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Abstract

We explore the implications of four natural axioms in taxation: continuity (small changes

in the data of a taxation problem should not lead to large changes in the tax alloca-

tion), equal treatment of equals (agents with the same pre-tax incomes pay equal taxes),

consistency (the way in which a group allocates a tax burden is immune to secessions

of taxpayers) and composition down (an increase in the tax burden is handled according

to agents’ current post-tax incomes). The combination of the four axioms characterizes

a large family of rules, which we call generalized equal-sacrifice rules, encompassing the

so-called equal-sacrifice rules (such as the flat tax ), as well as constrained equal-sacrifice

rules (such as the head tax ), and exogenous poverty-line rules (such as the leveling tax,

and some of its possible compromises with the previous ones).
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Do not imagine that mathematics is hard and crabbed, and repulsive to common

sense. It is merely the etherealization of common sense.

William Thomson1

This quote from William Thomson’s namesake nicely summarizes the axiomatic approach

to which William has dedicated his research career. There are few who equal him as either

scientist or mentor (Thomson, 2015b). This paper is dedicated to him with our sincerest thanks.

1 Introduction

The search for the perfect income tax structure has long been of interest to economists and

politicians. In a series of influential contributions, Young (1987b, 1988, 1990) studied a long-

standing principle of income taxation; namely, the principle of equal sacrifice. This principle,

which can be traced back to John Stuart Mill, states that tax schemes should be designed

so that all taxpayers end up sacrificing equally, according to some cardinal utility function of

income. In a stylized model of taxation, Young (1988) provides a characterization of the family

of equal-sacrifice rules based on a few compelling principles.2 However, the equal sacrifice

methods (and, by association, some of the principles) can be problematic in a few senses. First,

they preclude exogenous concepts such as “poverty lines.” A compelling concept in the theory

of progressive taxation is that there may be a threshold of income, below which individuals

should not be taxed.3 Equal sacrifice methods rule out such thresholds; indeed, everyone must

sacrifice, as the name suggests.4 Second, there are many compelling methods which “almost”

satisfy all of Young’s principles, but not the strict inequalities posited by them. The two of

these principles in question (namely, strict income order preservation and strict endowment

monotonicity) exclude some of the focal rules in the literature, such as the so-called head tax

and leveling tax, or, in general, constrained equal-sacrifice rules, i.e., rules that impose equal

sacrifice only among some (typically richer) taxpayers.

1Quoted in Thompson (1910), p. 1139.
2The mathematical framework was introduced by O’Neill (1982) to analyze the problem of adjudicating

conflicting claims.
3Except for the case in which all individuals are taxed to lie below this threshold; ending up with equal

after-tax incomes.
4The recent interest in inequality (see e.g., Piketty, 2014), suggests that a closer look should be taken at

other such methods.
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The purpose of this paper is to explore the implications of the remaining axioms used by

Young (1988), without considering the two strict axioms mentioned above. More precisely, we

consider four natural axioms for taxation rules: Continuity is the standard technical condition

requiring that small changes in the data of a taxation problem should not lead to large changes

in the tax allocation. Equal treatment of equals states that agents with the same (pre-tax)

incomes pay the same taxes. Consistency relates the allocation of a given problem to the

allocations of the subproblems that appear when we consider a subgroup of agents as a new

population, and the amounts gathered in the original problem as the available endowment. The

axiom requires that the application of the rule to each subproblem produces the allocation that

the subgroup obtained in the original problem.5 Finally, composition down, which pertains to

the way in which a rule reacts to tentative changes in the tax burden. More precisely, suppose

that after having divided the tax burden among taxpayers, it turns out that the actual value

of the revenue to be collected is larger than was initially assumed. Then, two options are open:

either the tentative division is canceled altogether and the actual problem is solved, or we add

to the initial tax distribution the result of applying the rule to the remaining revenue. The

requirement of composition down is that both ways of proceeding should result in the same

allocations.

Our main result states that the combination of the four axioms described above characterizes

a large family of rules, not only encompassing the equal-sacrifice rules characterized by Young

(1988), but also constrained equal-sacrifice rules (such as the head tax), and exogenous poverty-

line rules (such as the leveling tax, or the ones mentioned above).

The rest of the paper is organized as follows. We present the model and preliminary defini-

tions (of axioms and rules), as well as some preliminary results, in Section 2. We present the

characterization result of our family (the main result of the paper) in Section 3. We provide

some further insights in Section 4 and conclude in Section 5. Some technical details have been

relegated to the Appendix.

5See Thomson (2007a) for an excellent survey of the many applications that have been made on this idea. It

is worth mentioning that, although not transparent, solidarity underpinnings have also been provided for this

axiom (e.g., Thomson, 2012).
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2 The model

We rely on the variable-population model of taxation problems used by Young (1988), and

earlier by O’Neill (1982) to analyze the problem of adjudicating conflicting claims.6 The set

of potential taxpayers, or agents, is indexed by the set of natural numbers N. Let N be the

set of finite subsets of N, with generic element N . For each i ∈ N , let ci ∈ R+ be i’s taxable

income (or i’s claim) and c ≡ (ci)i∈N the income (claims) profile. A tax revenue T ∈ R+ is to

be collected from N . Let E ∈ R+ denote the resulting overall post-tax income (endowment)

of N , after collecting such a tax revenue, i.e., E ≡
∑

i∈N ci − T . For ease of exposition, we

refer to a taxation problem as the resulting problem of allocating post-tax incomes.7 Formally,

a (taxation) problem is a triple consisting of a population N ∈ N , an income profile c ∈ RN
+ ,

and a post-tax total income (endowment) E ∈ R+ such that
∑

i∈N ci ≥ E. Let C ≡
∑

i∈N ci.

To avoid unnecessary complication, we assume C > 0. Let DN be the domain of taxation

problems with population N and D ≡
⋃
N∈N DN .

Given a problem (N, c, E) ∈ D, an allocation is a vector x ∈ RN satisfying the following

two conditions: (i) for each i ∈ N , 0 ≤ xi ≤ ci, and (ii)
∑

i∈N xi = E. We refer to (i) as

boundedness, and (ii) as balance.8

2.1 Tax rules

A (taxation) rule on D, S : D →
⋃
N∈N RN , associates with each problem (N, c, E) ∈ D an

allocation S (N, c, E) for the problem.

Canonical examples of rules are the head tax, which distributes the tax burden equally,

provided no agent ends up paying more than her income, the flat tax, which equalizes tax rates

across agents, and the leveling tax, which equalizes post-tax income across agents, provided

no agent is subsidized.

Formally, for each (N, c, E) ∈ D, and each i ∈ N ,

Hi (N, c, E) = max{0, ci − λ}, where λ > 0 is chosen so that
∑

i∈N max{0, ci − λ} = E.

Fi (N, c, E) = λ · ci, where λ > 0 is chosen so that
∑

i∈N λ · ci = E.

Li (N, c, E) = min{ci, λ}, where λ > 0 is chosen so that
∑

i∈N min{ci, λ} = E.

