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Abstract

Resource egalitarianism and welfare egalitarianism are two focal conceptions of distribu-

tive justice. We show in this paper that they share a solid common ground. To do so,

we analyze a simple model of resource allocation in which agents’ abilities (to transform

the resource into an interpersonally comparable outcome) and starting points may differ.

Both conceptions of egalitarianism are naturally modeled in this context as two alloca-

tion rules. The two rules are jointly characterized by the combination of three appealing

axioms: priority, solidarity, and composition.
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1 Introduction

A significant amount of effort in political philosophy over the past few decades has been con-

centrated on the issue of distributive justice. A central impetus for this should be attributed

to John Rawls’s theory (e.g., Rawls, 1971), which constituted an influential endorsement for

egalitarianism. Egalitarian doctrines tend to express the idea that all human persons are equal

in fundamental worth or moral status. In spite of this seemingly unquestionable idea, egalitar-

ianism is a contested concept in social and political thought. Discussions in moral philosophy

have offered us a wide menu in answer to the question: equality of what? (e.g., Sen, 1980). In

other words, if one is an egalitarian, what should one wish to equalize? Two well-known (and

focal) theories have been singled out to answer this question in distributive justice. Resource

egalitarianism holds that a distributional scheme treats people as equals when it distributes

or transfers so that no further transfer would leave their shares of the total resources more

equal (e.g., Dworkin, 1981b). Welfare egalitarianism holds that it treats them as equals when

it distributes or transfers so that no further transfer would leave them more equal in welfare

(e.g., Dworkin, 1981a). It is plain that both theories will offer different advice in many concrete

cases. Nevertheless, we show in this paper that they have a solid common ground, as we shall

derive them as the only allocation methods satisfying several appealing principles.

More precisely, imagine the following basic problem. There is an amount of wealth to be

allocated among individuals, each of whom possesses a capability to transform wealth into some

given valued (but non-transferable) outcome, and the achievements of individuals, with regard

to that outcome, are interpersonally comparable. Think, for instance, of life expectancy as a

function of investment in health care. In resource allocation problems of this sort, if individ-

uals have equal rights over resources, resource egalitarianism (i.e., to distribute the available

resource equally among all agents) and welfare (or outcome) egalitarianism (i.e., to distribute

the resource among the population so as to equalize, as much as possible, the outcomes among

them) are usually two focal points of distribution. We show that in this context both rules can

actually be characterized together by combining three axioms. More precisely, we will consider

the so-called priority axiom (e.g., Moreno-Ternero and Roemer, 2006), which imposes a positive

discrimination (but only to a certain extent) towards the less capable of transforming resource

into outcome; the so-called solidarity axiom (e.g., Thomson, 1983a,b; Roemer, 1986) formaliz-

ing the idea that changes on the number of individuals and the available wealth should affect

all incumbent agents in the same direction; and the so-called composition axiom (e.g., Young,
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1988; Moulin, 2000) pertaining to the behavior of a rule with respect to tentative allocations

based on an incorrect estimation of the available wealth. Our main result will say that the two

rules described above are the only ones satisfying these three axioms.

The rest of the paper is organized as follows. Section 2 presents the model of resource

allocation upon which we will base our analysis. Section 3 is devoted to the results. Section 4

summarizes the connections of our work with some related literature. Section 5 concludes. For

a smooth passage, we defer some proofs and provide them in the appendix.

2 The model

Let I represent a population of agents (a set with an infinite number of members) who trans-

form a resource, sometimes called wealth, into an objectively measurable (and interpersonally

comparable) outcome, sometimes called welfare. For each i ∈ I, let ui : R+ → R+ be the indi-

vidual function that models this process.1 We assume that, for each i, ui is continuous, strictly

increasing and unbounded. We also assume that U = {ui : i ∈ I} constitutes a sufficiently

rich domain. More precisely, we assume that U contains all positive (and increasing) piece-wise

linear functions and, for reasons that will become clear later in the text, that it is closed under

horizontal translations. Formally, if there exist sequences {αj, βj, λj}kj=1 such that,

• For each j = 1, . . . , k, αj ∈ R++, λj ∈ R+ and βj ∈ R;

• 0 = λ1 ≤ λ2 ≤ · · · ≤ λk;

• For each j = 1, . . . , k − 1, αjλj+1 + βj = αj+1λj+1 + βj+1;

and u : R+ → R+ is defined by

u(x) =



α1x+ β1 if λ1 ≤ x ≤ λ2

α2x+ β2 if λ2 ≤ x ≤ λ3

. . . . . . . . .

αkx+ βk if λk ≤ x

1The main mathematical conventions and notations, used here, are as follows. The set of non-negative

(positive) real numbers is R+ (R++). Vector inequalities are denoted by > and ≥. More precisely, x > y means

that each coordinate of x is greater than the corresponding coordinate of y, whereas x ≥ y allows some of them

to be equal. Finally, given a set N and a subset M , we denote the projection of the vector v ∈ R|N |+ over M as

vM , i.e., vM = (vi)i∈M .
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for each x ∈ R+, then u ∈ U .2 Similarly, if u ∈ U , c ∈ R+ and v : R+ → R+ is defined by

v(x) = u(x + c), for each x ∈ R+, then v ∈ U . Note that ui(0) ≥ 0 denotes the outcome that

agent i can generate with zero wealth. These levels, to be interpreted as agents’ starting points,

may well differ. In the example of life expectancy as a function of investment in health care,

mentioned above, this would mean that even though some agents might not survive without

investment in their health care, some others might do so.

Let I be the family of all finite subsets of I. We define an economy e as a triple (N, u,W ),

where N = {i1, i2, ..., in} ∈ I is the set of agents, u = (ui)i∈N is the profile of their outcome

functions (defined as above), and W ∈ R+ represents the available wealth. The family of

all economies is E . The following subfamily of economies is worth defining for the ensuing

discussion.

E0 ≡ {e = (N, u,W ) ∈ E : ui(0) = 0 for each i ∈ N}.

In words, E0 is the subfamily of economies in which the starting points of all agents are null.

An allocation rule, or simply a rule, is a function R that associates with each economy an

allocation indicating how to distribute the wealth available in the economy among its members.

Formally, R : E → Rn
+, where, for each e = (N, u,W ) ∈ E , R(e) = (Ri(e))i∈N ∈ Rn

+ is such

that
∑

i∈N Ri(e) = W . As we discard all information that is not contained in the description

of an economy, we implicitly assume that rules are anonymous. In other words, the identity

of agents will not play a role in the allocation process and we shall only focus on the outcome

functions and the available wealth of the economy.

Examples of rules are the following. First, the rule that awards each agent the same amount:

Resource-Egalitarian rule (RE): REi(N, u,W ) = W
n

.

An alternative to the resource-egalitarian rule is obtained by focusing on the levels of out-

come agents achieve, as opposed to the resources they receive, and choosing the vector at which

these outcome levels are as equal as possible. In other words, the wealth is allocated initially

to the agent(s) with the lowest starting point until her (their) outcome(s) become equal to

the starting point(s) of the agent(s) with the second lowest starting point. Then, the rest of

the wealth is distributed between these agents in a way to equalize their outcomes, until their

outcomes are equal to the starting point(s) of the agent(s) with the third lowest starting point

and so on. Formally,

2In particular, this implies that the graphs of all admissible outcome functions will cover the positive orthant,

as well as the non-negative vertical axis.
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Constrained Outcome-Egalitarian rule (COE): COEi(N, u,W ) = u−1
i (max{λ, ui(0)}),

where λ ≥ 0 is chosen so that
∑

i∈N u
−1
i (max{λ, ui(0)}) = W .

In other words, for each economy (N, u,W ), the constrained outcome-egalitarian rule de-

termines a set N1 ⊆ N such that, for each i, j ∈ N1 and k ∈ N \N1,

ui(COEi(N, u,W )) = uj(COEj(N, u,W )) ≤ uk(0) = uk(COEk(N, u,W )).

These two rules, which naturally translate the focal egalitarian theories we alluded to in

the introduction, will be salient in our analysis. Nevertheless, many other rules can be de-

fined. Instances would be dictatorial rules awarding a single agent the whole amount of wealth,

proportional-like rules awarding wealth proportionally to some individual characteristic, or com-

promises between the above two arising from equalizing some combination between resources

and outcome levels, as described next.

Formally, let Φ be the family of all functions ϕ : {R+ × R++} ∪ {(0, 0)} → R+ satisfying

the following monotonicity and continuity assumptions:

Monotonicity :

(i) If x ∈ R+ and x′, y ∈ R++ are such that x < x′ then ϕ(x, y) ≤ ϕ(x′, y).

(ii) If x ∈ R+ and y, y′ ∈ R++ are such that y < y′ then ϕ(x, y) ≤ ϕ(x, y′).

(iii) If x ∈ R+ and x′, y, y′ ∈ R++ are such that (x, y) < (x′, y′), then ϕ(x, y) < ϕ(x′, y′).

(iv) ϕ(0, 0) = 0 ≤ ϕ(x, y) for each (x, y) ∈ R+ × R++.

Continuity :

(i) ϕ is continuous on R2
++, i.e.,

lim
(x,y)→(x0,y0)

ϕ(x, y) = ϕ(x0, y0), for each (x0, y0) ∈ R2
++.

(ii) For each y0 ∈ R+, ϕ(x, y) approaches ϕ(0, y0), as (x, y) approaches (0, y0) along any

continuous and strictly increasing curve y = y(x) in R2
++, i.e.,

lim
x→0+

ϕ(x, y(x)) = ϕ(0, y0),

for each y : R++ → R++ continuous and strictly increasing function such that limx→0+ y(x) = y0.

