

Curso 2013-2014

1. DESCRIPCIÓN DE LA ASIGNATURA

Grado:	BIOTECNOLOGÍA
Doble Grado:	
Asignatura:	QUÍMICA BIOANALÍTICA
Módulo:	OPTATIVIDAD
Departamento:	SISTEMAS FÍSICOS, QUÍMICOS Y NATURALES
Año académico:	2013-14
Semestre:	SEGUNDO
Créditos totales:	6
Curso:	2°
Carácter:	OPTATIVO
Lengua de impartición:	ESPAÑOL

Modelo de docencia:	B1	
a. Enseñanzas Básicas (EB):		60%
b. Enseñanzas de Prácticas y Desarrollo (EPD):		40%
c. Actividades Dirigidas (AD):		

Curso 2013-2014

2. EQUIPO DOCENTE

2.1. Responsable de la asignatura

TANIA ISABEL LOPES DA COSTA

2.2. Profesores		
Nombre:	Tânia Isabel Lopes da Costa	
Centro:	Facultad de Ciencias Experimentales	
Departamento:	Sistemas Físicos, Químicos y Naturales	
Área:	Química Física	
Categoría:	Profesor Ayudante Doctor	
Horario de tutorías:	Lunes y Martes, de 12h a 14h	
Número de despacho:	22-3-9	
E-mail:	tlopcos@upo.es	
Teléfono:	954977363	

Curso 2013-2014

Nombre:	José María Pedrosa Poyato
Centro:	Facultad de Ciencias Experimentales
Departamento:	Sistemas Físicos, Químicos y Naturales
Área:	Química Física
Categoría:	Profesor Titular
Horario de tutorías:	Lunes y Martes, de 15h a 17h
Número de despacho:	22-3-14
E-mail:	jmpedpoy@upo.es
Teléfono:	954349537

EACH MAD DE CHENCHAC EMBEDIMENTS A EC
FACULTAD DE CIENCIAS EXPERIMENTALES
SISTEMAS FÍSICOS, QUÍMICOS Y NATURALES
QUÍMICA FÍSICA
PROFESOR ASOCIADO
lunes y martes 16:00 a 19:00
22.3.10
fmadrid@upo.es
954-977562
]

Curso 2013-2014

3. UBICACIÓN EN EL PLAN FORMATIVO

3.1. Descripción de los objetivos

Proporcionar al alumnado los conocimientos teórico-prácticos acerca de los principios básicos metodológicos del análisis de biomolecular y bioquímico. Transmitir una visión general, pluridisciplinar y moderna que permita apreciar la situación actual del bioanálisis. Enlazar las aplicaciones bioanalíticas con los principios fisicoquímicos y bioquímicos subyacentes que las hacen posibles. Dotar al alumnado de la capacidad de diseñar protocolos de detección y cuantificación de compuestos químicos de relevancia en bioquímica y biotecnología

3.2. Aportaciones al plan formativo

Esta asignatura optativa proporciona dos aportaciones principales en el marco del plan formativo de la titulación:

- 1) Extender los conceptos desarrollados en las asignaturas Química General, Química Orgánica y Bioquímica, pertenecientes al primer curso de la titulación, y desarrollar en mayor profundidad las aplicaciones relacionadas con la detección de especies biomoleculares de relevancia en Biotecnología
- 2) Servir de base para el mejor aprovechamiento de la asignatura Técnicas y Análisis Instrumental, de tercer curso, en la que se trata en detalle la metodología bioanalítica moderna

3.3. Recomendaciones o conocimientos previos requeridos

Se recomienda cursar la asignatura durante el segundo semestre de segundo curso, con un buen aprovechamiento previo de las siguientes asignaturas del Plan de Estudios:

Química General (primer curso)

Química Orgánica (primer curso)

Bioquímica (Biomoléculas) (primer curso)

Termodinámica y Cinética Químca (segundo curso)