6See Thomson (2003, 2014a, 2015a) for surveys of the sizable literature dealing with this model.
7In Young (1988), the alternative (dual) interpretation is considered in which the issue is to allocate the tax

revenue T among the agents in N .
8Obviously, for each allocation x of a given problem (N, c,E) ∈ D, one can always construct its corresponding

tax profile t = c− x.
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Figure 1: Focal rules in the two-agent case. This figure illustrates the “path of allocations” of some rules

for N = {1, 2} and c ∈ RN+ with c1 < c2. The path of allocations for c (the locus of the post-tax incomes vector

chosen by a rule as the endowment E varies from 0 to c1 +c2) of H follows the vertical axis until the endowment

is large enough, so that the agent with the lowest income is able to get a positive post-tax income, i.e., until

E = c2 − c1. After that, it follows the line of slope 1 until it reaches the vector of incomes c. The path of F

follows the line joining the origin and the vector of incomes. Finally, the path of L follows the 45o line until the

endowment is large enough to allow the agent with the lowest income to be exempted, i.e., until E = 2c1, from

where it is vertical until it reaches the vector of incomes.

Young (1988) described a class of taxation rules, known as equal-sacrifice rules. Each

member of the class is described by a utility function. Formally, let u : R++ → R be a

continuous and strictly increasing function such that limx→0+ u(x) = −∞. Then, for each

(N, c, E) ∈ D, with c > 0, the equal-sacrifice rule relative to u, ESu, selects the allocation

x such that, for some λ ≥ 0, and for each i ∈ N , we have u(ci)−u(xi) = λ. Among the previous

examples, only the flat tax belongs to this family.

Young (1988) observed that each equal-sacrifice rule may be described in an alternative way

that suggests a potentially useful geometric interpretation. Formally, let v : R+ → R+ be a

continuous and strictly increasing function such that v(0) = 0. Then, for each (N, c, E) ∈ D,

with c > 0, the generalized proportional rule relative to v, GP v, selects the allocation

x such that, for some µ ≥ 0, and for each i ∈ N , we have v(xi)
v(ci)

= µ. Thus, the family is

also consistent with the interpretation of proportionality, where proportionality is measured in

terms of utility, rather than in terms of actual income.9

9An alternative proposal for generalized proportional rules, in this context, is introduced by Ju, Miyagawa

and Sakai (2007).
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It turns out, as noted by Young (1988), that a rule is an equal-sacrifice rule if and only

if it is a generalized proportional rule.10 This suggests the following geometric interpretation.

A rule is an equal-sacrifice rule (or, equivalently, a generalized proportional rule), if and only

if there is a strictly increasing transformation v for which v(0) = 0, and for which, under

the map (y1, . . . , yn) 7→ (v(y1), . . . , v(yn)), the paths of allocations for the rule are segments

connecting the origin to the point (v(c1), . . . , v(cn)). Figure 2 illustrates this interpretation (in

the two-agent case) for a focal equal-sacrifice rule; the so-called Cassel rule. This rule (as

described by Young, 1988) is obtained for the utility function u : R++ → R defined by setting

u(x) = − 1
x
, for each x ∈ R++, in the definition of equal-sacrifice rules. More precisely, for each

(N, c, E) ∈ D, the Cassel rule (C) selects the allocation x = C (N, c, E) such that − 1
ci

+ 1
xi

= λ,

for each i ∈ N , i.e., xi = ci
λci+1

, for each i ∈ N . The corresponding generalized proportional

rule would then be associated to the function v : R+ → R such that v(x) = exp
(
− 1
x

)
, for each

x ∈ R++, and v(0) = 0.
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Figure 2: A generalized proportional rule in the two-agent case. This figure illustrates the path of

allocations of the Cassel rule for N = {1, 2} and c ∈ RN+ with c1 < c2. As the picture on the left shows, the

path of allocations of C is a convex curve joining the origin and c. A vector (x1, x2) belongs to the path if and

only if c2x2(c1 − x1) = c1x1(c2 − x2). The picture on the right is obtained from the one on the left via the

corresponding function v(·), which expresses the Cassel rule as a generalized proportional rule. In that case,

the path of allocations for the rule becomes the segment connecting the origin to the point (v(c1), v(c2)).

10For the equal-sacrifice rule relative to u, ESu, let v(x) = expu(x). For the generalized proportional rule

relative to v, GP v, let u(x) = log v(x). Young (1988) does not use “generalized proportional rule”, but rather

talks about relative (versus absolute) equal sacrifice.
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The family of equal-sacrifice rules is included in the following family introduced (and char-

acterized) by Young (1987a). Each member of this broader family is described by a parametric

representation. Formally, let a, b ∈ R ∪ {±∞}, and let f : [a, b] × R+ → R be a jointly con-

tinuous (in both variables) and non-decreasing (in the first variable) function, such that, for

each x ∈ R+, f(a, x) = 0 and f(b, x) = x; Then, for each (N, c, E) ∈ D, the parametric rule

relative to f , Sf , selects the allocation S(N, c, E) such that, for some λ ∈ [a, b], and for each

i ∈ N , Si(N, c, E) = f (λ, ci).
11
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Figure 3: Parametric representations of the three focal rules. (a) Head tax: a ≡ −∞ and b ≡ 0, and

the schedule for each claim c0 follows the horizontal axis until the point of abscissa −c0, then a line of slope 1

up to the point (0, c0). (b) Flat tax: [a, b] ≡ [0, 1] and the schedule for each claim c0 is a segment through the

origin of slope equal to c0. (c) Leveling tax: a ≡ 0 and b ≡ ∞, and the schedule for each claim c0 follows the

45o line up to the point (c0, c0), then continues horizontally.

The following parametric rules, some of which have unquestionable normative appeal for

taxation purposes, are not equal-sacrifice rules.

• Compromises between the leveling tax and the flat tax;

Consider the case in which the leveling tax is imposed until some exogenous endowment

level, after which the flat tax is imposed (to adjusted down incomes). We interpret such

a rule as a poverty-line rule, in which the aim is to collect taxes so that agents below

11Stovall (2014) characterizes a generalized family, in which the parametric representations are allowed to be

agent-dependent.
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the poverty line are exempted whenever possible. Once all agents can be guaranteed the

minimal subsistence level, flat taxation is imposed. Formally, for each α ∈ R+ ∪ {0},

define the rule Sα such that, for each N ∈ N , and each c ∈ RN
+ , the path of allocations

of Sα for c is the path of the leveling tax until all taxpayers whose incomes are at least α

have received α. It concludes with a segment to c, unless no agent’s income is greater than

α, in which case this last segment is degenerate (Figure 4a).12 In other words, consider

the parametric rules with a parametric representation of the following form (Figure 4b):

they are piece-wise linear in two pieces. For c0 ≤ α, the first piece is the segment from the

origin to (c0, c0), and the second piece is the segment from there to (b, c0). For c0 ≥ α, the

first piece is the segment from the origin to (α, α), and the second piece is the segment

from there to (b, c0).
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Figure 4: Compromising between the leveling tax and the flat tax. (a) Path of allocations of

Sα: for N = {1, 2}, and c ∈ RN+ with c1 < c2, it follows the 45o line until (α, α), and then continues with

a segment to c. (b) Parametric representations of Sα: for each c0 ∈ R+, the graph of fα(·, c0) follows

the 45o line until (min{c0, α},min{c0, α}) and then continues in a linear way until (b, c0).

• Compromises between the flat tax and the leveling tax;

Consider now the opposite case in which the flat tax is imposed until some exogenous

endowment level, after which the leveling tax is imposed (to adjusted down incomes).