Let ϕ be a function in the class Φ. For each i ∈ I define the function ψi : R+ → R+ by

ψi(w) = ϕ(w, ui(w)) for each w ∈ R+. Given the monotonicity and continuity conditions of

ϕ, it follows that, for each i ∈ I, ψi is continuous and strictly increasing. Then, we define the

family of constrained index-egalitarian rules as follows:
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Constrained Index-Egalitarian rules ({Eϕ}ϕ∈Φ): Eϕ
i (N, u,W ) = ψ−1

i (max{ξ, ψi(0)}),

where ξ > 0 is chosen so that
∑

i∈N ψ
−1
i (max{ξ, ψi(0)}) = W .

In words, for each ϕ ∈ Φ, and e ∈ E , Eϕ(e) is the wealth allocation that lexicographically

maximizes the ϕ-value across agents in e. More precisely, if agents are ranked according to the

ϕ-value from their starting points, then the wealth is allocated initially to the agent with the

lowest one until the resulting ϕ-value becomes equal to the second lowest (starting point) ϕ-

value. Then, the rest of the wealth is distributed between these two agents in a way to equalize

their ϕ-values, until these are equal to the third lowest (starting point) ϕ-value and so on.

Equivalently, for each economy (N, u,W ), the constrained index-egalitarian rule determines a

set N1 ⊆ N such that, for each i, j ∈ N1 and k ∈ N \N1,

ψi(E
ϕ
i (N, u,W )) = ψj(E

ϕ
j (N, u,W )) ≤ ψk(0) = ψk(E

ϕ
k (N, u,W )).

Note that, applied in this manner to an agent’s wealth and outcome, ϕ can be considered

as a generalized index of wealth and outcome. So the rules just defined leximin a generalized

index of wealth and outcome. It is straightforward to show that each rule Eϕ actually equalizes

the corresponding index ϕ, when restricted to economies in E0. Hence, this family is a gener-

alization to this context of the family introduced in Moreno-Ternero and Roemer (2006).3 It

is also straightforward to show that the resource-egalitarian rule and the constrained outcome-

egalitarian rule are members of the family of constrained index-egalitarian rules. Formally, if

ϕ(x, y) = x, for each (x, y) ∈ R2
+, then Eϕ ≡ RE, whereas if ϕ(x, y) = y, for each (x, y) ∈ R2

+,

then Eϕ ≡ COE.

We now present several axioms for allocation rules that we endorse. We begin by introducing

our axiom of priority, which says that no agent can dominate another agent both in resources

and outcome.

Priority (PR). Let e = (N, u,W ) ∈ E and i, j ∈ N be such that Ri(e) < Rj(e). Then

ui(Ri(e)) ≥ uj(Rj(e)).

Note that this axiom (first introduced under this form in Moreno-Ternero and Roemer,

2006) guarantees that agents with poor outcome functions receive at least as much wealth as

agents with better outcome functions. In other words, priority implies the weak equity axiom,

introduced by Sen (1973). On the other hand, priority also says that an agent with a poor

3The model in Moreno-Ternero and Roemer (2006) did not allow for differences in starting points and,

therefore, the analysis therein was restricted to the domain of economies E0.
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outcome function is never allocated so much that her outcome level exceeds that of an agent

with a better outcome function.4

Our next axiom, solidarity, says that the arrival of new agents, whether or not this is

accompanied by a change in the available wealth, should affect all the incumbent agents in the

same direction. Formally,

Solidarity (SL). Let e = (N, u,W ) ∈ E and e′ = (N ′, u′,W ′) ∈ E , such that N ⊆ N ′. Let

N1 = {i ∈ N : Ri(e) > 0}. Then, one of the following three statements holds:

Ri(e
′) = Ri(e), for each i ∈ N,

Ri(e
′) ≥ Ri(e), for each i ∈ N, and Ri(e

′) > Ri(e), for each i ∈ N1,

Ri(e
′) ≤ Ri(e), for each i ∈ N, and Ri(e

′) < Ri(e), for each i ∈ N1.

Our solidarity axiom is modeling the fact that agents cannot benefit from a change (either

in the available wealth or in the number of agents) if someone else suffers from it. Related

formulations of the solidarity notion abound in the literature (see Thomson (forthcoming) for a

survey, and Maniquet and Sprumont (2010) for a recent instance).5 This axiom is equivalent to

the combination of two axioms that appear frequently in the literature: resource monotonicity

and consistency. Resource monotonicity (e.g., Roemer, 1986) says that when a bad or good

shock comes to an economy, all its members should share in the calamity or windfall.

Resource monotonicity (RM). Let e = (N, u,W ) and e′ = (N, u,W ′) ∈ E be such that

W ′ < W . Let N1 = {i ∈ N : Ri(e) > 0}. Then, Ri(e
′) ≤ Ri(e) for each i ∈ N , and

Ri(e
′) < Ri(e) for each i ∈ N1.

Consistency has played a fundamental role in axiomatic analysis (see, e.g., Thomson (2007)

and the literature cited therein) even though it is mostly an operational (rather than ethical)

axiom. It says that if a sub-group of agents secedes with the resource allocated to it under

R then, in the smaller economy, R allocates the resource in the same way. In that sense,

consistency can be interpreted as a notion of stability.

4A counterpart to this axiom in the theory of fairness is the so-called “no-domination” axiom (e.g., Thomson,

2011), which says that no agent receives more of all goods than some other agent.
5Solidarity properties with respect to population changes were indeed introduced by Thomson (1983a,b). As

mentioned above, our axiom is stronger as it refers to simultaneous changes in two parameters (namely, resources

and population). Chun (1999) formulates a counterpart notion in the context of bankruptcy problems.
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Consistency (CY). Let e = (N, u,W ) and e′ = (N ′, u′,W ′) ∈ E be such that N ′ ⊂ N and

W ′ =
∑

i∈N ′ Ri(e). Then Ri(e) = Ri(e
′), for each i ∈ N ′.

Our final property pertains to the behavior of a rule with respect to tentative allocations

based on an incorrect estimation of the available wealth. To motivate this property, imagine

the following scenario: after having committed to divide the available wealth, one finds that

the actual amount to divide is larger than was initially assumed. Then, two options are open:

either the tentative division is cancelled altogether and the allocation for the actual economy

is obtained directly, or we add to the initial commitment the result of applying the rule to the

subsequent economy with the remaining amount and the adjusted individual outcome functions

that would emerge after the initial allocation.6 The requirement of composition is that both

ways of proceeding should result in the same allocations. Formally,

Composition (CP). Let e = (N, u,W ) ∈ E. Let W 1,W 2 ∈ R++ be such that W = W 1 +W 2

and e1 = (N, u,W 1) ∈ E. For each i ∈ N , let î ∈ I be such that ûî(x) = ui(x + Ri(e
1)) for

each x ∈ R+, and let e2 =
(
N̂ , (ûî)î∈N̂ ,W

2
)
∈ E. Then, R(e) = R(e1) +R(e2).

The property of composition has a relative in the theory of axiomatic bargaining: the

so-called “step-by-step negotiations” axiom introduced by Kalai (1977), which considers two

nested bargaining sets and uses the bargaining solution for the smaller bargaining set as the

disagreement point for the larger bargaining set. It is the basis for the characterization of the

egalitarian solution in such context. The same principle has also been frequently used in other

related contexts (e.g., Young, 1988; Moulin, 2000; Moulin and Stong, 2002).

3 The results

As anticipated in the introduction, the main result of this paper shows that the resource-

egalitarian rule and the constrained outcome-egalitarian rule are characterized by the axioms

described above. In order to prove such result, we present first another result, which generalizes

Theorem 1 in Moreno-Ternero and Roemer (2006).

Theorem 1 A rule defined on E satisfies priority and solidarity if and only if it is a constrained

index-egalitarian rule.

The proof of Theorem 1 appears in the Appendix. Note that this theorem is indeed a gener-

alization of Theorem 1 in Moreno-Ternero and Roemer (2006), which says that, for the domain

6This is the reason why we require U to be closed under horizontal translations.
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of economies E0, the family of index-egalitarian rules is characterized by the corresponding

axiom of restricted domain, the axiom of priority and the solidarity axiom.

We are then ready to state our main result.

Theorem 2 A rule defined on E satisfies priority, solidarity and composition if and only if it

is either the resource-egalitarian rule or the constrained outcome-egalitarian rule.

Proof. By Theorem 1, we know that RE and COE satisfy PR and SL. It is straightforward

to show that RE satisfies CP . We then show that COE satisfies CP .

Let e = (N, u,W ) ∈ E . For ease of exposition, assume that N = {1, 2, ..., n} and that agents

are ranked (in an increasing order) according to their initial starting points, i.e., ui (0) ≤

ui+1 (0) for each i = 1, ..., n − 1. Let W 1,W 2 ∈ R++ be such that W = W 1 + W 2 and let

e1 = (N, u,W 1) ∈ E. For each i ∈ N , let î ∈ I be such that ûî(x) = ui(x+ COEi(e
1)) for each

x ∈ R+, and let e2 = (N̂ , û,W 2) ∈ E , where û = (ûî)i∈N . Let σi = u−1
i and σ̂î = û−1

î
for each

i ∈ N . Then,

COEi(e) =

 σi (λ) for each i = 1, . . . , k

0 for each i = k + 1, . . . , n

where λ and k are such that

k∑
i=1

σi (λ) = W , and uk+1 (0) > λ ≥ uk (0) .

Similarly,

COEi(e
1) =

 σi (λ1) for each i = 1, . . . , k1

0 for each i = k1 + 1, . . . , n

where λ1 and k1 are such that

k1∑
i=1

σi (λ1) = W 1, and uk1+1 (0) > λ1 ≥ uk1 (0) .

