

SYLLABUS

1. COURSE DESCRIPTION

Degree:	Biotechnology	
Course:	Pharmaceutical Engineering and Drug Design	
Module:	Optional Training	
Department:	Physical, Chemical and Natural Systems	
Academic Year:	2017-18	
Term:	First	
ECTS credits:	6	
Year:	3 rd year	
Type:	Optional	
Language:	Spanish	

Course Model:	B1	
a. Basic learning (EB):		60%
b. Practical learning (EPD):		40%

SYLLABUS

2. LECTURERS

Coordinator		
Name:	Ana Paula Zaderenko Partida	
School:	School of Experimental Sciences	
Department:	Physical, Chemical and Natural Systems	
Area:	Physical Chemistry	
Office Hours:	Mondays, Tuesdays: 11.00 – 14.00	
Office:	22.3.12	
E-mail:	apzadpar@upo.es	
Phone:	954977365	

SYLLABUS

3. TOPICS

Unit1: Introduction and basic concepts. Molecules with biological activity. Drug development stages. Cost vs innovation.

- Unit 2. Pharmacognosy. Concepts. Pharmacognosy objectives and its future projection.
- Unit 3. Pharmaceutical forms: Drug dosage forms, advantages and disadvantages.
- Unit 4. Chemical Properties and Pharmacological Activity. Theoretical models that explain transport through membranes. Lipinski law. Pharmacokinetics.
- Unit 5. Pharmacodynamics. Receptors. Dose-response curve. Stereochemical aspects of drug-receptor interaction.
- Unit 6. New drugs research strategies. Rational design. Prototype optimization. SAR Analysis in the drug design. Bioisosterism and QSAR.
- Unit 7. Combinatorial design and scrutiny systems. Combination synthesis in solid phase. Coding chemical libraries. Applications.
- Unit 8. Chiral drugs. Terminology. Obtaing from the chiral reserve. Biocatalysts.
- Unit 9. Innovative drugs. Therapeutic agents for design. Biotechnology and Nanotechnology Convergence. Application examples. Future Perspective. Regulations.

Practical Learning:

- Practice 1. Soxhlet extraction from a natural product
- Practice 2. Natural product modification
- Practice 3. Polarimetry
- Practice 4. Drug synthesis
- Practice 5. Characterization techniques

Sessions will last 3 hourse and wil be held at the Physical Chemistry laboratorios, according to the dates given by the syllabus.