are used as the initial set in the second stage and
RIMP2 goes on searching for more precise solutions using the new grid of
points obtained subdividing these areas according to the parameters D and
E.
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Figures

Figure 1: RIMP1 optimal path. Firm-augmenting public input.
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Tables

Table 1: Optimal Values. Firm-augmenting public input.

Variable RIMP1 (D) eV arg RIMP 2 (LS) eV art eV arg NR
Tax Rate (t) 1d-12 1d-12 1d-12
Public Input (g) 214.8890 214.8840 214.8877
Utility (U) 2.0486 0.07322 2.0486 <1E-5 0.07321 2.0486
Labor (l) 12 0 12 <1E-5 0 12
Wages (!) 0.4178 0.3 0.4178 <1E-5 0.29996 0.4178
Consumption (X) 5.0141 0.3 5.0141 <1E-5 0.29996 5.0140
Total production (F ) 716.2930 0.3 716.2888 <1E-5 0.30000 716.2924
Pro�ts (�) 214.8880 0.3 214.8831 <1E-5 0.30010 214.8877
R 8.92E-04 6.00E-04 1.42E-13

R is the precision with which the constraints are satis�ed. D distorting. LS =
Lump-Sum. V ar = U; l; !; X; F; �:

Table 2: Optimal path of RIMP1 in di¤erent stages. Firm-augmenting public
input.

Stage Interval g Vmax R E
1 1 216 2.0493 0.77919 1
2 2 215 2.0487 0.0786 0.1
3 2 214.9 2.0486 0.00859 0.01
4 2 214.89 2.0486 0.00089 0.001
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Table 3: Path followed by RIMP1. Firm-augmenting public input.

STAGE = 2 / 4 INTERVAL = 1 / 4

gini = 213 gfin = 214 Hg = 0.1
No compatible values found
Min R = 0.77919 E = 0.1

STAGE = 2 / 4 INTERVAL = 2 / 4

gini = 214 gfin = 215 Hg = 0.1
g Vmax R

214.8 2.04851 0.0614
214.9 2.04858 0.00859
215 2.04865 0.0786

STAGE = 2 / 4 INTERVAL = 3 / 4

gini = 215 gfin = 216 Hg = 0.1
g Vmax R
215 2.04865 0.0786

STAGE = 2 / 4 INTERVAL = 4 / 4

gini = 216 gfin = 217 Hg = 0.1
No compatible values found
Min R = 0.77919 E = 0.1

STAGE = 3 / 4 INTERVAL = 1 / 4

gini = 214.7 gfin = 214.8 Hg = 0.01
No compatible values found
Min R = 0.06140 E = 0.01

STAGE = 3 / 4 INTERVAL = 2 / 4

gini = 214.8 gfin = 214.9 Hg = 0.01
g Vmax R

214.88 2.04857 0.00541
214.89 2.04858 0.00159
214.9 2.04858 0.00859

STAGE = 3 / 4 INTERVAL = 3 / 4

gini = 214.9 gfin = 215 Hg = 0.01
g Vmax R

214.9 2.04858 0.00859

STAGE = 3 / 4 INTERVAL = 4 / 4

gini = 215 gfin = 215.1 Hg = 0.01
No compatible values found
Min R = 0.07860 E = 0.01
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Table 4: Optimal path of RIMP2. Factor-augmenting public input.

Distorting
Stage Interval t g Vmax R E
1 1 0.11 133.91 2.95353 1.91 2
2 2 0.11 132.1 2.95211 0.1 0.1
3 2 0.11 132.01 2.95204 0.01 0.01

Lump-sum
Stage Interval t g Vmax R E
1 1 1.41 142.91 2.95911 0.77919 2
2 15 1.43 143.09 2.95893 0.09568 0.1
3 44 1.43 143.004 2.95886 0.00969 0.01

Table 5: Optimal values with di¤erent implementations. Factor-augmenting
public input.

Variable RIMP1 eV arg RIMP 2 eV art eV arg

Tax Rate (t) 0.1100 0.1100
Public Input (g) 132.0100 132.0100
Utility (U) 2.9520 0.03534 2.9520 -0.0073 0.03540
Labor (l) 12.0000 <1E-5 12.0000 <1E-5 <1E-5
Wages (!) 2.6554 0.20000 2.6554 <1E-5 0.20000
Consumption (X) 30.5440 0.20864 30.5442 -0.0432 0.20864
Total production (F ) 3186.4200 0.20000 3186.4170 <1E-5 0.20000
Pro�ts (�) 0.0000 - 0.0000 - -
R 1.00E-02 1.00E-02

R is the precision with which the constraints are satis�ed.
V ar = U; l; !; X; F; �:
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