

1. DESCRIPCIÓN DE LA ASIGNATURA

Grado:	Nutrición Humana y Dietética
Doble Grado:	
Asignatura:	Quimica Aplicada
Módulo:	Ciencias Básicas
Departamento:	Sistemas Físicos, Químicos y Naturales
Año académico:	2016/17
Semestre:	Primer semestre
Créditos totales:	6
Curso:	1°
Carácter:	Básica
Lengua de impartición:	Español

Modelo de docencia: B1	
a. Enseñanzas Básicas (EB):	60%
b. Enseñanzas de Prácticas y Desarrollo (EPD):	40%
c. Actividades Dirigidas (AD):	

2. RESPONSABLE DE LA ASIGNATURA

Responsable de la asignatura		
Nombre:	Alejandro Cuetos Menéndez	
Centro:	Facultad de Ciencias Experimentales	
Departamento:	Sistemas Físicos Químicos y Naturales	
Área:	Química Física	
Categoría:	Profesor Titular de Universidad	
Horario de tutorías:	L, M, M y X 10:00-13:00 (Cita por email via	
	campusvirtual)	
Número de	E22.3.15	
despacho:		
E-mail:	acuemen@upo.es (contactar preferentemente por	
	campusvirtual)	
Teléfono:	954-978 182	

3. UBICACIÓN EN EL PLAN

3.1. Descripción de los objetivos

El principal objetivo de esta asignatura es dotar al alumno de los conocimientos en química necesarios para el ejercicio de su profesión, y que sea capaz de aplicar estos conocimientos a la resolución de problemas prácticos. Para alcanzar este objetivo se trabajarán competencias específicas tales como "Fundamentos químicos en ciencias de alimentos y nutrición" y "Propiedades físico-químicas de los alimentos", así como las competencias generales afines al bloque de conocimiento CIENCIAS BÁSICAS, concretamente "Capacidad de análisis y síntesis" y "Resolución de problemas". Estas competencias generales son muy importantes en el contexto de una asignatura de ciencias, en la que se persigue que el alumno no se limite a "estudiar de memoria" una serie de conceptos, sino que los asimile e interiorice, desarrollando la habilidad de resolver problemas prácticos derivados de esos conceptos.

Por otra parte, y puesto que la Química Aplicada es una asignatura con una importante componente experimental (2 créditos en prácticas de laboratorio), es también un objetivo de la asignatura que el alumno desarrolle una serie de capacidades experimentales acordes a la disciplina impartida (técnicas químicas de laboratorio, normas de seguridad en el uso de reactivos químicos, elaboración de un cuaderno de laboratorio, etc.). En las sesiones prácticas el alumno también ejercitará habilidades tales como compartir y cuidar el instrumental de trabajo, y desarrollará la competencia de "trabajo en equipo", de gran interés en el posterior ejercicio de su profesión.

Finalmente, es también importante que el alumno aprenda a lo largo del curso a utilizar la bibliografía específica del campo en el que se enmarca la signatura (libros especializados, revistas científicas, etc.) y que desarrolle una visión crítica frente a las diversas fuentes de información. La utilización por parte del alumno de la bibliografía recomendada por el profesor, le ayudará a trabajar otra competencia muy relacionada con el bloque de Ciencias Básicas, el "Aprendizaje autónomo".

3.2. Aportaciones al plan formativo

La asignatura de Química Aplicada pertenece al bloque de conocimiento

CIENCIAS BÁSICAS. Este bloque conformará los fundamentos para la mejor comprensión del resto de las materias, específicas del campo alimentario. Además, estos conocimientos básicos permitirán homogeneizar el nivel de conocimientos de los alumnos –procedentes de la Enseñanza Secundaria- de cara a la continuación con materias específicas del campo alimentario.

Concretamente, los conocimientos de Química que el estudiante adquiere en esta asignatura serán fundamentales en el estudio y comprensión de las siguientes asignaturas de la diplomatura: Bioquímica, Bromatología y Tecnología de los Alimentos, Farmacología Alimentaria, Técnicas de Suplementación Alimentaria y Técnicas de Restricción Calórica.

