

## 1. COURSE DESCRIPTION

| Degree:        | Biotechnology                                 |
|----------------|-----------------------------------------------|
| Course:        | Environmental Biotechnology                   |
| Module:        | Optional Training                             |
| Department:    | Molecular Biology and Biochemical Engineering |
| Academic Year: | 2017-18                                       |
| Term:          | Second                                        |
| ECTS credits:  | 6                                             |
| Year:          | 3 <sup>rd</sup> year                          |
| Туре:          | Optional                                      |
| Language:      | Spanish                                       |

| Course Model:                | C1 |     |
|------------------------------|----|-----|
| a. Basic learning (EB):      |    | 60% |
| b. Practical learning (EPD): |    | 40% |



# 2. LECTURERS

| Coordinator   |                                                                                  |
|---------------|----------------------------------------------------------------------------------|
| Name:         | Aroa López Sánchez                                                               |
| School:       | School of Experimental Sciences                                                  |
| Department:   | Molecular Biology and Biochemical Engineering                                    |
| Area:         | Microbiology                                                                     |
| Office Hours: | Mondays, Wednesdays: 15.00 – 18.00<br>(Please contact previously through e-mail) |
| Office:       | 22.3.1G                                                                          |
| E-mail:       | arlopsan@upo.es                                                                  |
| Phone:        | 944977878                                                                        |



## 3. TOPICS

- 1. Introduction to Environmental Biotechnology:
- Concept of waste
- Pollution: types and sources
- Biotechnology application to environmental problems
- 2. Environmental monitoring:
- Biomarkers
- Toxicity bioassays
- Biosensors

#### 3. Bioremediation:

- Bioremediation concept
- Factors that determine the effectiveness of bioremediation. Biodegradability and
- bioavailability
- Natural attenuation
- Biostimulation and bioaugmentation
- Techniques in situ and ex situ
- 4. Biodegradation of natural compounds:
- Biodegradation of cellulose, hemicelluloses and lignin.
- Residues from the production of olive oil.
- Biodegradation of cyanides
- Oil biodegradation

5. Biodegradation of xenobiotics:

- Biodegradation of chlorinated polychlorinated biphenyls and dioxins.
- Biodegradation of nitroaromatic compounds.
- 6. Phytoremediation and rhizoremediation:
- Phytoremediation
- Rhizodegradation.
- Stimulation of phytoremediation
- 7. Metal bioremediation
- Biosorption and bioaccumulation
- Bioaccumulation
- Biomineralization

8. Environmental technology in liquid fluids.



- Conventional treatment in Urban Wastewater Treatment Plant: Water and Sludge Line

- Biological reactors. Oxygen requirements
- Stabilization and dehydration of sludge

9. Environmental technology in solid materials.

- Biorefinery of organic materials.

- Treatment of biodegradable solid materials by vermicomposting.

Foundation and factors that influence the process. Ecotechnology.

10. Environmental technology in gas streams

- General notions about the dispersion, separation and/or elimination of atmospheric pollutants.

- Biotechnology for the treatment of atmospheric emissions: Biofilters, Biopercoladores and Biolavadores.