

Curso 2016-2017

# 1. DESCRIPCIÓN DE LA ASIGNATURA

| Grado:                    | Biotecnología                                            |
|---------------------------|----------------------------------------------------------|
| Asignatura:               | Biología Celular                                         |
| Módulo:                   | 2 - Fundamentos de Biología, Microbiología y<br>Genética |
| Departamento:             | Fisiología, Anatomía y Biología Celular                  |
| Año académico:            | 2016-17                                                  |
| Semestre:                 | 1°                                                       |
| Créditos totales:         | 6                                                        |
| Curso:                    | 1°                                                       |
| Carácter:                 | Materia Básica y Obligatoria                             |
| Lengua de<br>impartición: | Español                                                  |

Modelo de B1

docencia:

| a. Enseñanzas Básicas (EB):                    | 60 % |
|------------------------------------------------|------|
| b. Enseñanzas de Prácticas y Desarrollo (EPD): | 40 % |
| c. Actividades Dirigidas (AD):                 | 0 %  |



## 2. EQUIPO DOCENTE

## **2.1. Responsable de la asignatura** Gloria Brea Calvo

#### 2.2. Profesores

**Nombre:** Gloria Brea Calvo Facultad Ciencias Experimentales **Centro:** Fisiología, Anatomía Y Biología Celular **Departamento:** Área: Biología Celular Profesora Contratada Doctora Categoría: Miércoles y jueves de 11 a 13h. Previa cita Horario de tutorías: por e-mail. Presenciales o virtuales. Número 22.2.04 de despacho: gbrecal@upo.es E-mail: Teléfono: 954 977 637



## 3. UBICACIÓN EN EL PLAN FORMATIVO

## 3.1 Descripción de los objetivos

- Conocer la estructura y funciones básicas de la célula.
- Conocer la interacción funcional entre las diferentes estructuras celulares.
- Conocer los mecanismos celulares de respuesta frente a estímulos externos.
- Conocer los mecanismos de la división celular.

#### 3.2. Aportaciones al plan formativo

La asignatura se engloba dentro del módulo didáctico número 2 (Fundamentos de Biología, Microbiología y Genética) del título de graduado en Biotecnología, que consta de un total de ocho asignaturas básicas y obligatorias impartidas en los diferentes cursos del grado. Este módulo contiene la introducción a la complejidad de diseño estructural y funcional de los organismos vivos (desde microorganismos a organismos superiores, tanto animales como plantas) y a las propiedades básicas de estos organismos en cuanto a su mantenimiento energético y reproducción.

La asignatura de Biología Celular, junto con las de Biología animal y vegetal (módulo 2) y Bioquímica: Biomoléculas (módulo 5), confiere al alumno las bases esenciales para el conocimiento de las estructuras y funciones de las células, tejidos y órganos de los animales y las plantas. La formación recibida en esta materia, será la base para el aprovechamiento de otras asignaturas que cursará a lo largo de su graduación, como Fisiología Vegetal, Fisiología Animal, Biotecnología Vegetal, Biotecnología Animal, Cultivos Celulares y Trabajo Fin de Grado.

### 3.3 Recomendaciones o conocimientos previos requeridos

- <u>Esencial</u>: conocimiento básico del concepto de célula y las estructuras subcelulares.
- <u>Altamente recomendable</u>: comprensión básica de textos científicos en inglés.
- <u>Recomendado</u>: habilidades informáticas básicas (*Office* y similares, búsqueda en internet...).



#### 4. COMPETENCIAS

#### 4.1 Competencias del Grado que se desarrollan en la asignatura

- Conocer y comprender los procesos biológicos generales desde un punto de vista molecular, celular y fisiológico de los seres vivos.
- Trabajar de forma adecuada en un laboratorio biológico, químico o bioquímico, conociendo y aplicando las normativas y técnicas relacionadas con seguridad e higiene y gestión de residuos.

## 4.2. Competencias del Módulo que se desarrollan en la asignatura

- Comprender la teoría celular e identificar los distintos componentes celulares.
- Comprender el ciclo de división celular y los factores que lo regulan.

