

Curso 2011-2012

1. DESCRIPCIÓN DE LA ASIGNATURA

Grado:	Ciencias Ambientales
Doble Grado:	
Asignatura:	Matemáticas
Módulo:	Materias básicas
Departamento:	Economía, Métodos Cuantitativos e Historia Económi
Año académico:	2011/2012
Semestre:	Primer semestre
Créditos totales:	6
Curso:	1°
Carácter:	Obligatoria
Lengua de impartición:	Español

Modelo de docencia: C1	
a. Enseñanzas Básicas (El	: 50%
b. Enseñanzas de Práctica	y Desarrollo (EPD): 50%
c. Actividades Dirigidas (D):

Curso 2011-2012

2. EQUIPO DOCENTE

2.1. Responsable de la asignatura Pablo Sebastián Alegre Rueda	

2.2. Profesores	
Nombre:	Pablo Sebastián Alegre Rueda
Centro:	Universidad Pablo de Olavide
Departamento:	Economía, métodos cuántitativos e historia económica
Área:	Estadística
Categoría:	Profesor asociado, doctor
Horario de tutorías:	miércoles de 12:00 a 13:00, 14:00 a 15:00 y 17:00 a 18:00
	y jueves 14:00 a 15:00 y 17:00 a 18:00, previa cita
Número de despacho:	14.1.22
E-mail:	psalerue@upo.es
Teléfono:	954977612

Curso 2011-2012

Nombre:	
Centro:	
Departamento:	
Área:	
Categoría:	
Horario de tutorías:	
Número de despacho:	
E-mail:	
Teléfono:	
Nombre:	
Centro:	
Departamento:	
Área:	
Categoría:	
Horario de tutorías:	
Número de despacho:	
E-mail:	
Teléfono:	

Curso 2011-2012

Nombre:	
Centro:	
Departamento:	
Área:	
Categoría:	
Horario de tutorías:	
Número de despacho:	
E-mail:	
Teléfono:	

Curso 2011-2012

3. UBICACIÓN EN EL PLAN FORMATIVO

3.1. Descripción de los objetivos

- 1. Dominio de cálculos numéricos básicos y análisis de errores.
- 2. Saber aplicar límites, derivadas e integrales sencillas en supuestos prácticos experimentales.
- 3. Capacidad para formular y resolver ecuaciones algebraicas y sistemas de ecuaciones lineales.
- 4. Capacidad para afrontar problemas de cálculo diferencial e integral.
- 5. Manejo básico de programas informáticos de aplicación matemática.

3.2. Aportaciones al plan formativo

En el módulo de Materias Básicas el alumno adquiere las bases matemáticas, físicas, químicas, biológicas y geológicas necesarias para abordar conceptos posteriores de contenido medioambiental.

Las Matemáticas irán enfocadas a manejar aquellas herramientas de especial utilidad para los estudiantes, como las que le pueden llevar a desarrollar modelos matemáticos de aplicación en el ámbito medioambiental. Para ello es necesario unos rudimentos de álgebra y cálculo, que les posibiliten también para entender la base matemática de materias de Física, Química, Biología y Geología. Por ello esta asignatura se ubica en el primer cuatrimestre del primer curso.

3.3. Recomendaciones o conocimientos previos requeridos

Ninguno aparte de los previstos para el acceso a los estudios de Graduado en Ciencias Ambientales.

Es recomendable que los alumnos que pretendan iniciar sus estudios en el grado de Ciencias Ambientales tengan una sólida formación en materias básicas como Biología, Geología, Química, Matemáticas o Física.

Curso 2011-2012

4. COMPETENCIAS

4.1 Competencias de la Titulación que se desarrollan en la asignatura

- 3.1. COMPETENCIAS TRANSVERSALES/GENÉRICAS:
- 1. Capacidad de análisis y síntesis
- 2. Comunicación oral y escrita
- 3. Resolución de problemas y toma de decisiones
- 6. Razonamiento crítico
- 8. Aprendizaje autónomo
- 9. Creatividad
- 10. Motivación por la calidad
- 12. Capacidad para aplicar conocimientos teóricos a casos prácticos
- 13. Capacidad de comunicarse con especialistas y con personas no expertas en la materia

4.2. Competencias del Módulo que se desarrollan en la asignatura

Dentro de las competencias específicas profesionales del Grado en Ciencias Ambientales aparece:

- 1. Dominar los principales conceptos del cálculo, el álgebra lineal y la geometría.
- 2. Saber expresar de manera adecuada y resolver problemas sencillos relacionados con ecuaciones diferenciales y métodos numéricos.
- 3. Conocer el manejo de programas matemáticos.
- 4. Poseer los recursos y técnicas propias del razonamiento lógico

4.3. Competencias particulares de la asignatura

Podemos especificarlas del siguiente modo:

Cognitivas (Saber):

- 1. Dominar los principales conceptos del álgebra lineal y la geometría.
- 2. Dominar los principales conceptos del cálculo.