Thus, note that k ≥ k1 and λ ≥ λ1. Finally,

COEi(e
2) =

 σ̂î (λ2) for each i = 1, . . . , k2

0 for each i = k2 + 1, . . . , n

where λ2 and k2 are such that

k2∑
i=1

σ̂k̂2 (λ2) = W 2, and û
k̂2+1

(0) > λ2 ≥ ûk̂2 (0) .
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Let y = COE(e) − COE(e1) and z = COE(e2). We have to show that y = z. To do so,

note first that

ûî(yi) =

 λ for each i = 1, . . . , k

ui(0) for each i = k + 1, . . . , n

and

ûî(zi) =

 λ2 for each i = 1, . . . , k2

ûî(0) for each i = k2 + 1, . . . , n

Note also that, as y is a feasible allocation for the economy e2, it follows, by definition of COE,

that (ûî(zi))i∈N lexicographically dominates (ûî(yi))i∈N . This implies that λ ≤ λ2. Thus,

k1 ≤ k ≤ k2. Then,

yi =


σi (λ)− σi (λ1) for each i = 1, . . . , k1

σi (λ) for each i = k1 + 1, . . . , k

0 for each i = k + 1, . . . , n

and

zi =

 σ̂î (λ2) for each i = 1, . . . , k2

0 for each i = k2 + 1, . . . , n

Let i = 1, . . . , k1. Then, ûî(x) = ui(x + σi (λ1)) for each x ∈ R+. Thus, σ̂î (x) = σi (x) −

σi (λ1) for each x ∈ R+. In particular, σ̂î (λ2) = σi (λ2) − σi (λ1). Similarly, σ̂î (λ2) = σi (λ2)

for each i = k1 + 1, . . . , k2. Thus, zi ≥ yi for each i ∈ N . Now, if λ < λ2, we would have

W 2 =
∑

i∈N zi >
∑

i∈N yi = W 2, a contradiction. Thus, it follows that λ = λ2 and, therefore,

that k = k2, which implies that y = z, as desired.

We conclude by showing that no other rule within the family {Eϕ}ϕ∈Φ satisfies CP .

Let Φ̂ denote the residual of Φ after removing the functions giving rise to RE and COE.

We partition the family Φ̂ according to the following concept. We say that ϕ ∈ Φ̂ is quasilinear

in x if there exists λ > 0 and f : R+ → R+, continuous and increasing, with f(0) = 0, and

f(x) > 0 for some x > 0, such that ϕ(x, y) = λx+ f(y), for each (x, y) ∈ R+ × R++.7

Case 1. The quasiliniear case.

Let ϕ ∈ Φ̂ be a quasilinear function in x. Then, there exists y2 ∈ R++ such that ϕ (0, y2) > 0.

Furthermore, there exist δ ∈ R++ and (x1, y1) ∈ R2
++, with x1 > δ and y2 > y1, such that

ϕ(x1 − δ, y1) = ϕ(0, y2) > 0.

7In other words, the level curves of ϕ are parallel displacements of each other along the x axis.
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Let u1, u2 ∈ U be such that

u1(0) = 0, u2(0) = y2, u1(x1) = y1.

Let λ = ψ1(x1) = ϕ(x1, y1) > 0 and W = ψ−1
1 (λ) + ψ−1

2 (λ) and consider the economy e =

({1, 2}, (u1, u2),W ). Then, it is straightforward to show that

Eϕ(e) =
(
ψ−1

1 (λ), ψ−1
2 (λ)

)
.

Let ε ∈ R++ be such that ε < W and ϕ(ε, u1(ε)) < ϕ (0, y2) and consider the economy

e1 = ({1, 2}, (u1, u2), ε). Then, it is straightforward to show that

Eϕ(e1) = (ε, 0).

Finally, let W2 = W −ε > 0. For i = 1, 2, let ûî : R+ → R+ be such that ûî(x) = ui(x+Eϕ
i (e1))

and consider the economy e2 = ({1̂, 2̂}, (û1̂, û2̂),W 2). For i = 1, 2, let ψ̂i : R+ → R+ be such

that ψ̂i(w) = ϕ(w, ûî(w)) for each w ∈ R+.

Assume, by contradiction, that Eϕ satisfies CP . Then, if Eϕ(e2) = (W2, 0), it follows that

ψ−1
2 (λ) = 0, which would imply ϕ(x1, y1) = λ = ϕ (0, y2) = ϕ (x1 − δ, y1), a contradiction

with the fact that ϕ is quasilinear. If, on the other hand, Eϕ(e2) =
(
ψ̂−1

1 (λ′), ψ̂−1
2 (λ′)

)
, then

ψ−1
2 (λ) = ψ̂−1

2 (λ′) and ψ−1
1 (λ) = ε + ψ̂−1

1 (λ′). From the former equality, it follows that λ = λ′,

as ψ̂2 ≡ ψ2 is a strictly increasing function. Thus, from the latter equality, it follows that

x1 = ε+ψ̂−1
1 (λ), or, equivalently, ϕ(x1, y1) = λ = ψ̂1 (x1 − ε) = ϕ(x1−ε, u1(x1)) = ϕ(x1−ε, y1),

again, a contradiction with the fact that ϕ is quasilinear.

Case 2. The non-quasiliniear case.

Let ϕ ∈ Φ̂ be a non-quasilinear function in x. Then, there exist (x1, y1), (x2, y2) ∈ R2
++, and

0 < α < min{x1, x2}, such that ϕ(x1, y1) = ϕ(x2, y2) and ϕ(x1 − α, y1) 6= ϕ(x2 − α, y2).

Let u1, u2 ∈ U be such that

u1(x1) = y1, u2(x2) = y2, u1(α) = u2(α).

Now, consider the economies e1 = ({1, 2}, (u1, u2), 2α) and e = ({1, 2}, (u1, u2), x1 + x2). It is

straightforward to show that

Eϕ(e1) = (α, α),

and

Eϕ(e) = (x1, x2) .
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For i = 1, 2, let ûî : R+ → R+ be such that ûî(x) = ui(x + α) and consider the economy

e2 = ({1̂, 2̂}, (û1̂, û2̂),W 2), where W 2 = x1 + x2 − 2α. For i = 1, 2, let ψ̂i : R+ → R+ be such

that ψ̂i(w) = ϕ(w, ûî(w)) for each w ∈ R+. Then,

Eϕ(e2) =
(
ψ̂−1

1 (λ′), ψ̂−1
2 (λ′)

)
,

where λ′ is such that ψ−1
1 (λ′) + ψ−1

2 (λ′) = W 2. Equivalently,

Eϕ(e2) = (x, x1 + x2 − 2α− x) ,

where

ϕ(x, u1(x+ α)) = ϕ(x1 + x2 − 2α− x, u2(x1 + x2 − α− x)). (1)

Now, Eϕ(e) = Eϕ(e1) + Eϕ(e2) if and only if α + x = x1. But if so, (1) becomes

ϕ(x1 − α, y1) = ϕ(x2 − α, y2),

which represents a contradiction.

4 Related literature

Our paper can be considered as part of the rapidly expanding literature on fair allocation.

Traditionally, economists have been criticized for paying too little attention to distributional

questions. There now exists, however, a well-developed literature devoted to the formulation

and the analysis of equity concepts that traces back to Foley (1967) and his notion of envy-free

allocation. In the last few years, a variety of new solutions has been proposed and applied

to a wide range of models, and a number of properties of solutions have been formulated and

studied for these models (see, for instance, Fleurbaey and Maniquet, 2011; Thomson, 2011; and

the literature cited therein). To a large extent, this literature has been axiomatic, taking as

the departure properties of allocation rules and investigating the existence of rules satisfying

various combinations of these properties. This is precisely what we do in this paper for a model

of resource allocation in which agents’ capabilities and starting points may differ.

The use of the axiomatic method is not a discovery of the theory of fair allocation but

of the theory of bargaining initiated by Nash (1950). Bargaining theory is the axiomatic

study of utility-allocating mechanisms acting on a domain of utility possibility sets with threat

points. The applications of bargaining theory to problems of distributive justice are usually

not supportable, because too much justice-relevant information is lost in the specification of
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the domain. This has motivated the extension of the theory to economic environments, in

which an aggregate starting point vector has to be allocated between several agents with given

utility functions. Our model could then be considered as a specific case in which the good to

be allocated is unidimensional. This seemingly innocuous aspect makes, however, our analysis

independent from the (extended) bargaining theory with economic environments, in which a

key assumption is that the domain consists of all environments with any positive number of

dimensions (e.g., Roemer, 1988).

Axioms similar to the ones used in this paper have also been used in different, but related,

models in the literature. Instances are the division problem with single-peaked preferences

(e.g., Sprumont, 1991), the taxation model (e.g., Young, 1988), the rationing model (e.g.,

Moulin, 2000), and the scheduling model (e.g., Moulin and Stong, 2002). In those models,

peaks, incomes, claims, or demands of the agents play a crucial role in resource allocation.

In our case, the starting points of agents play a sort of counterpart role. The constrained

outcome-egalitarian rule studied in this paper resembles, to some extent, the uniform rule, the

constrained equal awards rule, and “standard of gains” method in those models. Moulin and

Stong (2002), for instance, characterize the latter by consistency, composition, and demand

monotonicity (a counterpart of this axiom in the current setting might be: as starting points

increase, allotments do not decrease). Hence, in addition to the common axioms, Moulin and

Stong (2002) use the equity axiom of “demand monotonicity”, whereas here “priority” is used

instead. Somewhat relatedly, Young (1988) characterizes in the taxation model the so-called

equal-sacrifice solutions by strict resource-monotonicity, composition, consistency, and strict

order-preservation.

5 Further insights

We have analyzed a simple distribution problem in which a given amount of wealth has to

be distributed among individuals possessing a capability to transform wealth into some given

valued (interpersonally comparable) outcome and, possibly, different (outcome) starting points.