3.3. Recomendaciones o conocimientos previos requeridos

No hay prerequisitos. No obstante, conocimientos de química de bachillerato son muy recomendables. Parte de la bibliografía podrá estar en ingles. Por tanto un nivel aceptable en esta lengua será también recomendable

4. COMPETENCIAS

4.1 Competencias de la Titulación que se desarrollan en la asignatura

Competencias Generales

- CG1. Posesión y comprensión de conocimientos de su área de estudio, desde niveles básicos hasta niveles avanzados, que estén en la vanguardia del conocimiento.
- CG2. Capacidad para aplicar los conocimientos a su área de trabajo, pudiendo elaborar y defender argumentos, así como, resolver problemas.
- CG3. Capacidad para reunir e interpretar datos importantes que le permitan realizar juicios derivados de una reflexión sobre temas relevantes de índole social, ética o científica.
- CG4. Capacidad para transmitir información, ideas, problemas y soluciones a un público avanzado y experto.
- CG5. Desarrollo de las habilidades de aprendizaje suficientes para poder llevar a cabo estudios posteriores con un alto grado de autonomía.
- CG6. Capacidad de análisis y síntesis.
- CG7. Habilidades de gestión de la información y expresión del conocimiento (habilidad para buscar y analizar información proveniente de diversas fuentes).
- CG8. Saber exponer en forma escrita y oral.
- CG9. Planificación y gestión del tiempo.
- CG10. Habilidades de investigación.
- CG11. Capacidad crítica.
- CG12. Trabajo en equipo.
- CG13. Habilidades básicas en el manejo de ordenadores.
- CG14. Capacidad de aprender, renovar y actualizar constantemente los conocimientos adquiridos.

Competencias Específicas Disciplinares en Ciencias básicas.

Al finalizar los estudios el poseedor del título de grado en Nutrición Humana y Dietética será capaz de demostrar conocimiento y comprensión en:

CE1. Fundamentos de química inorgánica y orgánica...

CE5. Bioquímica, destacando aquellos compuestos químicos y procesos metabólicos estrechamente relacionados con la alimentación, la nutrición y la salud.

4.2. Competencias particulares de la asignatura

A lo largo del curso se trabajarán las siguientes competencias:

Competencias Transversales

- T1. Conocimientos generales básicos sobre el área de estudio
- T2. Capacidad de análisis y síntesis
- T3. Resolución de problemas
- T4. Habilidades de gestión de la información y expresión del conocimiento
- T5. Trabajo en grupo
- T6. Planificación y gestión del tiempo

Competencias Específicas

- E1. Expresarse correctamente con términos químicos
- E2. Conocer los principios básicos de la termodinámica y la cinética, y su aplicación en el ámbito de la nutrición
- E3. Conocer los fundamentos de las reacciones de transferencia protónica y electrónica, y su aplicación en el ámbito de la nutrición
- E4. Formular correctamente e identificar los grupos funcionales de compuestos orgánicos
- E5. Predecir las propiedades químicas y la reactividad de compuestos químicos relevantes en nutrición en base a sus propiedades estructurales
- E6. Aplicar los conceptos de estereoquímica y quiralidad a moléculas simples
- E7. Trabajar de forma adecuada en un laboratorio químico, incluyendo seguridad, manipulación y eliminación de residuos químicos y registro anotado de actividades

Las competencias T1,T2, T4, T6 y E1-E6 se trabajarán a lo largo de todo el curso en las sesiones presenciales. La competencia T3 se trabajará con la ayuda de las Hojas de Problemas facilitadas por el profesor. Las competencias T5 y E7 se trabajarán en las sesiones de Prácticas de Laboratorio. Las competencias T2, T4, T5, E1 y E5 se trabajaran en la actividad que tendrán que realizar los alumnos.