Formally, for each A ∈ R+ ∪ {0}, consider the parametric rules, SA, with a parametric

representation of the following form: they are piece-wise linear in two pieces. For c0 ≤ A,

12This family was proposed by Thomson (2007b).
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the first piece is the segment from the origin to (A, c0), and the second piece is a horizontal

half-line from there. For c0 ≥ A, the first piece is the segment from the origin to (c0, c0),

and the second piece is a horizontal half-line from there (Figure 5a). In particular, for

each N ∈ N for which |N | = 2, and each c ∈ RN
+ such that ci < cj, the path of allocations

of SA for c takes one of the following forms: (i) If ci ≤ A, it consists of the broken segment

connecting the origin, the point whose i-th coordinate is ci and j-th coordinate is A, and

c (Figure 5b). (ii) If A < ci < cj, it coincides with the path of the leveling tax. (iii) If c

has equal coordinates, it is simply the segment joining the origin and c. Note that, for

A = 0, the previous compromise leads the leveling tax, whereas for A = ∞, it leads the

flat tax.13
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Figure 5: Compromising between the flat tax and the leveling tax. (a) Parametric repre-

sentations of SA: for each c0 ∈ R+, the graph of fα(·, c0) follows the segment between the origin and

(max{c0, A}, c0) and then continues with a horizontal half-line. (b) Path of allocations of SA: for

N = {1, 2} and c ∈ RN+ with c1 < c2, it follows the segment between the origin and (c1, A), and then

continues vertically until c.

• Constrained equal-sacrifice taxes;

Consider rules that equalize utility losses (sacrifices) as much as possible, for general

utility functions. More precisely, let u : R++ → R be a continuous and strictly increasing

function, without necessarily obeying Young’s proviso that limx→0+ u(x) = −∞, and

hence allowing for zero consumption. Let the domain of such utility functions be denoted

13This proposal was made by Thomson (2014b).
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as U . Then, for each (N, c, E) ∈ D, with c > 0, the constrained equal-sacrifice rule

relative to u ∈ U , CESu, selects the tax allocation vector such that, for all i, j ∈ N ,

if u(ci) − u(xi) < u(cj) − u(xj) then xi = 0. Note that the head tax is an instance of a

constrained equal-sacrifice rule (but not of an equal-sacrifice rule).

2.1.1 A new family

The above motivates the following definition of a large family lying between the family of equal-

sacrifice rules and the family of parametric rules. A generalized equal-sacrifice rule is a rule

associated with a partition of R+ into left-closed intervals.14 Any such partition must be a

partition into left-closed right-open intervals, and points. Let us call a generic such partition

as Λ, with typical element λ ∈ Λ. We refer to elements of Λ as brackets.15 Note that Λ is

naturally ordered by ≥. Associated with each left-closed right-open interval λ = [aλ, bλ) there

is a continuous and strictly increasing function gλ(·) : [aλ, bλ)→ R∪ {−∞}. It is important to

note that bλ = +∞ is permitted, but not required. Furthermore, gλ(aλ) = limx→aλ gλ(x) = −∞

is also possible. Let us denote the associated collection of functions to each bracket within the

partition as Γ. With this in mind, the associated rule operates as follows. For any (N, c, E) ∈ D,

the bracket λ ∈ Λ and allocation are chosen so that ci ≤ λ implies Si (N, c, E) = ci, and for

each pair i, j ∈ N such that ¬(ci ≤ λ) and ¬(cj ≤ λ), we have Si (N, c, E) , Sj (N, c, E) ∈ λ;16

and, further, if λ is a left-closed right-open interval, we have gλ(min{ci, bλ})−gλ(Si (N, c, E)) <

gλ(min{cj, bλ})−gλ(Sj (N, c, E)) implies that Si (N, c, E) = aλ. We refer to the rule, so defined,

as SΛ,Γ.

In words, generalized equal-sacrifice rules impose constrained equal sacrifice with respect

to some lower and upper bounds, allowing for a possible set of agents being exempted, to

be interpreted as agents below the poverty line. Those bounds are exogenously described by

the brackets defining the rule, although the ones eventually being used are determined by the

characteristics (set of agents, claims and endowment) of the problem at hand.17

Alternatively, each rule within the family could be interpreted as a sort of hybrid between

14We say that an interval is left-closed if it possesses a minimum.
15For ease of exposition, we shall sometimes refer to points as degenerate brackets.
16Formally, ci ≤ λ means that ci ≤ x for all x ∈ λ.
17Lower and upper bounds have a long tradition of use within normative economics and, in particular, frequent

instances occur within the literature on fair allocation (e.g., Thomson, 2013b). Early uses of these notions for

the same model considered in this paper are Moreno-Ternero and Villar (2004) and Dominguez and Thomson

(2006).
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the leveling tax and different constrained equal-sacrifice rules, in which each of the latter are

applied at different non-degenerate brackets of the partition, and the leveling tax is used to

alternate among them, provided some of those (non-degenerate) brackets are disjoint from the

ensuing ones in the partition.

The family is general enough to accommodate all of the rules introduced above. The leveling

tax, for instance, is obtained when one considers in the above definition the partition made of

all points on the (positive) real line (each interpreted as a degenerate bracket). The flat tax is

obtained when the partition is only made of one interval and the corresponding function is the

logarithmic one. The head tax is obtained with the same partition and the identity function.

More generally, all constrained equal-sacrifice rules (and, in particular, all equal sacrifice-rules)

can be obtained with such a partition and a generic utility function with the properties stated

at the definition of this family. Furthermore, compromises between the leveling and the flat tax

(such as those illustrated in Figures 4 and 5) and more general poverty-line rules can also be

described as members of this family. If the leveling tax is part of the definition of the rule, then

degenerate brackets should be part of the partition. If only constrained equal-sacrifice rules are

considered to describe the rule, then no brackets within the partition can be degenerate.18

All the rules within the family have a particularly intuitive and simple description in the two-

agent case. More precisely, as illustrated in Figure 6, each rule is associated with a collection

of boxes along the 45o line. For each bracket within the partition defining the rule, a box with

vertices (aλ, aλ) and (bλ, bλ) is constructed.19 The path of the rule for a given claims vector

c = (c1, c2) will follow the 45o until it reaches the southeast corner of the box corresponding

to the bracket in which min{c1, c2} lies. If such a bracket is degenerate, then it continues

horizontally or vertically until it reaches c. Alternatively, if the bracket is a left-closed right-open

interval [aλ, bλ), then it follows a path which equalizes losses (as much as possible) according

to gλ for the truncated claims vector (min{c1, bλ},min{c2, bλ}), subject to the constraint that

the claims vector is at least aλ.
20 If (min{c1, bλ},min{c2, bλ}) = c, the path concludes there.

Otherwise, the path continues vertically, or horizontally (depending on whether c2 > c1, or vice

versa) until it reaches c.

18The reader is referred to the Appendix for more details about these representations.
19The boxes, whose interiors are disjoint, might thus have different length, some of them even being degenerate.
20Note that the function gλ is uniquely extended to bλ.
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Figure 6: Generalized equal-sacrifice rules in the two-agent case. This figure illustrates the path of

allocations of several generalized equal-sacrifice rules for N = {1, 2} and c ∈ RN+ with c1 = 8 < c2 = 10. In

Figure 6a, we consider the rule for which Λ = {[0, 2), [2, 6), [6,+∞)} and Γ = {g[0,2)(x) = log(x); g[2,6)(x) =

x; g[6,+∞)(x) = log(x − 6)}. Thus, the path of allocations of SΛ,Γ follows the 45o line (i.e., it coincides with

the path of L) until it reaches the point (6, 6), the vertex of the box determined by the third bracket (the first

one containing a claim). After that, it follows the segment joining such a point with the claims vector (i.e., it

coincides with the path of F , the equal-sacrifice rule corresponding to g[6,+∞)). Note that the path would not

be altered for different utility functions in the first two brackets, or for different configurations of brackets before

[6,+∞), the first one in which a claim lies. Now, if instead of using g(x) = log(x−6) at the bracket [6,+∞), we

would use the identity function, then the last piece of the path (the one included in the third box) would change

to endorse the path of H therein (i.e., a vertical line from the point (6, 6) to the point (6, 8) and then the segment

from (6, 8) to the claims vector). In Figure 6b, we consider the rule for which Λ̄ = {[0, 1), [1, 2), [3, 5), [7, 9), {x} :

x ∈ (2, 3) ∪ (5, 7) ∪ (9,+∞)}, and Γ̄ = {g[0,1)(x) = log(x); g[1,2)(x) = x; g[3,5)(x) = log(x − 3); g[7,9)(x) = x}.