#### 4.3. Competencias particulares de la asignatura

El objetivo global de la asignatura es el conocimiento por parte del alumno de las estructuras de la célula eucariota y ser capaz de relacionar éstas con sus respectivas funciones específicas, integrándolas en una visión global de la célula y de los mecanismos que aseguran su división y la respuesta frente a los estímulos externos. A lo largo de la signatura se trabajarán las siguientes competencias concretas:

#### COMPETENCIAS COGNITIVAS (SABER)

- Entender el concepto de organización celular.
- Conocer las diferentes estructuras celulares y su función.
- Conocer las moléculas y estructuras implicadas en la relación de la célula con su entorno, así como los mecanismos que aseguren esta relación.
- Entender el ciclo celular eucariótico y su regulación, así como los mecanismos moleculares implicados.

#### COMPETENCIAS INSTRUMENTALES (SABER HACER)

- Aprender las bases del manejo de instrumentación en un laboratorio de biología celular.
- Aprender a observar las células a través del microscopio óptico y a distinguir estructuras subcelulares.



Curso 2016-2017

- Aprender las técnicas de subfraccionamiento y de análisis bioquímico de las estructuras de la célula.
- Aprender a realizar recuentos celulares y de viabilidad celular.
- Aprender a utilizar la literatura científica y técnica especializada.

### COMPETENCIAS ACTITUDINALES

- Aprender a abordar un aprendizaje autónomo.
- Aprender a aplicar los conocimientos teóricos a la práctica.
- Aprender a trabajar tanto de forma autónoma como en equipo.



#### 5. CONTENIDOS DE LA ASIGNATURA (TEMARIO)

Enseñanzas básicas (EB)

- COMPARTIMENTOS CELULARES. Estructura de las membranas: propiedades y funciones. El modelo de mosaico fluido. Principales proteínas en la membrana celular. Superficie celular: carbohidratos de membrana. Transporte selectivo a través de las membranas: difusión simple, transporte activo y pasivo.
- 2. *MANEJO DE LA INFORMACIÓN CELULAR*. El núcleo como compartimento que mantiene protegido el ADN. Envoltura nuclear y poros nucleares: comunicación bidireccional núcleo-citosol.
- 3. TRAFICO CELULAR. Tráfico de proteínas a través del sistema de endomembranas. Del sistema de control de calidad en el retículo endoplásmico a la distribución de proteínas en el Aparato de Golgi. Marcaje y reciclaje de proteínas. Control de vesículas secretoras y endocíticas. Endosomas, lisosomas y reciclaje de membranas.
- 4. EL COMBUSTIBLE CELULAR. Particularidades de la composición y estructura de las membranas mitocondriales. Localización de los procesos bioenergéticos principales dentro de los compartimentos mitocondriales. El oxígeno controla la producción de energía: cadena respiratoria, síntesis de ATP y producción de calor. La otra cara de la moneda: producción de radicales libres y daño celular.
- 5. *MOVIMIENTO CELULAR*. El citoesqueleto soporta las estructuras celulares a través de diferentes componentes: actina, tubulina y filamentos intermedios. Control de la polimerización y despolimerización. Movimiento celular: cilios y flagelos.
- 6. SEÑALIZACIÓN CELULAR. La señalización celular: principios básicos. Receptores intracelulares. Receptores de la superficie celular: canales, proteínas G y enzimas asociados a receptores. Integración de la señal. Respuesta celular a estímulos externos.



7. *RENOVACIÓN CELULAR*. La proliferación celular es un proceso estrictamente controlado: control del ciclo celular y *checkpoints*. Distribución de la información celular (mitosis) y su control. Distribución de los recursos celulares: citocinesis. Supervivencia celular y muerte celular. Apoptosis, necrosis y autofagia.

Enseñanzas prácticas y de desarrollo (EPD)

MICROSCOPIA ÓPTICA. Fundamentos de la microscopía de luz y electrónica. Observación de muestras al microscopio de luz.