Procedimentales/Instrumentales (Saber hacer):

- 3. Saber resolver sistemas de ecuaciones lineales, problemas con matrices y relacionados con espacios vectoriales.
- 4. Saber resolver problemas relacionados con el cálculo: límites, derivación, optimización y cálculo integral.
- 5. Saber expresar de manera adecuada y resolver problemas sencillos relacionados con ecuaciones diferenciales y métodos numéricos.
- 6. Conocer el manejo de programas informáticos.

Curso 2011-2012

- Actitudinales (Ser):
 7. Apreciar la utilidad de las Matemáticas para la resolución de problemas relacionados con las distintas ciencias.
- Poseer los recursos y técnicas propias del razonamiento lógico

Curso 2011-2012

5. CONTENIDOS DE LA ASIGNATURA (TEMARIO)

TEMA 1: Matrices. (Competencias 1, 3, 6, 7 y 8)

- 1. Matrices de números reales. Tipo de matrices.
- 2. Operaciones con matrices. Propiedades.
- 3. Forma reducida de una matriz. Rango de una matriz.
- 4. Determinantes. Propiedades.
- 5. Inversa de una matriz.

TEMA 2: Ecuaciones y sistemas lineales. (Competencias 1, 3, 6, 7 y 8)

- 1. Ecuaciones y sistemas lineales.
- 2. Planteamientos.
- 3. Compatibilidad de sistemas de ecuaciones lineales. Teorema de Rouché-Frobenius.
- 4. Resolución.
- 5. Interpretación geométrica de la soluciones.

TEMA 3: Espacios Vectoriales. (Competencias 1, 3, 6, 7 y 8)

- 1. Vectores. Operaciones y propiedades. El espacio vectorial Rn.
- 2. Dependencia lineal. Propiedades. Bases.
- 3. Subespacios vectoriales.
- 4. Producto escalar. Módulo de un vector.
- 5. Cambios de base.
- 6. Espacio afín. El espacio afín Rn. Distancia.
- 7. Conceptos esenciales en Geometría Analítica Euclídea.
- 8. Homomorfismos entre espacios vectoriales. Funciones de una o varias variables.
- 9. Expresión matricial.

TEMA 4: Continuidad de funciones reales de variable real. (Competencias 2, 4, 6, 7 y 8)

- 1. Algunos conceptos topológicos.
- 2. Definición de límite
- 3. Límites de funciones.
- 4. Límites infinitos y límites en el infinito.
- 5. Propiedades de los límites.
- 6. Continuidad. Funciones continuas en diferentes conjuntos.
- 7. Propiedades de las funciones reales continuas. Discontinuidades de funciones reales. Continuidad uniforme.

Curso 2011-2012

8. Funciones continuas en la Naturaleza.

TEMA 5: Diferenciabilidad de funciones reales de variable real. (Competencias 2, 4, 6, 7 y 8)

- 1. Concepto de derivada.
- 2. Derivadas de orden superior.
- 3. Desarrollos de Taylor.
- 4. Aplicaciones biológicas de la derivación.

TEMA 6: Optimización clásica. (Competencias 2, 4, 6, 7 y 8)

- 1. Motivación biocientífica de su estudio.
- 2. Variación de funciones. Crecimiento y decrecimiento.
- 3. Concepto de óptimo.
- 4. Optimización sin restricciones. Optimización local y global. Condición necesaria de óptimo. Condición suficiente de máximo y mínimo.

TEMA 7: Cálculo integral. (Competencias 2, 4, 6, 7 y 8)

- 1. Integral de Riemann: concepto y propiedades. Generalizaciones.
- 2. La integral indefinida. Regla de Barrow. Métodos generales de integración.
- 3. Aplicaciones geométricas del concepto de integral.
- 4. Aplicaciones de la integración.

TEMA 8: Ecuaciones diferenciales. (Competencias 5, 6, 7 y 8)

- 1. Ecuaciones diferenciales. Definiciones. Origen de las ecuaciones diferenciales. Expresión analítica de leyes naturales.
- 2. Ecuaciones de primer orden. Soluciones. Tipo de soluciones. Integral general.
- 3. Interpretación geométrica. Método de las isoclinas.
- 4. Ecuaciones resueltas o no respecto a la derivada. Algunos métodos de resolución. Ecuaciones de variables separadas. Ecuaciones de variables separables. Ecuaciones lineales. Ecuaciones exactas. Otros tipos.
- 5. Aplicaciones bioquímicas.

TEMA 9: Métodos numéricos. (Competencias 5, 6, 7 y 8)

- 1. Objetivos del Análisis Numérico. Algoritmos y métodos numéricos.
- 2. Teoría de errores. Problemas directos del cálculo con números aproximados.
- 3. Métodos numéricos en Álgebra lineal. Métodos numéricos para la resolución de ecuaciones lineales o no lineales. Idem para sistemas.
- 4. Métodos numéricos en Cálculo. Métodos numéricos para la resolución de ecuaciones diferenciales. Método de Euler. Modelo de los cazadores y las presas.

