

1. COURSE DESCRIPTION

Degree:	Biotechnology
Course:	Plant Biotechnology
Module:	Bioengineering and Biotechnological Processes. Biological
	Systems
Department:	Physiology, Anatomy and Cell Biology
Academic Year:	2016/17
Term:	First
ECTS credits:	4,5
Year:	3 rd year
Туре:	Compulsory
Language:	Spanish

Course Model:	A2		
a. Basic learning (EB):		70%	
b. Practical learning (EPD):		15%	
c. Guided Academic Activities (AD):		15%	

2. LECTURERS

2.1. Coordinator: Juan Camacho Cristobal
--

2.2. Lecturers	
Name:	Juan Camacho Cristóbal
School:	School of Experimental Sciences
Department:	Physiology, Anatomy and Cell Biology
Area:	Plant Physiology
Office Hours:	Tuesdays (10-14 h and 15-17 h).
	Previous appointment through e-mail.
Office:	22-1-13
E-mail:	jjcamcri@upo.es
Phone:	954977636

3. TOPICS

3.1.- BASIC LEARNING (24 HOURS)

Topic I: CLASSICAL PLANT IMPROVEMENT

Unit 1: **Classical Plant Biotechnology.** Traditional Biotechnology and Modern Biotechnology. Classical plant improvement. Traditional plant improvement techniques: selection, artificial crossbreeding, mutagenesis and in vitro breeding.

Unit 2: **In vitro breeding.** In vitro morphogenesis: organogenesis and somatic embryogenesis. Increase in genetic variability: somaclonal variation. In vitro breeding application in the improvement of plants.

Unit 3: Molecular markers and plant improvement. Polymorphism in the DNA sequence: use of molecular markers. Molecular markers application.

Topic II: GENETIC ENGINEERING AND VASCULAR PLANTS TRANSFORMATION

Unit 4: **Obtaining transgenic plants I**. Stable genetic transformation of plants: requirements and transformation methods. Obtaining transplastomic plants. Non-integrating expression systems: transient expression.

Unit 5: **Obtaining transgenic plants II**. Selectable marker genes and information. Trasgene expression. Trasgene detection techniques and results.

SYLLABUS

Topic III: BIOTECHNOLOGICAL APPLICATION OF TRANSFORMED PLANTS

Unit 6: Biotechnology applied to the control of diseases caused by fungi, bacteria and viruses. Defensive mechanisms of plants. Obtaining resistance to fungi, bacteria and viruses through genetic engineering.

Unit 7: **Biotechnology applied to the control of insect pests.** Traditional insecticides. Bacterial, animal and plant resistance genes. Environmental problems.

Unit 8: **Biotechnology applied to weed control.** Herbicides. Xenobiotics metabolism in plants. Resistance to herbicides. Considerations on the use of herbicide-resistant crops.

Unit 9: **Biotechnology applied to resistance to abiotic stresses.** Abiotic stresses Tolerance to abiotic stress: osmotic adjustment. Biotechnology applied to resistance to water, salt and low temperature stresses.

Unit 10: **Phytoremediation.** Mechanisms of absorption and accumulation of metals. Phytoremediation: Types of phytoremediation. Biotechnology applied to phytoremediation.

Unit 11: **Metabolic engineering.** Genetic manipulation of the primary metabolism. Genetic manipulation of secondary metabolism.

Unit 12: **Plants as bioreactors.** Plants as bioreactors: advantages and limitations. Technological strategies to optimize the obtaining of recombinant proteins in plants. Applications.

5.2.- PRACTICAL LEARNING (5 HOURS)

During the course, the following practices will take place:

- Practice 1. Transformation of plants with *Agrobacterium tumefaciens*.
- Practice 2. Homozygous and heterozygous insertional mutants identification

in Arabidopsis thaliana plants.

5.3.- GUIDED ACADEMIC ACTIVITIES (5 HOURS)

These sessions will help to expand the adquired knowledge from EB and EPD.