Thus, the path of allocations of SΛ̄,Γ̄ follows the 45o line (i.e., it coincides with the path of L) until it reaches

the point (7, 7), vertex of the box determined by the fourth non-degenerate bracket (the first one containing a

claim). After that, it follows the path of H, the equal-sacrifice rule corresponding to the identity function, until

the truncated claims vector (8, 9). From there, it follows a vertical line until the original claims vector is reached.

If instead of the identity function, the utility function for the last bracket would had been g(x) = log(x − 7),

then the previous to last piece would had been following the path of F (instead of H) to such a truncated-claims

vector, i.e., the segment between (7, 7) and (8, 9). All other rules within the family coinciding with SΛ̄,Γ̄ at the

bracket (7, 9) would yield the same path of allocations in this case.
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More generally, a generalized equal-sacrifice rule can be associated to a weakly monotone

space-filling tree. That is, we can describe any generalized equal-sacrifice rule by means of

a network of weakly monotone curves emanating from the origin, paths of allocations being

subsets of these curves. Figure 7 provides such a “tree representation” for one rule within the

family.
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Figure 7: The “tree description” of a generalized equal-sacrifice rule in the two-agent case. This

figure illustrates the description of a generalized equal-sacrifice rule by means of its possible paths of allocations

for N = {1, 2}. We consider the rule for which Λ = {[n, n+ 1) : n ∈ N} and Γ = {g[n,n+1)(x) = log(x−n)}. For

such a rule, we consider the tree with a main branch following the 45o line and secondary branches emanating

from the set of points A = {(n, n) : n ∈ N} of such a main branch, involving a segment from such points to

either points within the set B = {[x, n + 1] : n ∈ N;x ∈ [n, n + 1]}, or points within the set C = {[n + 1, y] :

n ∈ N; y ∈ [n, n+ 1]}, followed by a vertical (respectively, horizontal) line. More precisely, for each c ∈ RN+ , the

corresponding path of allocations of SΛ,Γ follows the 45o line from the origin until it reaches the point (n̄, n̄),

where n̄ is the integer part of min{c1, c2}. Then, we distinguish two cases. If c1 < c2, the path follows the

segment from (n̄, n̄) to (c1, n̄ + 1), and then the segment from (c1, n̄ + 1) to c. Alternatively, if c1 > c2, the

path follows the segment from (n̄, n̄) to (n̄+ 1, c2), and then the segment from (n̄+ 1, c2) to c. To complete, if

c1 = c2, the path just follows the main branch until c.
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2.2 Axioms

We concentrate on four axioms of rules for our analysis in this paper.

The first one states that small changes in the data of the problem should not lead to large

changes in the chosen allocation. Formally,

• Continuity: For each sequence
{(
N, ck, Ek

)}
of problems in D, and each (N, c, E) ∈ D,

if
(
N, ck, Ek

)
→ (N, c, E), then S

(
N, ck, Ek

)
→ S (N, c, E).

The second one requires that equal pre-tax incomes implies equal post-tax incomes. For-

mally,

• Equal treatment of equals: For each (N, c, E) ∈ D, and each i, j ∈ N, such that

ci = cj, Si (N, c, E) = Sj (N, c, E).

The third one relates the allocation of a given problem to the allocations of the subproblems

that appear when we consider a subgroup of agents as a new population, and the amounts

gathered in the original problem as the available endowment. The axiom requires that the

application of the rule to each subproblem produces the allocation that the subgroup obtained

in the original problem. Formally,

• Consistency: For each (N, c, E) ∈ D, each M ⊂ N, and each i ∈ M, we have

Si (N, c, E) = Si(M, cM ,
∑

i∈M Si(N, c, E)).

The fourth axiom pertains to the way in which a rule responds to changes in the endowment.

Suppose that after having divided the tax burden among taxpayers, it turns out that the actual

value of the revenue to be collected is larger than was initially assumed (i.e., the endowment

is lower). Then, two options are open: either the tentative division is canceled altogether and

the actual problem is solved, or we add to the initial tax distribution the result of applying the

rule to the remaining revenue. We require that both ways of proceeding should result in the

same allocations.21 Formally,

21The name was coined by Thomson (2013a). The original axiom was first used in this context by Young

(1988). This property is reminiscent of the so-called “path independence” axiom for choice functions (e.g., Plott,

1973). It also has a relative in the theory of axiomatic bargaining: the so-called “step-by-step negotiations”

axiom introduced by Kalai (1977), which is the basis for the characterization of the egalitarian solution in such

a context. The same principle has also been frequently used in other related contexts like rationing, queuing, or

resource allocation (e.g., Moulin, 2000; Moulin and Stong, 2002; Chambers, 2006; Moreno-Ternero and Roemer,

2012).
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• Composition down: For each (N, c, E) ∈ D and each E ′ < E, we have S(N, c, E ′) =

S(N,S(N, c, E), E ′).

It is straightforward to see that composition down implies the following principle of soli-

darity,22 which says that when the tax burden to be allocated is larger, nobody should benefit

from it.23 Formally,

• Endowment monotonicity: For each (N, c, E) ∈ D and each E ′ < E, we have

S(N, c, E ′) ≤ S(N, c, E).

Thus, in what follows, we will use the following lemma often without explicit mention.

Lemma 1. If a rule satisfies composition down, then it satisfies endowment monotonicity.

We also use the following lemma, which shows other intermediary implications of the com-

bination of the four axioms we consider. In order to present it, let us introduce first the notion

that states that pre-tax and post-tax incomes are equally ordered. Formally,

• Income order preservation: For each (N, c, E) ∈ D and each pair i, j ∈ N such that

ci ≥ cj, Si (N, c, E) ≥ Sj (N, c, E).

Furthermore, we introduce a notion stating that if a taxpayer strictly benefits from a de-

crease in the tax burden, so do agents with larger pre-tax incomes.24 Formally,

• Exemption monotonicity: For each (N, c, E) ∈ D and each E ′ > E, with E ′ ≤∑
ci, and each pair {i, j} ∈ N , such that ci ≤ cj and Si(N, c, E

′) > Si(N, c, E), then

Sj(N, c, E
′) > Sj(N, c, E).

22Solidarity properties with respect to population changes, and axiomatizations based on it, were actually

introduced by Thomson (1983a,b) in related models. Roemer (1986) introduced the solidarity notion referring

to the available endowment.
23Endowment monotonicity and consistency together are equivalent to another axiom of solidarity, which

states that the arrival of new agents, whether or not it is accompanied by changes in the endowment, should

affect all the incumbent agents in the same direction (e.g., Chun, 1999; Moreno-Ternero and Roemer, 2006).