Curso 2011-2012

TEMA 10: Aplicaciones informáticas. (Competencias 6, 7 y 8)

- 1. Utilidad de los ordenadores en la Matemática Superior.
- 2. Diversas herramientas de cálculo y programación.
- 3. Prácticas con un programa de computación simbólica.

6. METODOLOGÍA Y RECURSOS

En las clases de teoría se expondrán los contenidos teóricos de la asignatura con los convenientes ejemplos para entender esos conceptos.

En las clases prácticas y de desarrollo, el grupo se divide en tres subgrupos de unos 20 alumnos, se realizarán problemas de cada tema. También se llevarán a cabo las prácticas de informática y las actividades de evaluación.

El tema 10, Aplicaciones informáticas, se va a ir tratando a la vez que el resto de los temas, viendo en cada una cómo puede tratarse con la herramienta informática que estemos manejando.

Curso 2011-2012

7. EVALUACIÓN

TÉCNICAS DE EVALUACIÓN.

- 1. Las actividades formativas de presentación de competencias técnicas y estudio individual serán evaluadas con pruebas escritas a lo largo del semestre.
- 2. Se valorarán los informes de desarrollo de las prácticas para comprobar la adquisición de competencias desarrolladas si procede.
- 3. La evaluación será continua y contemplará las propuestas y mecanismos de recuperación de los conocimientos y competencias. Todo ello dentro del período que comprende la materia.
- 4. Las actividades prácticas realizadas en la materia estarán sustentadas por el uso de programas informáticos apropiados

Hay dos convocatorias: febrero y julio, en las que se realizará un examen sobre los contenidos teóricos, problemas y aplicaciones informáticas tratados en clase (la nota se repartirá 2, 6 y 2 respectivamente) La parte teórica constará de preguntas teóricas, cuestiones o preguntas tipo test.

Además, se controlará la asistencia a las Enseñanzas Prácticas y de Desarrollo, valorándose con 0'5 puntos la asitencia a más de un 80% de las mismas. Finalmente, se realizarán tres exámenes parciales (el 1º sobre los temas 1, 2 y 3, el 2º sobre los temas 4, 5 y 6 y el 3º sobre los temas 7, 8 y 9) Estos exámenes pueden subir hasta 1 punto en la nota final.

Ambas puntuaciones que se suman a la nota final son sólo válidas para el examen de febrero, no así para los exámenes del resto de convocatorias (julio)

Criterios de evaluación y calificación: (referidos a las competencias trabajadas durante el curso)

- 1.- Dominio de cálculos numéricos básicos y análisis de errores.
- 2.- Capacidad para formular y resolver ecuaciones algebraicas y sistemas de ecuaciones lineales.
- 3.- Capacidad de operar con matrices.
- 4.- Conocer los conceptos básicos de los espacios vectoriales.
- 5.- Saber calcular límites, derivadas e integrales sencillas.
- 6.- Saber aplicar el cálculo de derivadas a problemas de optimización en supuestos prácticos experimentales.
- 7.- Capacidad para afrontar problemas de cálculo diferencial e integral.

Curso 2011-2012

8. Manejo básico de programas informáticos de aplicación

Nota: Título II. Capítulo II. Artículo 14.2 y 14.3 de la Normativa de Régimen Académico y de Evaluación del Alumnado (aprobada en Consejo de Gobierno de la UPO el 18 de julio de 2006): "En la realización de trabajos, el plagio y la utilización de material no original, incluido aquél obtenido a través de Internet, sin indicación expresa de su procedencia y, si es el caso, permiso de su autor, podrá ser considerada causa de calificación de suspenso de la asignatura, sin perjuicio de que pueda derivar en sanción académica.

Corresponderá a la Dirección del Departamento responsable de la asignatura, oídos el profesorado responsable de la misma, los estudiantes afectados y cualquier otra instancia académica requerida por la Dirección del Departamento, decidir sobre la posibilidad de solicitar la apertura del correspondiente expediente sancionador".

8. BIBLIOGRAFÍA GENERAL

8.1 GENERAL:

8.2 ESPECÍFICA: (con remisiones concretas en lo posible)

APOSTOL, T.M. Análisis Matemático. Ed. Reverté, 1960

FEDRIANI, E.M y CONTRERAS, I. Matemáticas para las Ciencias Ambientales: Análisis Matemático. Ed. Aconcagua, 2001.

FEDRIANI, E.M y CONTRERAS, I. Matemáticas para las Ciencias Ambientales: Álgebra lineal y Geometría. Ed. Aconcagua, 2001.

KOLMAN, B y HILL, D.R.; Álgebra lineal. Ed. Pearson. Prentice Hall.

"Algebra lineal", Bernard Kolman, David R. Hill. Ed. Pearson. Prentice Hall.

TOMEO PERUCHA, V.; UÑA JUAREZ, I. y SAN MARTIN MORENO, J. Problemas resueltos de Cálculo en una variable. Ed. Thomson.

TOMEO PERUCHA, V.; UÑA JUAREZ, I. y SAN MARTIN MORENO, J. Problemas resueltos de Cálculo en varias variables. Ed. Thomson.