For this simple environment, we have characterized the two focal egalitarian allocation rules

that exist, i.e., the one that allocates the resource equally, and the one that makes outcome

levels as equal as possible. We have shown that these two focal rules are the only ethical and

operational procedures for allocating wealth, provided we assume that ethical means prioritar-

ian and solidaristic, and operational means obeying the axiom of composition. In doing so, we
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have provided, as announced in the introduction, a common ground for the two focal answers

to the question “equality of what?”. In particular, our characterization result also shows that

the combination of the notions of priority, solidarity, and composition is equivalent to a kind

of egalitarianism, where the equality in question is either resources or outcome levels.

Our analysis provides a common justification of both resource and welfare egalitarianism.

Nevertheless, it is worth mentioning that ours is not a welfarist approach, the approach usually

linked to welfare egalitarianism and which maintains that the justness of a state should be

a function only of the welfares, or outcomes, of the agents in that state. We take instead a

resourcist approach by studying allocation mechanisms defined on a space of economic envi-

ronments, where the distribution of resources can be explicitly defined. In other words, we

endorse the view that information concerning the distribution of goods or resources is in gen-

eral necessary to evaluate the justness of a state of the world. As we have seen, this does not

preclude our obtaining welfare (in our case, outcome) egalitarianism as a result of combining

some (non-welfarist) axioms.8

ln moral and political philosophy, the debate between resource egalitarians and welfare

egalitarians is between those who wish to hold people responsible for the choices they make

and preferences they have, after some initial equality has been guaranteed, and those who

wish to hold individuals responsible for nothing about themselves. A natural extension of the

model in this paper would account for individual effort decisions. As a matter of fact, the

ethical axioms we use in this work would only be justified for equally-deserving individuals.

The literature on compensation and responsibility (e.g., Fleurbaey, 2008) provides us with an

appropriate framework for such a natural extension. In its simplest case, this literature deals

with the allocation of a given amount of an external one-dimensional resource (which is not

produced) among a group of individuals whose outcome achievements depend on this resource,

but also on their social background (a characteristic which elicits compensation) and personal

effort (a characteristic which does not elicit compensation). In the parlance of our paper, this

could be interpreted as saying that individual outcome functions would be bivariate functions

depending on two variables reflecting the personal effort of the individual and the amount of

the resource she is allocated. The mappings themselves would incorporate the influence of

social background on individual outcome achievements. Characterizations of allocation rules

for this model exist in the literature. Therefore it would be interesting to explore whether the

8An early characterization of welfare egalitarianism, also by means of resourcist axioms on a domain of

economic environments, is provided in Roemer (1986).
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translation of our axioms to this context would give rise to new characterizations.

Eventually, a theory of distributive justice must, we believe, postulate a domain of economies

in which effort choices by individuals (relating to education and production), as well as risk

preferences and level-comparable welfare, in a multi-stage model, are described. The present

analysis is a far cry from that goal. Indeed, one difficulty in the work of philosophers is that

they implicitly assume all these attributes of real-world societies in their theorizing. In any

case, it is clear that it would be immensely difficult to deduce formally a theory of just resource

allocation on such a domain, without postulating unacceptably strong axioms, and so it is

not surprising that the work of political philosophers is tentative and sketchy, by their own

admission.

6 Appendix

6.1 The proof of Theorem 1

We start showing that each rule in {Eϕ}ϕ∈Φ satisfies PR and SL.

Let ϕ ∈ Φ and e = (N, u,W ) ∈ E be given. Let i, j ∈ N be such that Eϕ
i (e) < Eϕ

j (e). Sup-

pose, by contradiction, that ui(E
ϕ
i (e)) < uj(E

ϕ
j (e)). Then ψi(E

ϕ
i (e)) = ϕ(Eϕ

i (e), ui(E
ϕ
i (e))) <

ϕ(Eϕ
j (e), uj(E

ϕ
j (e))) = ψj(E

ϕ
j (e)), which contradicts the definition of Eϕ, as Eϕ

j (e) > 0. It then

follows that Eϕ satisfies PR.

As for SL, let ϕ ∈ Φ be given and let e = (N, u,W ) ∈ E and e′ = (N ′, u′,W ′) ∈ E , be such

that N ⊆ N ′. Let N1 = {i ∈ N : Ri(e) > 0}.

If Eϕ
i (e) = Eϕ

i (e′) for each i ∈ N , there is nothing to prove.

Suppose there exists i ∈ N such that Eϕ
i (e′) > Eϕ

i (e). Then, ψi(E
ϕ
i (e′)) > ψi(E

ϕ
i (e)). As

Eϕ
i (e′) > 0, it follows that ψj(E

ϕ
j (e)) ≤ ψi(E

ϕ
i (e)) < ψi(E

ϕ
i (e′)) ≤ ψj(E

ϕ
j (e′)), for each j ∈ N1.

Thus, Eϕ
j (e′) > Eϕ

j (e), for each j ∈ N1 and Eϕ
j (e′) ≥ Eϕ

j (e), for each j ∈ N , as desired.

Suppose there exists i ∈ N such that Eϕ
i (e′) < Eϕ

i (e). Then, ψi(E
ϕ
i (e′)) < ψi(E

ϕ
i (e)). Note

that, in this case, i ∈ N1. Then, ψj(E
ϕ
j (e)) = ψi(E

ϕ
i (e)) > ψi(E

ϕ
i (e′)), for each j ∈ N1. Assume

that Eϕ
j (e′) > 0 (otherwise, there is nothing to prove). Then, ψj(E

ϕ
j (e)) > ψi(E

ϕ
i (e′)) ≥

ψj(E
ϕ
j (e′)) and, therefore, Eϕ

j (e′) < Eϕ
j (e), as desired. To conclude, suppose, by contradiction,

that there exists j ∈ N \ N1 such that Eϕ
j (e′) > Eϕ

j (e) = 0. Then, ψj(E
ϕ
j (e)) ≥ ψi(E

ϕ
i (e)) >

ψi(E
ϕ
i (e′)) = ψj(E

ϕ
j (e′)), which contradicts the monotonicity of ψj.

We now show that if a rule R satisfies PR and SL then it is a member of the family {Eϕ}ϕ∈Φ.
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Let R be a rule satisfying PR and SL. By Theorem 1 in Moreno-Ternero and Roemer

(2006) there is a continuous and non-decreasing index ϕ : R2
++ ∪ {(0, 0)} → R+, such that

inf{ϕ(x, y)} = ϕ(0, 0) = 0 and for each (x, y) > (z, t), ϕ(x, y) > ϕ(z, t), for which9

R(e) = Eϕ(e) for each e ∈ E0.

Without loss of generality, let us denote by 1 the agent in I whose outcome function is

defined by u1(x) = x, for each x ∈ R+. The following claim, which holds thanks to PR and

SL, will be used throughout the proof.

Claim. Let e = ({1, l}, (u1, ul),W ) ∈ E0 and R(e) = (W − x̂, x̂). Then, R(ej) = R(e) for each

ej = ({1, j}, (u1, uj),W ) ∈ E , in which j ∈ I is such that uj(x̂) = ul(x̂).

For each y ∈ R+, let

Ωy = {W ∈ R++ : Rj(e) > 0, e = ({1, j}, (u1, uj),W ), j ∈ I, uj(0) = y}.

We extend the definition of ϕ to include the set {0} × R++ on its domain, as follows:

ϕ(0, y) = inf Ωy for each y ∈ R++.

We show first that ϕ : {R+ × R++} ∪ {(0, 0)} → R+, so extended, belongs to Φ. Then, to

conclude the proof of the theorem, we show that R(e) = Eϕ(e) for each e ∈ E \ E0.

• ϕ exhibits the following monotonicity properties:

(i) If x ∈ R+ and x′, y ∈ R++ are such that x < x′ then ϕ(x, y) ≤ ϕ(x′, y).

(ii) If x ∈ R+ and y, y′ ∈ R++ are such that y < y′ then ϕ(x, y) ≤ ϕ(x, y′).

(iii) If x ∈ R+ and x′, y, y′ ∈ R++ are such that (x, y) < (x′, y′), then ϕ(x, y) < ϕ(x′, y′).

(iv) ϕ(0, 0) = 0 ≤ ϕ(x, y) for all (x, y) ∈ R+ × R++.

Given the monotonicity properties of ϕ on R2
++ described above, it suffices to prove the first

two items when x = 0 in each of them.

Let x′, y ∈ R++ and α = ϕ(x′, y). Assume, without loss of generality, that x′ < y. Let k ∈ I be

an agent whose outcome function satisfies that uk(0) = 0 and uk(x
′) = y. Then, consider the

economy ek = ({1, k}, (u1, uk), α+x′). As ek ∈ E0, it follows that R(ek) = Eϕ(ek) = (α, x′). By

9Without loss of generality, we can assume that ϕ(x, x) = x, for each x ∈ R++.

15

 
 

 
 

 
http://www.upo.es/econ 

 



PR, x′ ≤ α ≤ y. Let j ∈ I be an agent whose outcome function satisfies that uj(0) = y. As the

iso-level sets of the index ϕ on R2
++ slope downward to the right, there exists (x̄, ȳ) ∈ R2

++, with

x′ ≤ x̄ and y ≥ ȳ, such that ϕ(x̄, ȳ) = ϕ(x′, y) = α = uj(x̄). Assume, without loss of generality,

that (x̄, ȳ) 6= (0, y). Let l ∈ I be an agent whose outcome function satisfies that ul(0) = 0

and ul(x̄) = uj(x̄) and consider the economy el = ({1, l}, (u1, ul), α + x̄). As el ∈ E0, it follows

that R(el) = Eϕ(el) = (α, x̄). Finally, consider the economy ej = ({1, j}, (u1, uj), α + x̄). By

the above claim, R(ej) = R(el) = (α, x̄). By RM , Rj(e
∗
j) > 0, where e∗j = ({1, j}, (u1, uj), α).