5. CONTENIDOS DE LA ASIGNATURA (TEMARIO)

Bloque 1.- Principios de Química y Estructura de la Materia

Tema 1: Introducción y conceptos fundamentales

Principios generales de Química. La materia, su composición y propiedades. Las reacciones químicas. Unidades y medidas en Química. Importancia de la Química en la Nutrición.

Tema 2: Estructura atómica y clasificación periódica de los elementos

Átomos e iones. Reacciones Nucleares. Tipos de radiación. Alimentos irradiados. Clasificación periódica y estructura atómica. Propiedades periódicas. Nutrientes inorgánicos.

Tema 3: Enlace químico y estados de agregación de la materia

Enlace iónico. Enlace covalente. Enlace metálico. Fuerzas intermoleculares. Estados de agregación de la materia.

Bloque 2 .- Termodinámica y Cinética

Tema 4: Termodinámica Química y Equilibrio

Termoquímica. La entalpía del cambio químico. Entropía. Energía libre y procesos espontáneos. Constante de equilibrio. Factores que afectan el equilibrio químico.

Tema 5: Cinética Ouímica

Velocidad de las reacciones químicas. Órdenes de reacción, constante de velocidad y sus unidades. Energía de activación. Factores que influyen en la velocidad de reacción. Catálisis. Conservación de los alimentos.

Bloque 3.- Reacciones

Tema 6: El Agua. Disoluciones y Equilibrios de Solubilidad

El agua. Tipos de disoluciones. Disoluciones ideales. Presión de vapor. Ley de Raoult. Ley de Henry. Destilación. Medidas de concentración. Saturación y solubilidad. Factores que afectan la solubilidad. Propiedades coligativas de las disoluciones. Estados dispersos. Nutrición y coloides.

Tema 7: Equilibrios ácido-base

Concepto de pH. Valoraciones ácido-base. Disoluciones amortiguadoras.

Tema 8: Reacciones de oxidación-reducción. Número de oxidación: Oxidantes y reductores. Antioxidantes.

Bloque 4.- Química Orgánica

Tema 9. Química Orgánica: Alcanos, alquenos y aromáticos. Isomería. Propiedades y reactividad. Nutrientes orgánicos.

Tema 10. Química Orgánica: Halogenados, alcoholes, aldehídos y cetonas

Propiedades y reactividad. Nutrientes orgánicos.

Tema 11. Química Orgánica: ácidos carboxílicos y sus derivados

Propiedades y reactividad. Nutrientes orgánicos.

Tema 12. Química Orgánica: aminas y heterocíclos

Propiedades y reactividad. Nutrientes orgánicos.

Prácticas:

Práctica 1 : Identificación y manejo de material de laboratorio: Preparación de disoluciones y medida de densidades.

Práctica 2 : Determinación espectrofotométrica de hierro total en vinos.

Práctica 3: Calorimetría

Práctica 4 : Determinación de la acidez de un vinagre comercial.

6. METODOLOGÍA Y RECURSOS

Dado el carácter práctico/experimental de la asignatura, cada tema irá acompañado de una serie de ejercicios prácticos y problemas que permitirán al alumno evaluar su nivel de comprensión y asimilación de los conceptos estudiados en el tema, así como ejercitarse en el uso de dichos conceptos. Además, muchos temas se acompañarán de una práctica de laboratorio con la que se afianzarán los conceptos más importantes que se hayan introducido.

El temario se impartirá en sesiones presenciales en aula, con la ayuda de presentaciones y Hojas de Problemas, que se facilitarán a los alumnos a través de la plataforma Campus Virtual.

En el CampusVirtual de la asignatura el alumno contará también con material adicional de apoyo para preparar la asignatura (enlaces de interés, libros virtuales, artículos, etc).

En las sesiones Prácticas impartidas en el laboratorio se proporcionará al alumno un Guión con la metodología y procedimientos a seguir.