MANEJO DE INSTRUMENTACIÓN BÁSICA DE LABORATORIO.

IMPORTANCIA DE LA COMPOSICIÓN ELECTROLÍTICA DEL PLASMA. Alteraciones del equilibrio iónico del plasma y sus consecuencias sobre la estructura celular.

FRACCIONAMIENTO CELULAR I. Aislamiento de componentes subcelulares. Diferentes métodos usados en fraccionamiento celular.

FRACCIONAMIENTO CELULAR II. Marcadores citoquímicos.

CASO PRÁCTICO I. Búsqueda y manejo de bibliografía científica especializada.

CASO PRÁCTICO II. Patología celular.



## 6. METODOLOGÍA Y RECURSOS

El curso tiene 6 créditos ECTS (i.e., 150h) que se distribuyen según el siguiente esquema:

| Actividades    | Clases           | Trabajo      | Evaluación (h)  | Total (h)  |
|----------------|------------------|--------------|-----------------|------------|
|                | presenciales (h) | personal (h) | Evaluacion (II) | Total (II) |
| Enseñanzas     | 27               |              |                 |            |
| Básicas (EB)   | 21               |              |                 |            |
| Enseñanzas     |                  | 90           | 15              |            |
| Prácticas y de | 18               | 90           | 13              |            |
| desarrollo     |                  |              |                 |            |
| (EPD)          |                  |              |                 |            |
| Total          | 45               | 90           | 15              | 150        |

#### Distribución de los créditos ECTS

La asignatura se compone de 6 créditos ECTS, es decir 150 horas lectivas, distribuidas en 45 horas presenciales (30%), 15 horas dedicadas a evaluación (10%) y 90 horas de actividad no presencial (60%).

La distribución de horas presenciales y organización del trabajo están basados al modelo docente B1 (EB 60%, EPD 40%): 27 horas de EB y 18 horas de EPD.

#### a) Enseñanzas básicas

Las enseñanzas básicas se centran en los principios teóricos de la biología celular y cubrirán los aspectos más importantes de cada tema, poniendo especial énfasis a los conceptos especialmente complejos. Las sesiones tendrán lugar dos veces a la semana con una duración de 1 hora cada una.

La dinámica de las sesiones de enseñanzas básicas incluirá clases expositivas y la frecuente interacción con el estudiante a través del planteamiento de problemas y preguntas abiertas relacionadas con el tema. Algunas de estas preguntas y otras no tratadas directamente en clase, pero relacionadas con el tema, se podrán proponer como trabajo autónomo evaluable.



Curso 2016-2017

Como apoyo a las clases expositivas, se usarán presentaciones que estarán disponibles en el <u>Aula Virtual</u> de la asignatura con antelación. La profesora resolverá cualquier duda que surja durante estas sesiones.

#### b)Enseñanzas prácticas y de desarrollo

Se impartirá a grupos de unos 20 alumnos en el horario y localización que se comunicará a principios de curso. Al inicio de cada sesión práctica, la profesora hará una breve introducción metodológica y un planteamiento del objetivo a cumplir. El alumno deberá, con el material disponible, asimilar dicho objetivo, ejecutar el protocolo de laboratorio e interpretar los resultados, aprendiendo de los errores cometidos en su caso.

Las clases prácticas son de asistencia obligatoria. Éstas incluyen, trabajo experimental en el laboratorio y tareas no experimentales en casa.

#### c) Trabajo personal y tutorías

Durante las horas correspondientes al trabajo personal (90h durante todo el curso), el alumno trabajará activa y autónomamente para conseguir los objetivos académicos planteados en esta guía.

El trabajo personal evaluable que forma parte de la evaluación continua, será entregado a través de la aplicación específica del <u>Aula Virtual</u> de la asignatura.

Los anuncios, calificaciones, programación y fechas límite de entrega de actividades serán gestionados igualmente a través de esta plataforma.

Las tutorías tienen como objetivo la asistencia al alumnado adicional. Pueden desarrollarse presencialmente (en horario de tutorial oficial únicamente) u on-line. En cualquier caso, siempre será necesaria una cita previa que deberá solicitarse vía e-mail.