Thus, α = ϕ(x′, y) ∈ Ωy and, therefore, ϕ(0, y) = inf Ωy ≤ ϕ(x′, y), as desired.

As for statement (ii), let y, y′ ∈ R++ be such that y < y′. We show next that Ωy′ ⊂ Ωy,

from where it would follow that ϕ(0, y) = inf Ωy ≤ inf Ωy′ = ϕ(0, y′), as desired. Let W ∈

Ωy′ . Then, there exists k ∈ I such that uk(0) = y′ and for which Rk(ek) > 0, where ek =

({1, k}, (u1, uk),W ). Now, let j ∈ I be such that uj(0) = y and consider the economy ej =

({1, j}, (u1, uj),W ). It suffices to show that Rj(ej) > 0. Suppose otherwise, and let e =

({1, j, k}, (u1, uj, uk),W ). Then, by SL applied to ej and e, it follows that Rj(e) = 0. Then,

by PR applied to e, it follows that Rk(e) = 0 and, therefore, R(e) = (W, 0, 0). Finally, by SL

applied to ek and e, it follows that Rk(e) = 0, a contradiction.

• ϕ exhibits the following continuity properties.

(i) lim(x,y)→(x0,y0) ϕ(x, y) = ϕ(x0, y0), for all (x0, y0) ∈ R2
++.

(ii) limx→0+ ϕ(x, y(x)) = ϕ(0, y0), for each y : R++ → R++ continuous and increasing

function such that limx→0+ y(x) = y0.

Only statement (ii) remains to be proved. Let y0 ∈ R++ and {xn} → 0+, with xn ∈ R++. Let

y : R++ → R++ be a continuous and increasing function such that limx→0+ y(x) = y0. For each

n, we denote yn = y(xn). Our aim is to show that {αn} = {ϕ(xn, yn)} → α = ϕ(0, y0). If such

is not the case, then there exists a subsequence {αkn} that converges to α 6= α. We assume,

without loss of generality, that α < α. Let B be a ball around (0, y0) and B̂ = {(x, y) ∈ B :

x > 0, y > y0}. As (xn, yn) → (0, y0), it follows that, for large kn, (xkn , ykn) ∈ B̂ ∪ {(0, y0)}.

Thus, by the monotonicity properties of ϕ described above, ϕ(xkn , ykn) > α. On the other

hand, as αkn → α < α, it follows that, for large kn, ϕ(xkn , ykn) = αkn < α, which represents a

contradiction.

The above shows that ϕ ∈ Φ. We now conclude the proof of the theorem by showing that

R(e) = Eϕ(e) for each e ∈ E \E0. By the above claim, and the fact that R coincides with Eϕ on
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E0, it follows that coincidence also holds for the domain of two-agent economies (in E) involving

agent 1. To conclude, let us consider a general economy e = (N, u,W ) ∈ E . By RM and PR,

there is W ′ > W such that R1(e′) = W ′−W , where e′ = ({1}∪N, (u1, u),W ′). Let x = RN(e′)

and, for each j ∈ N , ej = ({1, j}, (u1, uj),W
′ −W + xj). By CY , R(ej) = R{1,j}(e

′) = (W ′ −

W,xj). Now, as ej is a two-agent economy involving agent 1, it also follows that R(ej) = Eϕ(ej).

Thus, for each j ∈ N , R(ej) = Eϕ(ej), and, therefore, by SL, Eϕ(e′) = R(e′). Finally, by CY ,

Eϕ(e) = x = R(e), as desired.
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Appendix that is not part of the submission for publication

To save space, we have included in this appendix, which is not for publication, formal

statements and proofs of some aspects that have been dismissed from the body of the paper. In

particular, we provide full-fledged versions of the proofs of Theorems 1 and 2, including proofs

of some steps that have been dismissed from the body of the paper.

7 Proof of Theorem 1

We start showing that each rule in {Eϕ}ϕ∈Φ satisfies PR and SL.10

Let ϕ ∈ Φ and e = (N, u,W ) ∈ E be given. Let i, j ∈ N be such that Eϕ
i (e) < Eϕ

j (e). Sup-

pose, by contradiction, that ui(E
ϕ
i (e)) < uj(E

ϕ
j (e)). Then ψi(E

ϕ
i (e)) = ϕ(Eϕ

i (e), ui(E
ϕ
i (e))) <

ϕ(Eϕ
j (e), uj(E

ϕ
j (e))) = ψj(E

ϕ
j (e)), which contradicts the definition of Eϕ, as Eϕ

j (e) > 0. It then

follows that Eϕ satisfies PR.

As for SL, let ϕ ∈ Φ be given and let e = (N, u,W ) ∈ E and e′ = (N ′, u′,W ′) ∈ E , be such

that N ⊆ N ′. Let N1 = {i ∈ N : Ri(e) > 0}.

If Eϕ
i (e) = Eϕ

i (e′) for each i ∈ N , there is nothing to prove.

Suppose there exists i ∈ N such that Eϕ
i (e′) > Eϕ

i (e). Then, ψi(E
ϕ
i (e′)) > ψi(E

ϕ
i (e)). As

Eϕ
i (e′) > 0, it follows that ψj(E

ϕ
j (e)) ≤ ψi(E

ϕ
i (e)) < ψi(E

ϕ
i (e′)) ≤ ψj(E

ϕ
j (e′)), for each j ∈ N1.

Thus, Eϕ
j (e′) > Eϕ

j (e), for each j ∈ N1 and Eϕ
j (e′) ≥ Eϕ

j (e), for each j ∈ N , as desired.

Suppose there exists i ∈ N such that Eϕ
i (e′) < Eϕ

i (e). Then, ψi(E
ϕ
i (e′)) < ψi(E

ϕ
i (e)). Note

that, in this case, i ∈ N1. Then, ψj(E
ϕ
j (e)) = ψi(E

ϕ
i (e)) > ψi(E

ϕ
i (e′)), for each j ∈ N1. Assume

that Eϕ
j (e′) > 0 (otherwise, there is nothing to prove). Then, ψj(E

ϕ
j (e)) > ψi(E

ϕ
i (e′)) ≥

ψj(E
ϕ
j (e′)) and, therefore, Eϕ

j (e′) < Eϕ
j (e), as desired. To conclude, suppose, by contradiction,

that there exists j ∈ N \ N1 such that Eϕ
j (e′) > Eϕ

j (e) = 0. Then, ψj(E
ϕ
j (e)) ≥ ψi(E

ϕ
i (e)) >

ψi(E
ϕ
i (e′)) = ψj(E

ϕ
j (e′)), which contradicts the monotonicity of ψj.

We now show that if a rule R satisfies PR and SL then it is a member of the family {Eϕ}ϕ∈Φ.

Let R be a rule satisfying PR and SL. By Theorem 1 in Moreno-Ternero and Roemer (2006)

there is an index ϕ : R2
++ ∪ {(0, 0)} → R+, continuous on its domain and non-decreasing, such

10Note that each rule in {Eϕ}ϕ∈Φ is well defined thanks to the continuity and monotonicity properties of

each ϕ ∈ Φ.
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that inf{ϕ(x, y)} = ϕ(0, 0) = 0 and for all (x, y) > (z, t), ϕ(x, y) > ϕ(z, t), for which11

R(e) = Eϕ(e) for each e ∈ E0.

Without loss of generality, let us denote by 1 the agent in I whose outcome function is

defined by u1(x) = x, for each x ∈ R+. The following claim, which holds thanks to PR and

SL, will be used throughout the proof.

Claim. Let e = ({1, l}, (u1, ul),W ) ∈ E0 and R(e) = (W − x̂, x̂). Then, R(ej) = R(e) for each

ej = ({1, j}, (u1, uj),W ) ∈ E , in which j ∈ I is such that uj(x̂) = ul(x̂).

Proof of the claim. Let e = ({1, l}, (u1, ul),W ) ∈ E0 and R(e) = (W−x̂, x̂). Let j ∈ I be such

that uj(x̂) = ul(x̂), and ej = ({1, j}, (u1, uj),W ) ∈ E . Let ê = ({1, j, l}, (u1, uj, ul),W + x̂) ∈ E

and γ = (γ1, γ2, γ3) = R(ê). If γ3 < x̂ then, by PR, γ2 < x̂.12 By feasibility, γ1 > W − x̂,

which contradicts SL, as R(e) = (W − x̂, x̂). Similarly, If γ3 > x̂ then, by PR, γ2 > x̂.13

By feasibility, γ1 < W − x̂, which contradicts SL. Thus, γ3 = x̂. Then, by PR, γ2 = x̂,

and, by feasibility, γ1 = W − x̂. Altogether, we have R(ê) = (W − x̂, x̂, x̂). Finally, by CY ,

R(ej) = (W − x̂, x̂) = R(e), as desired.

For each y ∈ R+, let

Ωy = {W ∈ R++ : Rj(e) > 0, e = ({1, j}, (u1, uj),W ), j ∈ I, uj(0) = y}.

In other words, Ωy comprises the values of wealth for which the resulting two-agent economy

involving 1 and an agent j with a strictly positive starting point is awarded a strictly positive

amount. Note that the identity of j is irrelevant and only his starting point matters for the

definition of Ωy. More precisely, Ωy remains the same for each agent j ∈ I, such that uj(0) = y.

We extend the definition of ϕ to include the set {0} × R++ on its domain, as follows:

ϕ(0, y) = inf Ωy for each y ∈ R++.

We show first that ϕ : {R+ × R++} ∪ {(0, 0)} → R+, so extended, belongs to Φ. Then, to

conclude the proof of the theorem, we show that R(e) = Eϕ(e) for each e ∈ E \ E0.