Thomson (2014a) names such an axiom as resource-population uniformity.
24This is, to the best of our knowledge, a new axiom in the literature. Nevertheless, it constitutes a weakening

of the so-called axiom of order preservation under endowment variations (e.g., Thomson, 2014a, page 113), which

states that if the endowment increases, given any two taxpayers, the taxpayer with the larger income should

face a share of the increment that is at least as large as the share received by the taxpayer with the smaller

income. The axiom was named by Dagan, Serrano and Volij (1997), and by Yeh (2006), as “supermodularity”,

given the connection with the mathematical property of the same name. In that sense, and following Milgrom

and Shannon (1994), exemption monotonicity can be interpreted as formalizing “quasi-supermodularity” in this

context.
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Lemma 2. If a rule satisfies continuity, equal treatment of equals, consistency, and composition

down, then it also satisfies income order preservation and exemption monotonicity.

Proof. Let S be a rule satisfying the four axioms in the premise of the statement.

Suppose, by means of contradiction, that S does not satisfy income order preservation, i.e.,

there exists (N, c, E) ∈ D for which ci ≤ cj yet Si(N, c, E) > Sj(N, c, E). By consistency, we

may (without loss of generality) assume the economy has only two agents, i.e., N ≡ {i, j}.

By continuity, there is some E ′ > E for which Si(N, c, E
′) = Sj(N, c, E

′). By composition

down, S(N, c, E) = S(N,S(N, c, E ′), E). But then, by equal treatment of equals, Si(N, c, E) =

Sj(N, c, E), a contradiction.

As for exemption monotonicity, note that, by composition down and consistency, it suffices

to show that x < y implies that if E < x+ y, then S2({1, 2}, (x, y), E) < y. Note also that, by

Theorem 1 in Young (1987a), S is a parametric rule. Let f denote its parametric representation.

Now, suppose x < y, and let λ∗ = arg min{λ : f(λ, y) = y}, which exists by continuity

of f in the first coordinate. By continuity of f in the second coordinate, there exists z for

which f(λ∗, z) = x. Then, S({1, 2}, (z, y), x+ y) = (x, y). Furthermore, if E < x+ y, we have

S2({1, 2}, (z, y), E) < y, as λ∗ was minimal. Now, by composition down, for any E < x + y,

S({1, 2}, (z, y), E) = S({1, 2}, (x, y), E). It then follows that S2({1, 2}, (x, y;E) < y) whenever

E < x+ y.

3 The main result

Our main result is the following:

Theorem 1. A rule satisfies continuity, equal treatment of equals, consistency, and composition

down if and only if it is a generalized equal-sacrifice rule.

The idea of the proof is anticipated by Young (1988). Indeed, we borrow the main construc-

tion of his proof and generalize it according to a result from the mathematics literature (Mostert

and Shields (1957), Theorem B, p. 130). This result provides an exhaustive characterization

of all parametric rules (Young, 1987a) satisfying composition down.

Proof. We focus on the non-trivial implication of the theorem. In other words, we assume that

S is a rule satisfying the four axioms in the statement (and, hence, by Lemmas 1 and 2, also

endowment monotonicity, income order preservation, and exemption monotonicity). Our goal
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is to show that S is a generalized equal-sacrifice rule, i.e., there exists a partition of brackets

Λ, and the associated collection of functions Γ = {gλ(·)}λ∈Λ, such that S ≡ SΛ,Γ. We proceed

in several steps:25
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Figure 8: Definition of G

Step 1: Defining a function G to describe the paths of allocations and identifying critical

properties of G.

First, fix some z ∈ R, z > 0. We will define a binary operator on the interval [0, z]. To do

so, we need some preliminary results.

Let N = {1, 2}. Let G : [0, z]2 → R+ be defined by the requirement that, for each pair

{x, y} ⊂ [0, z], the vector (G(x, y), y) lies on the path of allocations for the claims vector

c = (x, z) ∈ R2
+ (see Figure 7).26

More formally, G is defined implicitly as the solution to the equation

G(x, y) = S1({1, 2}, (x, z), G(x, y) + y),

where Sj(·) denotes the j-th coordinate of the allocation S({1, 2}, (x, z), G(x, y)+y), for j = 1, 2.

• G is well-defined.

Indeed, by endowment monotonicity, S2({1, 2}, (x, z), E) is continuous in E. Hence, as

E ∈ [0, x + z], S2 traces out an interval, which is [0, z]. Thus, for each y ∈ [0, z], there

is E for which S2({1, 2}, (x, z), E) = y. As y ≤ E, we can just set G(x, y) = E − y and

25The outline of the proof follows the outline of the proof in Thomson (2014a), which slightly rewrites the

original proof in Young (1998) for the family of equal-sacrifice rules.
26In words, if we draw the path for (x, z), then G(x, y) is the abscissa of the unique point on that path whose

ordinate is y.
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we obtain (G(x, y), y) = S({1, 2}, (x, z), G(x, y) + y), as desired. Moreover, by exemption

monotonicity, S2({1, 2}, (x, z), E) is strictly increasing in E, so the previous procedure

describes a unique point.

• G is continuous in its second coordinate.27

To show this, let yn → y. We will show that all subsequences of G(x, yn) themselves

contain a subsequence converging to G(x, y), which is enough to establish that G(x, yn)

converges to G(x, y). Without loss of generality, assume that such a subsequence is yn.

As G(x, yn) ∈ [0, x], we know that G(x, yn) possesses a convergent subsequence, say

G(x, ynk)→ G. Hence, by continuity, we have (G, y) = S({1, 2}, (x, z), y +G). But then

G = G(x, y), by definition.

• G is independent of agents 1 and 2.

As S satisfies equal treatment of equals and consistency, it is also anonymous (e.g., Cham-

bers and Thomson, 2002; Lemma 3).

We now provide some further properties of the binary operator induced by G:

• (Associativity) For each x, y, z ∈ [0, z], G(G(x, y), z) = G(x,G(y, z)).

The argument is taken directly from Young (1988). Let x, y, z ∈ [0, z] and consider

N ′ = {1, 2, 3}. Consider the vector of incomes (G(x, y), y, z), and find, by continuity,

numbers a and b for which (a, b, z) lies on the path for (G(x, y), y, z). In particular,

consistency applied to the first and third coordinates implies that (a, z) lies on the path

for (G(x, y), z), so that a = G(G(x, y), z) by definition of G. Consistency applied to the

second and third coordinates implies that (b, z) lies on the path for (y, z). So, b = G(y, z)

by definition of G. Consistency applied to the first and second coordinates implies that

(a, b) lies on the path for (G(x, y), y), which itself lies on the path for (x, z) (by definition

of G); hence, by composition down, (a, b) lies on the path for (x, z). Consequently,

a = G(x, b); Equivalently, G(G(x, y), z) = G(x,G(y, z)).

• (Continuity) G is continuous.

Let (x∗, y∗) ∈ [0, z]2. Let ε > 0. Choose 0 < η < ε
3

small so that |y− y∗| < η implies that

G(x∗, y) is within ε
3

of G(x∗, y∗). Let E = y∗ + η +G(x∗, y∗ + η); similarly, E = y∗ − η +

27We will later show that it is indeed jointly continuous.
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G(x∗, y∗− η). Choose δ > 0 small so that |x− x∗| < δ ensures that S2({1, 2}, (x, z), E) <

y∗ < S2({1, 2}, (x, z), E). Now let 0 < β < ε
3

be small so that |y − y∗| < β ensures

S2(x, z, E) < y < S2(x, z, E). Note, therefore, that, for such x within δ of x∗, and y

within β of y∗, y∗ − η + G(x∗, y∗ − η) = E < G(x, y) + y < E = y∗ + η + G(x∗, y∗ + η).