#### d) Consejos para un óptimo aprovechamiento del curso:

- Antes de cada sesión: revisar los conceptos clave y recursos que estarán disponibles on-line.
- Durante las sesiones, todas las dudas deberían ser clarificadas. Intenta obtener el máximo del tiempo de la profesora durante las clases, planteando tus dudas.
- Tras las clases, revisa tus apuntes y complementa la información con la lectura de la bibliografía recomendada.
- Intenta entender el proceso biológico evitando la memorización. No te quedes con dudas.



Curso 2016-2017

- Sé estricto/a con tu tiempo.
- Puedes contactar con la profesora a lo largo del cuatrimestre a través del email, el teléfono y en la oficina (previa cita)



#### 7. EVALUACIÓN

La evaluación de la asignatura está basada en la <u>Normativa de Evaluación</u> de los estudiantes de grado, aprobada por el Consejo de Gobierno (BUPO 7/2014).

Igualmente, de acuerdo con la Normativa de la Universidad, todo el contenido escrito en las tareas de casa, exámenes y cuestionarios deben ser originales. La copia ilegal es susceptible de ser perseguida y puede tener consecuencias sobre la calificación final.

El total de la calificación de este curso se distribuye de la siguiente forma:

#### a) Enseñanzas básicas (70% del global)

Esta parte de la asignatura será evaluada mediante una prueba escrita y una serie de cuestionarios específicos de cada tema.

1. Prueba escrita presencial (60% del total de la asignatura).

Esta prueba escrita contendrá preguntas de cualquiera de los siguientes tipos:

- Preguntas cortas
- Relación de conceptos
- Combinaciones
- Rellenar espacios en blanco
- Elección múltiple
- Verdadero/Falso
- Resolución de problemas
  - 2. <u>Cuestionarios específicos de tema (10% del total de la asignatura)</u>.

Estos cuestionarios serán publicados al final de cada tema y habrán de entregarse a través del <u>Aula Virtual</u>.

Este tipo de prueba consistirá en alguna de los siguientes tipos de preguntas:

- Preguntas cortas
- Resolución de problemas



#### b) Enseñanzas prácticas y de desarrollo (30% del global)

La asistencia a las sesiones de EPD es obligatoria, a menos que la ausencia esté convenientemente justificada. La evaluación del aprovechamiento de estas sesiones será a través de actividades que se publicarán en el <u>Aula Virtual</u> de la asignatura.

Los cuestionarios contendrán preguntas de cualquiera de los siguientes tipos:

- Preguntas cortas
- Preguntas de desarrollo
- Preguntas de cálculo
- Relación de conceptos
- Combinaciones
- Rellenar espacios en blanco
- Respuestas desordenadas
- Elección múltiple
- Verdadero/Falso
- Resolución de problemas

Las evaluaciones no serán compensatorias y será necesario tener las dos (EB y EPD) aprobadas con un mínimo de 5 cada una para poder obtener la suma ponderada de las calificaciones (70%+30%). No alcanzar este mínimo supondrá la necesidad de realizar la prueba de recuperación.

Si el estudiante no siguió el proceso de evaluación continua, o no superó las pruebas de evaluación incluidas en el mismo, en la prueba de evaluación correspondiente a la convocatoria de recuperación de curso se le evaluará del total de los conocimientos y competencias que figuran en la guía docente, a efectos de optar al 100% de la calificación total de la asignatura.



# 8. BIBLIOGRAFÍA GENERAL

| TITULO                                | AUTOR                        | EDITORIAL                        | AÑO  |
|---------------------------------------|------------------------------|----------------------------------|------|
| Molecular Biology of the Cell (6ª Ed) | Bruce Alberts <i>et al</i> . | Garland Science                  | 2015 |
| Molecular Biology of the Cell (5ª Ed) | Bruce Alberts <i>et al</i> . | Garland Science                  | 2008 |
| Biología Celular<br>( 4ºEd)           |                              | Editorial Médica<br>Panamericana | 2014 |