11Without loss of generality, we can assume that ϕ(x, x) = x, for each x ∈ R++. This is due to the fact

that, as shown in the proof of Theorem 1 in Moreno-Ternero and Roemer (2006), for each (x, y) ∈ R2
++, ϕ(x, y)

is defined as the unique value α for which an agent achieves the resource-outcome pair (x, y) in an economy

granting α to agent 1. Thus, as u1(x) = x, for each x ∈ R++, it follows that ϕ(x, x) = x, for each x ∈ R++.
12Otherwise, γ3 < x̂ ≤ γ2 and therefore ul(γ3) < ul(x̂) = uj(x̂) ≤ uj(γ2), a contradiction with PR.
13Otherwise, γ3 > x̂ ≥ γ2 and therefore ul(γ3) > ul(x̂) = uj(x̂) ≥ uj(γ2), a contradiction with PR.
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• ϕ exhibits the following monotonicity properties:

(i) If x ∈ R+ and x′, y ∈ R++ are such that x < x′ then ϕ(x, y) ≤ ϕ(x′, y).

(ii) If x ∈ R+ and y, y′ ∈ R++ are such that y < y′ then ϕ(x, y) ≤ ϕ(x, y′).

(iii) If x ∈ R+ and x′, y, y′ ∈ R++ are such that (x, y) < (x′, y′), then ϕ(x, y) < ϕ(x′, y′).

(iv) ϕ(0, 0) = 0 ≤ ϕ(x, y) for all (x, y) ∈ R+ × R++.

Given the monotonicity properties of ϕ on R2
++ described above, it suffices to prove the above

items when x = 0 in each of them.
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Illustration of the proof of statement (i)

Let x′, y ∈ R++ and α = ϕ(x′, y). Assume, without loss of generality, that x′ < y.14 Let k ∈ I

be an agent whose outcome function satisfies that uk(0) = 0 and uk(x
′) = y. Then, consider the

economy ek = ({1, k}, (u1, uk), α+x′). As ek ∈ E0, it follows that R(ek) = Eϕ(ek) = (α, x′). By

PR, x′ ≤ α ≤ y.15 Let j ∈ I be an agent whose outcome function satisfies that uj(0) = y. As the

iso-level sets of the index ϕ on R2
++ slope downward to the right, there exists (x̄, ȳ) ∈ R2

++, with

14Once we show this case, the alternative one (i.e., x′ ≥ y) would follow from this one and the monotonicity

properties of ϕ on R2
++. Alternatively, a direct proof for that case could be provided making further use of PR.

More precisely, if x′ > y then, by PR, x′ ≥ α ≥ y. Let e∗j = ({1, j}, (u1, uj), α). If Rj(e
∗
j ) > 0 there is nothing

to prove, as α = ϕ(x′, y) ∈ Ωy and, therefore, ϕ(0, y) = inf Ωy ≤ ϕ(x′, y), as desired. On the other hand, if

Rj(e
∗
j ) = 0, let ε > 0 be given and consider the economy eεj = ({1, j}, (u1, uj), α + ε). If, by contradiction,

Rj(e
ε
j) = 0, then, by PR, y = uj(0) ≥ u1(α+ ε) = α+ ε > y, a contradiction. Thus, α+ ε ∈ Ωy for each ε > 0,

which implies that ϕ(0, y) = α = inf Ωy ≤ ϕ(x′, y), as desired.
15Otherwise, if α < x′, then, by PR, u1(α) = α ≥ uk(x′) = y > x′, a contradiction. Similarly, if α > y > x′,

then, by PR, u1(α) = α ≤ uk(x′) = y, a contradiction.

21

 
 

 
 

 
http://www.upo.es/econ 

 



x′ ≤ x̄ and y ≥ ȳ, such that ϕ(x̄, ȳ) = ϕ(x′, y) = α = uj(x̄). Assume, without loss of generality,

that (x̄, ȳ) 6= (0, y).16 Let l ∈ I be an agent whose outcome function satisfies that ul(0) = 0

and ul(x̄) = uj(x̄) and consider the economy el = ({1, l}, (u1, ul), α + x̄). As el ∈ E0, it follows

that R(el) = Eϕ(el) = (α, x̄). Finally, consider the economy ej = ({1, j}, (u1, uj), α + x̄). By

the above claim, R(ej) = R(el) = (α, x̄). By RM , Rj(e
∗
j) > 0, where e∗j = ({1, j}, (u1, uj), α).

Thus, α = ϕ(x′, y) ∈ Ωy and, therefore, ϕ(0, y) = inf Ωy ≤ ϕ(x′, y), as desired.

As for statement (ii), let y, y′ ∈ R++ be such that y < y′. We show next that Ωy′ ⊂ Ωy,

from where it would follow that ϕ(0, y) = inf Ωy ≤ inf Ωy′ = ϕ(0, y′), as desired. Let W ∈

Ωy′ . Then, there exists k ∈ I such that uk(0) = y′ and for which Rk(ek) > 0, where ek =

({1, k}, (u1, uk),W ). Now, let j ∈ I be such that uj(0) = y and consider the economy ej =

({1, j}, (u1, uj),W ). It suffices to show that Rj(ej) > 0, as that would guarantee that ϕ(0, y) ≤

W . Suppose otherwise, and let e = ({1, j, k}, (u1, uj, uk),W ). Then, by SL applied to ej and e,

it follows that Rj(e) = 0. Then, by PR applied to e, it follows that Rk(e) = 0 and, therefore,

R(e) = (W, 0, 0). Finally, by SL applied to ek and e, it follows that Rk(e) = 0, a contradiction.
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Illustration of the proof of statement (ii)

As for statement (iii), let x′, y, y′ ∈ R++ be such that y < y′. Then, by statement (i),

ϕ(0, y) ≤ ϕ(x′/2, y). By the monotonicity properties of ϕ on R2
++, ϕ(x′/2, y) ≤ ϕ(x′, y′).

Thus, ϕ(0, y) < ϕ(x′, y′), as desired.

Finally, statement (iv) follows from the definition of Ωy.

16Otherwise, the ϕ-level curve would be horizontal from (0, y) to (x′, y). But if so we could modify the

ensuing argument to show that Rj({1, j}, (u1, uj), α + ε) > 0, for each ε > 0, which would also guarantee that

α = ϕ(x′, y) ∈ Ωy and, therefore, ϕ(0, y) = inf Ωy ≤ ϕ(x′, y), as desired.
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• ϕ exhibits the following continuity properties.

(i) lim(x,y)→(x0,y0) ϕ(x, y) = ϕ(x0, y0), for all (x0, y0) ∈ R2
++.

(ii) limx→0+ ϕ(x, y(x)) = ϕ(0, y0), for each y : R++ → R++ continuous and increasing

function such that limx→0+ y(x) = y0.17

Only statement (ii) remains to be proved. Let y0 ∈ R++ and {xn} → 0+, with xn ∈ R++. Let

y : R++ → R++ be a continuous and increasing function such that limx→0+ y(x) = y0. For each

n, we denote yn = y(xn). Our aim is to show that {αn} = {ϕ(xn, yn)} → α = ϕ(0, y0). If such

is not the case, then there exists a subsequence {αkn} that converges to α 6= α.

Assume first that α < α. Let B be a ball around (0, y0) and B̂ = {(x, y) ∈ B : x >

0, y > y0}. As (xn, yn)→ (0, y0), it follows that, for large kn, (xkn , ykn) ∈ B̂ ∪ {(0, y0)}. Thus,

by the monotonicity properties of ϕ described above, ϕ(xkn , ykn) > α.18 On the other hand,

as αkn → α < α, it follows that, for large kn, ϕ(xkn , ykn) = αkn < α, which represents a

contradiction.

Assume now that α > α. Then, α > α+α
2

> α. By the monotonicity properties of ϕ

described above, there exists a ball B around (0, y0) such that ϕ(x, y) < α+α
2

, for each (x, y) ∈

B̂ = {(x, y) ∈ B : x > 0, y > y0}.19 As (xn, yn) → (0, y0), it follows that, for large kn,

(xkn , ykn) ∈ B̂ and, therefore, ϕ(xkn , ykn) < α+α
2

. On the other hand, as αkn → α > α, it

follows that, for large kn, ϕ(xkn , ykn) = αkn >
α+α

2
> α, which represents a contradiction.

The above shows that ϕ ∈ Φ. We now conclude the proof of the theorem by showing that

R(e) = Eϕ(e) for each e ∈ E \ E0. By the above claim, and the fact that R coincides with

Eϕ on E0, it follows that coincidence also holds for the domain of two-agent economies (in E)

involving agent 1.

More precisely, let j ∈ I be such that uj(0) > 0, and e = ({1, j}, (ui, uj),W ) ∈ E . In what

follows, and for ease of notation, we denote agent j by 2. We claim that x = (x1, x2) = R(e) =

17Note, in particular, that y(x) ≥ y0, for each x ∈ R++.
18More generally, it actually holds that B̂ does not contain any point in the R−iso-level set for another value

α̂ < α. Assume otherwise. Then, let (x, y) ∈ B such that x > 0 and y > y0 and for which there exists j ∈ I,

with uj(0) = 0 and uj(x) = y, and α̂ < α, such that R(e) = (α̂, x), where e = ({1, j}, (u1, uj), α̂+x). As e ∈ E0,

it follows that R(e) = Eϕ(e). Thus, ϕ(x, y) = ϕ(α̂, α̂) = α̂ < α. On the other hand, by the monotonicity

properties of ϕ, we obtain that ϕ(x, y) > ϕ(0, y0) = α, a contradiction.
19More precisely, as ϕ(0, y0) = α < α+α

2 < α, it follows that there exists (x, y) ∈ R2
++ with y > y0, such

that ϕ(x, y) = α+α
2 . Then, we can construct a ball B around (0, y0) such that B̂ lies below the ϕ−iso-level set

corresponding to α+α
2 .
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Eϕ(e) = y = (y1, y2).20

Assume first that x2 > 0. Then, suppose, without loss of generality, that 3 ∈ I, is such

that u3(0) = 0 and u3(x2) = u2(x2). Let z = (z1, z2, z3) = R({1, 2, 3}, (u1, u2, u3),W + x2). If

z3 < x2, then, by PR, z2 < x2.21 By feasibility, z1 > x1. This violates SL. If z3 > x2, then, by

PR, z2 > x2. By feasibility, z1 = x1. This violates SL. Then, z3 = x2. By PR, z2 = x2. By

feasibility z1 < x1. By SL, R({1, 3}, (u1, u3),W ) = (x1, x2). As ({1, 3}, (u1, u3),W ) ∈ E0, then

ϕ(x1, x1) = ϕ(x2, u3(x2)) = ϕ(x2, u2(x2)) and (x1, x2) = Eϕ({1, 3}, (u1, u3),W ), as desired.
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Illustration of the above proof

Assume now that x2 = 0. Suppose, by contradiction, that y2 > 0. Then, by definition

of Eϕ, it follows that y1 = ϕ(y1, y1) = ϕ(y2, u2(y2)). By the monotonicity properties of ϕ,

ϕ(y2, u2(y2)) > ϕ(0, u2(0)). Now, if x2 = 0, it follows, by the definition of Ωy, that ϕ(0, u2(0)) ≥

W . Altogether, we obtain that y1 > W , a contradiction.