Hence, G(x∗, y∗)− ε < G(x, y) < G(x∗, y∗) + ε.

• (Zero) G(0, x) = G(x, 0) = 0, for each x ∈ [0, z].

G(0, x) = 0 follows by boundedness, and G(x, 0) = 0 by income order preservation.

• (One) G(z, x) = G(x, z) = x, for each x ∈ [0, z].

G(z, x) = x follows from equal treatment of equals, and G(x, z) = x from exemption

monotonicity.

Step 2: Constructing Λ and Γ from G.

We now apply the aforementioned characterization, due to Mostert and Shields (1957). We

use a representation which is due to Marichal (2000, Theorem 4.2).

We have verified that G satisfies the properties of Theorem B of Mostert and Shields.

As a consequence, there exist a countable index set K, a family of disjoint open subintervals

{(αk, βk) : k ∈ K} of [0, z] and a family {fk : k ∈ K} of continuous strictly decreasing functions

fk : [αk, βk]→ [0,+∞], with fk(βk) = 0, such that, for all x, y ∈ [0, z],

G(x, y) =

 f−1
k (min{fk(x) + fk(y), fk(αk)}) , if there exists k ∈ K such that x, y ∈ [αk, βk]

min{x, y}, otherwise .

By considering the function gk = −fk on [αk, βk], it is quite easy to see that this can

equivalently be written as:

G(x, y) =

 g−1
k (max{gk(x) + gk(y), gk(αk)}) , if there exists k ∈ K such that x, y ∈ [αk, βk]

min{x, y}, otherwise .

Here, gk is obviously strictly increasing and satisfies gk(βk) = 0. In particular, the argument

of Young (1988) focuses on the case in which there is only one interval (namely, (0,∞)), and

gk(0) = −∞. Let

Λ = {[αk, βk) : k ∈ K} ∪

{
{x} : x ∈ R+ \

⋃
k∈K

[αk, βk)

}
,

and consider the associated collection of functions Γ = {gk(·)}k∈K .
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Step 3: Restricted to problems with incomes bounded by z, S ≡ SΛ,Γ.

It is easy to see that, for a vector of incomes c ∈ [0, z]N , by considering the profile (c, z)

obtained by adding an individual with claim z, and applying consistency, the path generated

for the income vector c is given by (G(c1, λ), . . . , G(cn, λ)), as λ ranges between 0 and z.

We now demonstrate that the rule coincides with our generalized equal-sacrifice solution,

i.e., S ≡ SΛ,Γ. To do so, we distinguish two cases:

• λ /∈
⋃
k∈K [αk, βk)

In this case, it is straightforward to see, by the definition of G, that the rule assigns

everybody either their claim, or an equal amount, i.e., the allocation proposed by the

leveling tax.

• λ ∈ [αk, βk) for some k ∈ K.

In this case, for each i ∈ N ,

Si(N, c, E) =


ci, if ci < αk

g−1
k (max{gk(ci) + gk(λ), gk(αk)}) , if αk ≤ ci ≤ βk

λ, if ci > βk.

Note that for agents of the third type (i.e., for i such that ci > βk), the operation of G

produces G(ci, λ) = λ, so that Si(N, c, E) = λ; inspection of the definition of G verifies

that this is the same as G(βk, λ), as gk(βk) = 0. Thus,

Si(N, c, E) =


ci, if ci < αk

G(ci, λ), if αk ≤ ci ≤ βk

G(βk, λ), if ci > βk.

We now claim that the formula for G implies that these are constrained equal-sacrifice

taxes above αk, for the function gk. In order to show that we distinguish two cases.

1. G(ci, λ) > αk.

In this case, by definition of G, gk(αk) ≤ gk(ci) + gk(λ), and thus Si(N, c, E) =

g−1
k (gk(ci) + gk(λ)). As gk operates on [αk, βk), and as Si(N, c, E) ∈ [αk, βk], this

means that gk(Si(N, c, E)) = gk(ci) + gk(λ), or gk(ci) − gk(Si(N, c, E)) = −gk(λ).
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In particular, this tells us that, for any two agents with allocations greater than αk,

sacrifices are equalized.

2. G(ci, λ) = αk

In this case, it follows that gk(αk) ≥ gk(ci) + gk(λ). Hence gk(ci)− gk(Si(N, c, E)) =

gk(ci)− gk(αk) ≤ −gk(λ). In other words, such an agent’s sacrifice (measured by gk)

is only less than the remaining agents’ sacrifices if they consume αk.

Step 4: Establishing the general result.

We start by demonstrating that any two representations of the same (generalized equal-

sacrifice) rule, restricted to an interval [0, z], are unique up to affine transformations. More pre-

cisely, (Λ,Γ) =
(
{[αk, βk) : k ∈ K} ∪

{
{x} : x ∈ R+ \

⋃
k∈K [αk, βk)

}
, {gk(·)}k∈K

)
and (Λ,Γ) =(

{[γl, δl) : l ∈ L} ∪
{
{x} : x ∈ R+ \

⋃
l∈L[γl, δl)

}
, {hl(·)}l∈L

)
represent S if and only if there is

a bijective function M : K → L, and constants pk > 0 and rk ∈ R, for each k ∈ K, such that

[γM(k), δM(k)) = [αk, βk) and hM(k) = pkgk + rk.

One direction is straightforward. For the other direction, let us suppose that (Λ,Γ) and

(Λ,Γ) each represent S on the interval [0, z]. Fix x, y ∈ [0, z] where x 6= y. Consider a

representation of S. Associated with each bracket [αk, βk) in the representation is an upper-

closed, lower-open interval (αk, βk]. It is easy to see, by definition of the rule, that x and y are

in the same upper-closed lower-open interval if and only if there is E > 0 for which

• S1({1, 2}, (x, y), E) < x,

• S2({1, 2}, (x, y), E) < y,

• S1({1, 2}, (x, y), E) 6= S2({1, 2}, (x, y), E),

• if w ≤ x and S1({1, 2}, (w, y), E) = S1({1, 2}, (x, y), E), then w = x,

• if z ≤ y and S2({1, 2}, (x, z), E) = S2({1, 2}, (x, y), E), then z = y.

This immediately tells us that for any pair of representations of the same rule, the corresponding

brackets [αk, βk) are the same.

Now, fix such a bracket [αk, βk). Pick any two interior points x < y in the bracket. We can

normalize the functions hM(k) and gk so that gk(x) = hM(k)(x) = 0 and gk(y) = hM(k)(y) = 1.

We now claim that, after such a normalization, the two functions are equal, which establishes the

result. Now, consider the point x1/2 for which gk(x1/2) = 1/2. Note that S({1, 2}, (y, x1/2), x+
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x1/2) = (x1/2, x). In turn, this implies that hM(k)(x1/2) = 1/2. Inductively, we can determine

coincidence of gk and hM(k) on any dyadic rational combination of x and y. Thus coincidence

is extended to all points in between x and y by continuity. The construction can be carried on

outside of this interval in the obvious manner.