Curso 2013-2014

4. COMPETENCIAS

4.1 Competencias de la Titulación que se desarrollan en la asignatura

- 1) Desarrollar los métodos de adquisición, interpretación y análisis de la información junto con una comprensión crítica de los contextos apropiados para su uso, para aplicar sus conocimientos de forma profesional y demostrar sus competencias por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
- 2) Desarrollar las habilidades de aprendizaje necesarias que le permitan emprender, con un elevado nivel de autonomía, estudios posteriores.
- 3) Adquirir las habilidades experimentales básicas adecuadas a cada una de las materias impartidas, mediante la descripción, cuantificación, análisis y evaluación crítica de los resultados experimentales obtenidos de forma autónoma.
- 4) Asimilar conocimientos relevantes de procedencia multidisciplinar, así como emitir reflexiones y juicios basados en la integración de dichos conocimientos.
- 5) Ser capaz de demostrar capacidad de iniciativa responsable en el ámbito de trabajo.
- 6) Ser consciente de la importancia del trabajo en equipo y potenciación de la discusión crítica de objetivos comunes.
- 7) Ser consciente de la importancia de la contribución de la biotecnología al desarrollo del conocimiento.
- 8) Desarrollar la capacidad creativa que origine la innovación y la identificación de las analogías entre situaciones que permita la aplicación de soluciones conocidas a nuevos problemas.
- 9) Saber analizar, sintetizar y utilizar el razonamiento crítico en ciencia.
- 10) Comprender el método científico.
- 11) Comprensión de los mecanismos básicos de análisis y diseño de sistemas descendente y ascendente para la resolución de problemas y procesos complejos.
- 12) Conectar e interrelacionar los ámbitos del conocimiento que engloba la biotecnología, desde los principios biológicos y fisicoquímicos hasta la aplicación en explotación industrial o de I+D+i.
- 13) Trabajar de forma adecuada en un laboratorio biológico, químico o bioquímico, conociendo y aplicando las normativas y técnicas relacionadas con seguridad e higiene, manipulación de animales de laboratorio y gestión de residuos.
- 14) Conocer y aplicar las herramientas, técnicas y protocolos de experimentación en el laboratorio.

Curso 2013-2014

15) Adquirir las capacidades de observación e interpretación de los resultados obtenidos.

4.2. Competencias del Módulo que se desarrollan en la asignatura

El módulo de optatividad, por su carácter multidisciplinar, no tiene especificadas competencias propias en el Plan de Estudios. Este módulo tiene como objetivo profundizar en determinadas disciplinas seleccionadas entre una amplio abanico de opciones que, por su naturaleza, actualidad o interés práctico, pueden permitir a los estudiantes un cierto grado de especialización, dentro del grado de biotecnología, o de otros grados y, por lo tanto, generar currículos específicos según los intereses concretos. Las asignaturas optativas por lo general desarrollan con mayor profundidad materias de otros módulos, por lo que comparten con éstos últimos muchas de sus competencias y resultados del aprendizaje. Nos remitimos al apartado 4.3, en el que se proporciona una relación de competencias de los distintos módulos de la Titulación que se desarrollan específicamente en la asignatura.

4.3. Competencias particulares de la asignatura

- 1) Conocer y saber aplicar la metodología analítica así como sus criterios de validación.
- 2) Conocer y saber ejecutar correctamente métodos de análisis y cuantificación de biomoléculas y biopolímeros utilizando las principales técnicas instrumentales
- 3) Saber identificar la técnica instrumental adecuada para cada problema analítico, y evaluar sus ventajas e inconvenientes respecto de técnicas alternativas
- 4) Comprender los principios físico-químicos subyacentes a las técnica experimentales, para saber clasificarlas y entender su ámbito de aplicación.
- 5) Saber diseñar los procedimientos y protocolos de laboratorio necesarios para cada problema analítico, prestando especial atención a las condiciones experimentales de cada método y técnica.
- 6) Poseer una actitud adecuada en el laboratorio que garantice la seguridad personal, protección medioambiental y la calidad de los resultados.
- 7) Poseer una actitud crítica, metodológica y analítica durante el desarrollo experimental de un método o técnica para su correcta ejecución.
- 8) Conocer y saber usar los sistemas de tratamiento de datos obtenidos por las distintas técnicas y saber interpretar correctamente los resultados
- 9) Integrar las evidencias experimentales encontradas en los estudios de laboratorio con los conocimientos teóricos.