The above shows that R coincides with Eϕ on the domain of two-agent economies involving

agent 1. To conclude, let us consider a general economy e = (N, u,W ) ∈ E .

By RM and PR, there is W ′ > W such that R1(e′) = W ′ − W , where e′ = ({1} ∪

N, (u1, u),W ′).

Formally, let Ω< = {W ′ ∈ (W,+∞) : R1(e′) < W ′ − W} and Ω> = {W ∈ (W,+∞) :

R1(e′) > W ′ −W}.
20Note that if u2(0) = 0, there is nothing to prove, thanks to Theorem 1 in Moreno-Ternero and Roemer

(2006). Furthermore, note that, if x1 < y1 then, by PR, x1 > 0. More precisely, if x1 = 0 then x2 = W > 0

and, by PR, u2(W ) ≤ u1(0) = 0, which contradicts the fact that u2 is strictly increasing. More generally, the

previous argument shows that Ri(e) > 0, for each i ∈ N such that ui(0) = 0.
21Otherwise, u2(z2) ≥ u2(x2) > u2(z3) and z2 ≥ x2 > z3, a contradiction.
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We show first that Ω< 6= ∅ 6= Ω>.

More precisely, let j ∈ N be such thatRj(e) > 0 and ε be such that 0 < ε < min{Rj(e), uj(Rj(e))}.

Let W ′ = W + ε and assume, by contradiction, that W ′ /∈ Ω>, i.e., R1(e′) = R1({1} ∪

N, (u1, u),W + ε) ≤ ε. Then, by feasibility,
∑

k∈N Rk(e
′) ≥ W . By SL, Rk(e

′) ≥ Rk(e), for

each k ∈ N . Thus, Rj(e
′) ≥ Rj(e) > ε ≥ R1(e′), and uj(Rj(e

′)) ≥ uj(Rj(e)) > ε ≥ R1(e′) =

u1(R1(e′)), which contradicts SL. Therefore, W ′ ∈ Ω>.

Similarly, let k0 = arg mink∈N uk(W ) and n ∈ N be such that (n−1)W > uk0(W ). Let W ′ =

nW and assume, by contradiction, that W ′ /∈ Ω<, i.e., R1(e′) = R1({1} ∪ N, (u1, u), nW ) ≥

(n − 1)W . Then, by feasibility,
∑

k∈N Rk(e
′) ≤ W . By SL, Rk(e

′) ≤ Rk(e), for each k ∈ N .

Thus, Rk0(e
′) ≤ W < (n− 1)W ≤ R1(e′), and uk0(Rk0(e

′)) ≤ uk0(W ) < (n− 1)W ≤ R1(e′) =

u1(R1(e′)), which contradicts SL. Therefore, W ′ ∈ Ω<.

It is obvious that Ω< ∩ Ω> = ∅. We show now that both are open sets.

Let W ′ ∈ Ω< and denote α′ = R1(e′) < W −W ′. Let ε = W ′−W−α′

2
. By RM , (W ′−ε,W ′] ⊂

Ω<. Suppose, by contradiction, that there exists W ∗ ∈ (W ′,W ′ + ε) such that W ∗ /∈ Ω<, i.e.,

R1(e∗) ≥ W ′−W , for e∗ = ({1}∪N, (u1, u),W ∗). By RM ,
∑

N Rj(e
∗) ≥

∑
N Rj(e

′) = W ′−α′.

Then, W ∗ ≥ W ′ −W + W ′ − α′, which contradicts that W ∗ ∈ (W ′,W ′ + ε). This shows that

Ω< is an open set. Analogously, we show that Ω> is an open set.

If, by contradiction, we assume that R1(e′) 6= W ′ − W , for each W ′ ∈ (W,+∞), then

(W,+∞) = Ω> ∪ Ω<. It would then follow that (W,+∞) is not connected, which is a contra-

diction.

Let x = RN(e′) and, for each j ∈ N , ej = ({1, j}, (u1, uj),W
′ −W + xj). By CY , R(ej) =

R{1,j}(e
′) = (W ′ −W,xj). Now, as ej is a two-agent economy involving agent 1, it also follows

that R(ej) = Eϕ(ej). Thus, for each j ∈ N , R(ej) = Eϕ(ej), and, therefore, by SL, Eϕ(e′) =

R(e′).22 Finally, by CY , Eϕ(e) = x = R(e), as desired.

22More precisely, suppose that Eϕ1 (e′) > W ′ − W . Then, by SL applied to ej and e′, Eϕj (e′) > xj , for

each j ∈ N , which represents a contradiction with feasibility. We reach a similar contradiction assuming that

Eϕ1 (e′) < W ′ −W . Thus, Eϕ1 (e′) = W ′ −W = Eϕ1 (ej). Now, if agent 1 does not change moving from ej to e′,

and gets a positive amount in each case, it follows that no other agent can get different amounts.
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8 Proof of Theorem 2

By Theorem 1, we know that RE and COE satisfy PR and SL. It is straightforward to show

that RE satisfies CP .23 We then show that COE satisfies CP .

Let e = (N, u,W ) ∈ E . For ease of exposition, assume that N = {1, 2, ..., n} and that agents

are ranked (in an increasing order) according to their initial starting points, i.e., ui (0) ≤

ui+1 (0) for each i = 1, ..., n − 1. Let W 1,W 2 ∈ R++ be such that W = W 1 + W 2 and let

e1 = (N, u,W 1) ∈ E. For each i ∈ N , let î ∈ I be such that ûî(x) = ui(x+ COEi(e
1)) for each

x ∈ R+, and let e2 = (N̂ , û,W 2) ∈ E , where û = (ûî)i∈N . Let σi = u−1
i and σ̂î = û−1

î
for each

i ∈ N . Then,

COEi(e) =

 σi (λ) for each i = 1, . . . , k

0 for each i = k + 1, . . . , n

where λ and k are such that
k∑
i=1

σi (λ) = W , and uk+1 (0) > λ ≥ uk (0) .

Similarly,

COEi(e
1) =

 σi (λ1) for each i = 1, . . . , k1

0 for each i = k1 + 1, . . . , n

where λ1 and k1 are such that

k1∑
i=1

σi (λ1) = W 1, and uk1+1 (0) > λ1 ≥ uk1 (0) .

Thus, note that k ≥ k1 and λ ≥ λ1. Finally,

COEi(e
2) =

 σ̂î (λ2) for each i = 1, . . . , k2

0 for each i = k2 + 1, . . . , n

where λ2 and k2 are such that

k2∑
i=1

σ̂k̂2 (λ2) = W 2, and û
k̂2+1

(0) > λ2 ≥ ûk̂2 (0) .

Let y = COE(e) − COE(e1) and z = COE(e2). We have to show that y = z. To do so,

note first that

ûî(yi) =

 λ for each i = 1, . . . , k

ui(0) for each i = k + 1, . . . , n

23Formally, let e = (N, u,W ) ∈ E and n = |N |. Let W 1,W 2 ∈ R++ be such that W = W 1 + W 2 and let

e1 = (N, u,W 1) ∈ E. For each i ∈ N , let î ∈ I be such that ûî(x) = ui(x + REi(e
1)) = ui(x + W 1

n ) for each

x ∈ R+, and let e2 = (N̂ , û,W 2) ∈ E , where û = (ûî)i∈N . Then, for each i ∈ N , REi(e) = W
n = W 1

n + W 2

n =

REi(e
1) +REi(e

2), as desired.
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and

ûî(zi) =

 λ2 for each i = 1, . . . , k2

ûî(0) for each i = k2 + 1, . . . , n

Note also that, as y is a feasible allocation for the economy e2, it follows, by definition of COE,

that (ûî(zi))i∈N lexicographically dominates (ûî(yi))i∈N . This implies that λ ≤ λ2. Thus,

k1 ≤ k ≤ k2. Then,

yi =


σi (λ)− σi (λ1) for each i = 1, . . . , k1

σi (λ) for each i = k1 + 1, . . . , k

0 for each i = k + 1, . . . , n

and

zi =

 σ̂î (λ2) for each i = 1, . . . , k2

0 for each i = k2 + 1, . . . , n

Let i = 1, . . . , k1. Then, ûî(x) = ui(x + σi (λ1)) for each x ∈ R+. Thus, σ̂î (x) = σi (x) −

σi (λ1) for each x ∈ R+. In particular, σ̂î (λ2) = σi (λ2) − σi (λ1). Similarly, σ̂î (λ2) = σi (λ2)

for each i = k1 + 1, . . . , k2. Thus, zi ≥ yi for each i ∈ N . Now, if λ < λ2, we would have

W 2 =
∑

i∈N zi >
∑

i∈N yi = W 2, a contradiction. Thus, it follows that λ = λ2 and, therefore,

that k = k2, which implies that y = z, as desired.