Hence, any two representations of the same rule restricted to an interval [0, z] are unique

in the preceding manner. This therefore allows us to complete the construction as follows. For

any pair x, y ∈ [0,∞), x, y are in the same bracket if there is z > max{x, y} for which x and

y are in the same bracket of the z-representation. Once we obtain the class of brackets, we

can choose gk functions by picking, for each bracket, two points xk < yk in the interior of the

bracket and defining gk(xk) = 0 and gk(yk) = 1 (this does not rely on the axiom of choice

and can be done algorithmically; say, if the interval is bounded, picking xk = αk + βk−αk
3

and

yk = αk + 2(βk−αk)
3

; or if it is unbounded, picking xk = αk + 1 and yk = αk + 2). The functions

gk can then be uniquely constructed everywhere by the preceding observations.

4 Further insights

Theorem 3 of Young (1985) reports, without proof, an axiomatization of all continuous rules

satisfying equal treatment of equals, consistency, composition down and homogeneity, which

states that if claims and endowment are multiplied by the same positive number, then all

post-tax incomes should be multiplied by the same number. Formally, for each (N, c, E) ∈ D

and λ > 0, S (N, λc, λE) = λS (N, c, E). The following is a restatement of Young’s theorem,

described in our notation.

Theorem 2. A rule satisfies continuity, equal treatment of equals, consistency, composition

down, and homogeneity if and only if it is either the leveling tax, or CESu with one of the

following utility indices:

• For p > 0, u(x) = xp,

• u(x) = ln(x),

• For p < 0, u(x) = −xp.

As shown in its proof below, the theorem is easily derived from our Theorem 1 and the

following claim, which states a property that characterizes the left endpoints of the (non-

degenerate) brackets associated to a generalized equal-sacrifice rule.
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Claim 1. Let SΛ,Γ be a generalized equal-sacrifice rule, and λ = [aλ, bλ) ∈ Λ. Then, for each

x ≥ aλ and each E ∈ [2aλ, x + aλ], aλ = S1({1, 2}, (aλ, x), E). Conversely, if y ∈ R+ is

such that, for each x ≥ y and each E ∈ [2y, x + y], S1({1, 2}, (y, x), E) = y, then there exists

λ = [aλ, bλ) ∈ Λ such that y = aλ.

Proof. Let SΛ,Γ be a generalized equal-sacrifice rule, λ = [aλ, bλ) ∈ Λ, and x ≥ aλ. Then, the

path of allocations of SΛ,Γ for (aλ, x) follows the 45o line until it reaches (aλ, aλ), from where

it continues vertically until it reaches (aλ, x). Thus, for each E ∈ [2aλ, x + aλ], it follows that

aλ = S1({1, 2}, (aλ, x), E), as desired. Conversely, let y ∈ R+ be such that, for each x ≥ y and

each E ∈ [2y, x + y], S1({1, 2}, (y, x), E) = y. Then, for each x ≥ y, the path of allocations

of SΛ,Γ for (y, x) follows the 45o line until it reaches (y, y), from where it continues vertically

until it reaches (y, x), i.e., the path of the leveling tax. This implies that y is a left endpoint of

a (non-degenerate) bracket in Λ as no constrained equal-sacrifice rule shares its path with the

leveling tax.

In words, the claim states that the left endpoints of the (non-degenerate) brackets, associated

to a generalized equal-sacrifice rule, are precisely those claims that are fully honored, when it

is feasible to do so. We are now ready to prove Theorem 2.

Proof. We focus on the non-trivial implication of the theorem. In other words, we assume

that S is a rule satisfying the five axioms in the statement. By Theorem 1, S is a generalized

equal-sacrifice rule, i.e., there exists a partition of brackets Λ, and the associated collection of

functions Γ = {gλ(·)}λ∈Λ, such that S ≡ SΛ,Γ. By homogeneity and Claim 1, either no positive

real numbers are left endpoints of (non-degenerate) brackets in Λ or all of them are. In other

words, Λ either contains the bracket [0,∞); or only degenerate brackets. In the latter case,

S would coincide with the leveling tax. In the other cases, S would be a constrained equal

sacrifice rule. Furthermore, this constrained equal sacrifice rule would have the property that

for any 0 ≤ y ≤ x, 0 ≤ w ≤ z, if u(x) − u(y) = u(z) − u(w), then for any λ > 0, we have

u(λx)− u(λy) = u(λz)− u(λw). By Theorem 1 in (Section 2, page 28) Azcel (1987), it follows

that the general continuous nonconstant solutions of that equation are given by u(x) = axp for

some a > 0 and p > 0, u(x) = a ln(x) for some a > 0, or u(x) = −axp for some a > 0 and

p < 0.28

28This is basically the argument that characterizes constant relative risk aversion (CRRA) utility indices;

early appearances of such a result are in Burk (1936) and Hardy, Littlewood and Pólya (1952, p. 68). See also

Lemma 1 in Young (1987b) for a similar treatment to the one considered in this paper.
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The statement of Theorem 2 gives a parametric family including the head tax (p = 1),

the leveling tax (which can be understood as the pointwise limit as p → −∞), and the flat

tax u(x) = ln(x), (which can also be understood as p = 0). Interestingly, if we consider the

pointwise limit as p→∞, the rule tends to approach a kind of “fully regressive” taxation rule,

which is discontinuous in incomes. We discuss this rule more in the Appendix (item 4).

5 Conclusion

In this paper, we have investigated the implications of four natural axioms for taxation rules,

which lead to a new family of rules. The family is a hybrid of the leveling tax, and constrained

equal sacrifice methods. It also allows flexibility to incorporate poverty lines into the theory of

taxation and bankruptcy. The family can also be understood as an exhaustive characterization

of all parametric rules satisfying composition down. As such, the family lies directly in between

the two families investigated by Peyton Young, and characterized as follows:

Theorem 3. (Young, 1987a) A rule satisfies continuity, equal treatment of equals, and consis-

tency, if and only if it is a parametric rule.

Theorem 4. (Young, 1988) A rule satisfies continuity, equal treatment of equals, consistency,

composition down, strict income order preservation, and strict endowment monotonicity if and

only if it is an equal-sacrifice rule.

To conclude, it is worth mentioning that additional (counterpart) characterization results

to the ones presented in this paper can be obtained upon exploiting the notion of duality (see

Thomson (2014a, Chapter 7) for further details about the notion and its applications in this

setting).

6 Appendix

6.1 The tightness of the characterization result

The rules presented next are all chosen to be homogeneous, which hence also shows the tightness

of Theorem 2.

1. A rule that satisfies all properties except for equal treatment of equals is a lexicographic

dictatorship.
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2. A rule that satisfies all properties except for composition down is the so-called Talmud

rule (introduced by Aumann and Maschler, 1985).

3. A rule that satisfies all properties except for consistency is a rule which coincides with

the head tax for pairs of agents, and the leveling tax otherwise.

4. A rule that satisfies all properties except for continuity is the fully regressive tax, which

orders agents according to the size of their incomes, and taxes the poorest agents first.

An agent with a high income only pays a tax if all poorer agents have fully exhausted

their incomes. Agents with equal incomes are taxed equally.

5. A rule that satisfies all properties except balance is the rule that always taxes everybody

their entire income.

6.2 Some generalized equal-sacrifice rules and their representations

Assume, for ease of notation, that, for each (N, c, E) ∈ D, the claims vector is such that

c1 ≤ c2 ≤ · · · ≤ cn, where n denotes the cardinality of N .

• The leveling tax: Let Λ = {{x} : x ∈ R+}.29 Then, for each (N, c, E) ∈ D, let k be

the smallest non-negative integer in {0, ..., n} such that E ≤ ((
∑k

i=1 ci) + (n − k)ck+1).