Curso 2013-2014

5. CONTENIDOS DE LA ASIGNATURA (TEMARIO)

Tema 1: Metodología de la Química Bioanalítica

Fundamentos de Análisis Químico. Métodos generales de análisis para las principales familias de biomoléculas. Disolventes, Tampones y Detergentes en Química Bioanalítica.

Tema 2: Metales en Bioquímica y su detección

Complexometría. Absorción Atómica. Voltamperometría.

Tema 3: Fundamentos de Espectroscopía en Química Bioanalítica

Fundamentos de Esopectroscopía. Absorción ultravioleta-visible. Fluorescencia.

Tema 4: Métodos de Cuantificación de Proteínas

Métodos químicos de nitrógeno total. Métodos especroscópicos. Métodos basados en la unión de cromóforos. Métodos basados en el análisis de aminoácidos.

Tema 5: Métodos de Extracción y Purificación de proteínas

Extracción de proteínas de medios celulares. Métodos clásicos de separación: precipitación, centrifugación, diálisis

Tema 6: Cromatografía en Columna y Técnicas de Afinidad

Cromatografía de Exclusión por tamaño; de Intercambio Iónico; de Intearcción hidrofóbica; de Afinidad. Métodos Inmunológicos: ELISA

Tema 7: Análisis de Azúcares y Lípidos

Técnicas de separación y cuantificación de azúcares y lípidos.

6. METODOLOGÍA Y RECURSOS

Metodología Docente: Clases Magistrales (27 sesiones de una hora); Prácticas de Laboratorio (5 sesiones de 3 horas); Seminarios (3 sesiones de 45 minutos) Recursos: Aula, plataforma WebCT, laboratorio de prácticas, Wiki de la asignatura

Curso 2013-2014

7. EVALUACIÓN

La evaluación se hará valorando todas las actividades formativas realizadas: conceptos y procedimientos transmitidos por el profesor a través de clases magistrales, y ampliación de los mismos por el estudiante a partir de la bibliografía recomendada, realización de prácticas de laboratorio y elaboración del informe pertinente.

Las actividades de evaluación EN LA CONVOCATORIA ORDINARIA DE JUNIO serán las siguientes:

- 1) Dos exámenes tipo test sobre la teoría de la asignatura (25%)
- 2) Dos exámenes tipo test sobre prácticas de laboratorio, apoyado por el informe realizado por cada estudiante de forma individual (25%)
- 3) Examen sobre la totalidad del temario de teoría y prácticas al final del curso (40%)
- 4) Realización de un trabajo bibliográfico en la Wiki de la asignatura (10%) Para aprobar la asignatura será obligatorio realizar todas las prácticas de laboratorio y obtener una calificación de al menos 4/10 en el examen sobre la totalidad del temario En caso de no superar la asignatura en la convocatoria ordinaria, las actividades de evaluación EN LA CONVOCATORIA EXTRAORDINARIA DE JULIO serán las siguientes:
- 1) Un examen escrito sobre la totalidad del temario de la asignatura (60%)
- 2) Un examen escrito sobre las prácticas de laboratorio, apoyado por los informes realizados por cada estudiante de forma individual (40%)

8. BIBLIOGRAFÍA GENERAL

- 1) J.M. García Segura, J.G. Gavilanes, A. Martínez del Pozo, F. Montero, M. Oñaderra,
- F. Vivanco. Técnicas instrumentales de análisis en Bioquímica. Editorial Síntesis, 2004
- 2) Susan R. Mikkelsen, Eduardo Cortón. Bioanalytical Chemistry. Wiley-interscience. 2004. ISBN: 978-0-471-54447-0
- 3) Victor Gault, Neville McClenaghan, Understanding Bioanalytical Chemistry: Principles and Applications, Wiley 2009. ISBN: 978-0-470-02906-0
- 4) Richard F. Venn (ed.) Principles and practice of bioanalysis, Taylor & Francis 2000. ISBN: 978-0-7484-0843-6
- 5) Wilson, Ian D. Bioanalytical separations, Elsevier, 2003 ISBN: 978-0-444-50658-0