We conclude by showing that no other rule within the family {Eϕ}ϕ∈Φ satisfies CP .

Let Φ̂ denote the residual of Φ after removing the functions giving rise to RE and COE.

We partition the family Φ̂ according to the following concept. We say that ϕ ∈ Φ̂ is quasilinear

in x if there exists λ > 0 and f : R+ → R+, continuous and increasing, with f(0) = 0, and

f(x) > 0 for some x > 0, such that ϕ(x, y) = λx+ f(y), for each (x, y) ∈ R+ × R++.24

Case 1. The quasiliniear case.

Let ϕ ∈ Φ̂ be a quasilinear function in x. Then, there exists y2 ∈ R++ such that ϕ (0, y2) > 0.

Furthermore, there exist δ ∈ R++ and (x1, y1) ∈ R2
++, with x1 > δ and y2 > y1, such that

ϕ(x1 − δ, y1) = ϕ(0, y2) > 0.25

24In other words, the level curves of ϕ are parallel displacements of each other along the x axis. Note that RE

and COE emerge from degenerate quasilinear functions. More precisely, if λ = 0, and f is strictly increasing, the

corresponding Eϕ rule would be COE, whereas if f(x) = 0 for each x ∈ R+, and λ > 0, then the corresponding

Eϕ rule would be RE.
25Note that ϕ(x1 − δ, y1) = λ(x1 − δ) + f(y1), whereas ϕ(0, y2) = f(y2) > 0. Thus, as f(0) = 0, the equality

is guaranteed by the continuity and monotonicity of f .

27
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Let u1, u2 ∈ U be such that

u1(0) = 0, u2(0) = y2, u1(x1) = y1.
26

�
�
�
�
�
�
�
�
�
�
�
�
�
��

��
��
��
��
��
��

6

-•
O

•y2

•y1

•
x1

u1

u2

•

Illustration of the proof of Case 1

Let λ = ψ1(x1) = ϕ(x1, y1) > 0 and W = ψ−1
1 (λ) + ψ−1

2 (λ) and consider the economy

e = ({1, 2}, (u1, u2),W ).27 Then, it is straightforward to show that

Eϕ(e) =
(
ψ−1

1 (λ), ψ−1
2 (λ)

)
.

Let ε ∈ R++ be such that ε < W and ϕ(ε, u1(ε)) < ϕ (0, y2) and consider the economy

e1 = ({1, 2}, (u1, u2), ε).28 Then, it is straightforward to show that

Eϕ(e1) = (ε, 0).

Finally, let W2 = W −ε > 0. For i = 1, 2, let ûî : R+ → R+ be such that ûî(x) = ui(x+Eϕ
i (e1))

and consider the economy e2 = ({1̂, 2̂}, (û1̂, û2̂),W 2). For i = 1, 2, let ψ̂i : R+ → R+ be such

that ψ̂i(w) = ϕ(w, ûî(w)) for each w ∈ R+.

Assume, by contradiction, that Eϕ satisfies CP . Thus, Eϕ(e2) = Eϕ(e) − Eϕ(e1) =(
ψ−1

1 (λ)− ε, ψ−1
2 (λ)

)
. Then, if Eϕ(e2) = (W2, 0), it follows that ψ−1

2 (λ) = 0, which would

26Consequently, u1(x) < u2(x) for each x ≤ x1.
27Note that ψ2(0) = ϕ(0, y2) = ϕ(x1 − δ, y1) < ϕ(x1, y1) = λ, where the last inequality follows from the fact

that ϕ is quasilinear in x. Thus, ψ−1
2 (λ) > 0, and e is well defined. Furthermore, the solution that the rule Eϕ

yields for such economy is indeed obtained upon equalizing the index ϕ.
28As before, the existence of ε is guaranteed by the continuity and monotonicity of f . Furthermore, the

solution that the rule Eϕ yields for such economy cannot be obtained upon equalizing the index ϕ and thus,

agent 2 gets nothing.
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imply ϕ(x1, y1) = λ = ϕ (0, y2) = ϕ (x1 − δ, y1), a contradiction with the fact that ϕ is quasi-

linear. If, on the other hand, Eϕ(e2) =
(
ψ̂−1

1 (λ′), ψ̂−1
2 (λ′)

)
, then ψ−1

2 (λ) = ψ̂−1
2 (λ′) and x1 =

ψ−1
1 (λ) = ε+ ψ̂−1

1 (λ′). From the former equality, it follows that λ = λ′, as ψ̂2 ≡ ψ2 is a strictly

increasing function. Thus, from the latter equality, it follows that x1 = ε+ ψ̂−1
1 (λ), or, equiva-

lently, ϕ(x1, y1) = λ = ψ̂1 (x1 − ε) = ϕ(x1 − ε, û1̂(x1 − ε)) = ϕ(x1 − ε, u1(x1)) = ϕ(x1 − ε, y1),

again, a contradiction with the fact that ϕ is quasilinear.

Case 2. The non-quasiliniear case.

Let ϕ ∈ Φ̂ be a non-quasilinear function in x. Then, there exist (x1, y1), (x2, y2) ∈ R2
++, and

0 < α < min{x1, x2}, such that ϕ(x1, y1) = ϕ(x2, y2) and ϕ(x1 − α, y1) 6= ϕ(x2 − α, y2).29

Let u1, u2 ∈ U be such that

u1(x1) = y1, u2(x2) = y2, u1(α) = u2(α).

6
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Illustration of the proof of Case 2

Now, consider the economies e1 = ({1, 2}, (u1, u2), 2α) and e = ({1, 2}, (u1, u2), x1 +x2). As

u1(α) = u2(α) and ϕ(x1, u1(x1)) = ϕ(x2, u2(x2)), it follows that

Eϕ(e1) = (α, α),

and

Eϕ(e) = (x1, x2) .

For i = 1, 2, let ûî : R+ → R+ be such that ûî(x) = ui(x + α) and consider the economy

e2 = ({1̂, 2̂}, (û1̂, û2̂),W 2), where W 2 = x1 + x2 − 2α. For i = 1, 2, let ψ̂i : R+ → R+ be such

29This is simply a consequence of the fact that, in this case, not all level curves of ϕ are parallel displacements

of each other along the x axis.
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that ψ̂i(w) = ϕ(w, ûî(w)) for each w ∈ R+. Then,

Eϕ(e2) =
(
ψ̂−1

1 (λ′), ψ̂−1
2 (λ′)

)
,

where λ′ is such that ψ−1
1 (λ′) + ψ−1

2 (λ′) = W 2.30 Equivalently,

Eϕ(e2) = (x, x1 + x2 − 2α− x) ,

where

ψ̂1(x) = ψ̂2(x1 + x2 − 2α− x),

i.e.,

ϕ(x, û1̂(x)) = ϕ(x1 + x2 − 2α− x, û2̂(x1 + x2 − 2α− x)).

Equivalently,

ϕ(x, u1(x+ α)) = ϕ(x1 + x2 − 2α− x, u2(x1 + x2 − α− x)). (2)

Now, Eϕ(e) = Eϕ(e1) + Eϕ(e2) if and only if α + x = x1. But if so, (2) becomes

ϕ(x1 − α, y1) = ϕ(x2 − α, y2),

which represents a contradiction.

9 Auxiliary statement

A rule satisfies solidarity if and only if it satisfies consistency and resource monotonicity.

Proof. Let R be a rule satisfying SL. We show that R satisfies RM and CY .

Let e = (N, u,W ) and e′ = (N, u,W ′) ∈ E be such that W ′ < W . Let N1 = {i ∈ N :

Ri(e) > 0}. As
∑

i∈N R(e) = W > W ′ =
∑

i∈N R(e′), it follows, by SL, that Ri(e
′) ≤ Ri(e),

for each i ∈ N , and Ri(e
′) < Ri(e), for each i ∈ N1, which shows that R satisfies RM .

As for CY , let e = (N, u,W ) ∈ E and N ′ ⊂ N such that e′ = (N ′, u′,W ′) ∈ E , where

W ′ =
∑

i∈N ′ Ri(e). Suppose, by contradiction, that there exists j ∈ N ′ such that Rj(e) 6=

Rj(e
′). Then, by SL, either W ′ =

∑
i∈N ′ Ri(e) <

∑
i∈N ′ Ri(e

′) = W ′, or W ′ =
∑

i∈N ′ Ri(e) >∑
i∈N ′ Ri(e

′) = W ′, a contradiction in any case.

Conversely, let R be a rule satisfying RM and CY . Let e = (N, u,W ) ∈ E and e′ =

(N ′, u′,W ′) ∈ E , be such that N ⊆ N ′. Let N1 = {i ∈ N : Ri(e) > 0}. Consider the auxiliary

economy ê = (N, u, Ŵ ) ∈ E , where Ŵ =
∑

i∈N Ri(e
′). Then, by CY , R(ê) = RN(e′).31 By

30Note that this is also a consequence of the fact that u1(α) = u2(α), as such equality guarantees that the

ϕ-value of both agents can be equalized in the resulting economy.
31Note that the bilateral version of the consistency axiom, in which |N ′| = 2, would not be enough.
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RM , one of the following three possibilities happens:

R(ê) = R(e),

Ri(ê) ≤ Ri(e), for each i ∈ N, and Ri(e
′) < Ri(e), for each i ∈ N1,

Ri(ê) ≥ Ri(e), for each i ∈ N, and Ri(e
′) > Ri(e), for each i ∈ N1.

Altogether, we have that R satisfies SL.

31
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