Let λ =
E−(

∑k
i=1 ci)

n−k . It follows that, for each i ∈ N such that ci ≤ λ, Li (N, c, E) = ci.

Furthermore, for each ci > λ, Li (N, c, E) = λ.

• The flat tax: Let Λ = {[0,+∞)} and Γ = {gλ}, where gλ : [0,+∞) → R ∪ {−∞} is

such that, for each x ∈ [0,+∞), gλ(x) = log(x). Then, for each (N, c, E) ∈ D, and each

pair i, j ∈ N , gλ(ci)− gλ(Fi (N, c, E)) = gλ(cj)− gλ(Fj (N, c, E)).

• The head tax: Let Λ = {[0,+∞)} and Γ = {gλ}, where gλ : [0,+∞) → R ∪ {−∞}

such that, for each x ∈ [0,+∞), gλ(x) = x. Then, for each (N, c, E) ∈ D, and each pair

i, j ∈ N , gλ(ci)−gλ(Hi (N, c, E)) < gλ(cj)−gλ(Hj (N, c, E)) implies that Hi (N, c, E) = 0.

• Equal-sacrifice rules: We proceed as with the flat tax, but considering a generic utility

function with the properties stated at the definition of this family (not necessarily the

logarithmic function, as we considered for the flat tax). More precisely, let Λ = {[0,+∞)}

and Γ = {gλ}, where gλ : [0,+∞)→ R∪ {−∞} such that, for each x ∈ [0,+∞), gλ(x) =

29As all brackets are degenerate, there is no need to define the set of associated functions Γ.
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u(x). Then, for each (N, c, E) ∈ D, and each pair i, j ∈ N , gλ(ci)− gλ(ESui (N, c, E)) =

gλ(cj)− gλ(ESuj (N, c, E)).

• Constrained equal-sacrifice rules: We proceed as with the head tax, but considering

a generic utility function with the properties stated at the definition of this family (not

necessarily the identity function, as we considered for the head tax). More precisely, let

Λ = {[0,+∞)} and Γ = {gλ}, where gλ : [0,+∞) → R ∪ {−∞} such that, for each

x ∈ [0,+∞), gλ(x) = u(x). Then, for each (N, c, E) ∈ D, and each pair i, j ∈ N ,

gλ(ci)−gλ(CESui (N, c, E)) < gλ(cj)−gλ(CESuj (N, c, E)) implies that CESui (N, c, E) =

0.

• Compromises between the flat tax and the leveling tax: We concentrate on the

rule illustrated at Figure 4, i.e., leveling tax until all agents are guaranteed a certain

income (α) and then flat tax. Let Λ = {{x}, [α,+∞) : 0 ≤ x ≤ α}, i.e., degenerate

brackets from 0 to α and a unique non-degenerate bracket [α,+∞)}.30 Now, let Γ = {gα},

where gα : [α,+∞) → R ∪ {−∞} such that, for each x ∈ [α,+∞), gα(x) = log(x − α).

Then, for each (N, c, E) ∈ D, let kα denote the smallest integer number for which ckα <

α.31 Then, we distinguish two cases:

Case 1: E ≤ ((
∑kα

i=1 ci) + (n− kα)ck+1). In this case, let k be the smallest non-negative

integer in {0, ..., kα} such that E ≤ ((
∑k

i=1 ci) + (n − k)ck+1). Let λ =
E−(

∑k
i=1 ci)

n−k . It

follows that, for each i ∈ N such that ci ≤ λ, Si (N, c, E) = ci. Furthermore, for each

ci > λ, Si (N, c, E) = λ = Li (N, c, E).

Case 2: E > ((
∑kα

i=1 ci) + (n − kα)ck+1). In this case, let λ = [α,+∞). It follows that,

for each i ∈ N such that ci ≤ λ, Si (N, c, E) = ci. Furthermore, for each pair i, j ∈ N ,

such that min{ci, cj} > α, gα(ci)− gα(Si (N, c, E)) = gα(cj)− gα(Sj (N, c, E)).

• Poverty-line rules: Let Λ = {{x}, [αk, βk) : k ∈ K; x ∈ R+ \ ∪k∈K [αk, βk)}, i.e.,

besides the intervals [αk, βk), all points lying outside those intervals are also considered

in this partition as degenerate brackets. Let Γ = {gk : k ∈ K}, where, for each k ∈ K,

gk : [αk, βk) → R ∪ {−∞}. Then, for each (N, c, E) ∈ D, let kα denote the smallest

integer number for which ckα < α1.

Case 1: E ≤ ((
∑kα

i=1 ci) + (n− kα)ck+1). In this case, let k be the smallest non-negative

30Note that α is exogenously given.
31Recall we are assuming that claims are increasingly ordered.
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integer in {0, ..., kα} such that E ≤ ((
∑k

i=1 ci) + (n − k)ck+1). Let λ =
E−(

∑k
i=1 ci)

n−k . It

follows that, for each i ∈ N such that ci ≤ λ, Si (N, c, E) = ci. Furthermore, for each

ci > λ, Si (N, c, E) = λ = Li (N, c, E).

Case 2: E > ((
∑kα

i=1 ci) + (n−kα)ck+1). In this case, several subcases can be considered.

Before presenting them, we need to introduce some notation. For each k ∈ K, let N c
k =

{i ∈ N : αk < ci ≤ βk} and nck denote its cardinality. Furthermore, let N c
∞ ≡ {i ∈ N :

βsupK < ci} and nc∞ denote its cardinality.

Case 2.1: E ≤
∑

i∈{1,...,kα}∪Nc
1
ci + (n − kα − nc1)β1. In this subcase, let λ = [α1, β1). It

follows that, for each i ∈ N such that ci ≤ λ, Si (N, c, E) = ci. Furthermore, for each pair

i, j ∈ N , such that min{ci, cj} > α1, g1(min{ci, β1})−g1(Si (N, c, E)) < g1(min{cj, b1})−

g1(Sj (N, c, E)) implies that Si (N, c, E) = α1.

Case 2.2:
∑

i∈{1,...,kα}∪Nc
1
ci + (n − kα − nc1)β1 < E ≤

∑
i∈{1,...,kα}∪Nc

1
ci + (n − kα −

nc1)α2. In this subcase, let k1 be the smallest non-negative integer in {kα, . . . , n} such

that Ê1 = E −
∑

i∈{1,...,kα}∪Nc
1
ci + (n − kα − nc1)β1 ≤ (

∑k1
i=1 ci) + (n − k1)ck1+1. Let

λ = β1 +
Ê1−

(∑k1
i=1 ci

)
n−k1 ∈ (β1, α2). It follows that, for each i ∈ N such that ci ≤ λ,

Si (N, c, E) = ci. Furthermore, for each ci > λ, Si (N, c, E) = λ = Li (N, c, E).

Case 2.3:
∑

i∈{1,...,kα}∪Nc
1
ci + (n− kα− nc1)α2 < E ≤

∑
i∈{1,...,kα}∪Nc

1
ci + (n− kα− nc1)β2.

In this subcase, let λ = [α2, β2). It follows that, for each i ∈ N such that ci ≤

λ, Si (N, c, E) = ci. Furthermore, for each pair i, j ∈ N , such that min{ci, cj} >

α2, g2(min{ci, β2}) − g2(Si (N, c, E)) < g2(min{cj, b2}) − g2(Sj (N, c, E)) implies that

Si (N, c, E) = α2.

· · ·

The remaining cases are similarly obtained
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