Sesiones EB

En las 27 sesiones EB que consta el curso el profesor presentará los conceptos teóricos y realizará ejercicios para afianzar su conocimiento.

Prácticas de Laboratorio

Se realizarán 4 prácticas de laboratorio. Para su realización el alumno tendrá que

llevar al laboratorio el guión de la práctica impreso y leído, cuaderno de laboratorio y bata.

IMPORTANTE: No se permite realizar las prácticas sin bata. Antes de realización de la primera práctica cada alumno tendrá que entregar un papel firmado donde asegura haber leído y entendido las normas de seguridad del laboratorio de Química-Física.

La realización de las prácticas es obligatoria para aprobar la asignatura, permitiéndose solo una falta debidamente justificada. Según lo recogido en el artículo 8.2.d de la Normativa de Evaluación de los Estudiantes de Grado de la UPO la asistencia a las prácticas de laboratorio queda excluida de la evaluación por prueba única. Para los alumnos que hayan realizado las prácticas de laboratorio en cursos anteriores la asistencia a las prácticas será voluntaria.

Las prácticas de laboratorio se evaluarán mediante un examen el día de la convocatoria oficial. A dicho examen el alumno podrá llevar todo el material manuscrito que desee. La única excepción serán gráficas, que podrán ser impresas.

Seminarios de Problema

Se realizarán 3 seminarios de problemas a lo largo del curso. El mecanismo será el siguiente. Con suficiente antelación se entregarán al alumno la relación de problemas y preguntas sobre la que se trabajará en la sesión presencial del seminario de problemas. En esta sesión presencial, de dos horas de duración el profesorado discutirá con los alumnos las dudas que hayan surgido de esa relación de problemas. El trabajo previo del alumno sobre los problemas propuestos es fundamental para el mejor aprovechamiento de esta sesión presencial. La profesora encargada resolverá de forma completa alguno de ellos que se consideren más representativos.

A la semana siguiente de la sesión presencial, habrá una prueba de evaluación donde cada alumno deberá responder un problema similar a los de la relación de problemas propuestos para el seminario.

Trabajo en grupo.

Los alumnos serán organizados en grupos de 4. Tendrán que realizar un trabajo sobre una temática propuesta por los profesores de la asignatura. Los frutos de este trabajo será un póster que se presentará en una sesión a final de curso. También será posible la realización de un artículo para su publicación en la revista MoleQla. El grupo de trabajo deberá presentar un avance del trabajo realizado a lo largo del mes de diciembre en una tutoría concertada con los profesores de la asignatura. Este avance consistirá en comentar el tema elegido y el enfoque que se va a dar.

Para conocer la revista, el tipo de artículos que su publican y su formato

http://www.upo.es/moleqla/

7. EVALUACIÓN

Evaluación

Los elementos de evaluación serán:

Examen EB, examen sobre las prácticas de laboratorio (examen EPD), seminarios de problemas y trabajo en grupo. Los pesos en la nota media serán los siguientes:

Examen EB 40%

Examen EPD 30%

Trabajo en grupos/sesión póster – Artículo. 10%

Seminarios Problemas 20%

Artículo considerado aceptable para la revista MoleQla: hasta un pto adicional sobre la nota media.

La nota final se asignará según la siguiente rúbrica, teniendo en cuenta que la no asistencia a las prácticas de laboratoria implica el suspenso de la asignatura. (Ver apartado **Prácticas de Laboratorio** en esta Guía Docente.

Aprobado

- Nota media mayor que 5
- Nota EB mayor que 4
- Nota examen prácticas mayor que 4.

Notable

- Nota media mayor que 7.
- Nota EB mayor que 6.
- Nota examen prácticas mayor que 5.

Sobresaliente

- Nota media mayor que 9
- Nota EB mayor que 7
- Nota examen prácticas mayor que 5.

En caso de que se cumplan las condiciones anteriores, la nota final será la nota media. En caso contrario, la nota final será:

Examen de prácticas menor que 4. Nota final: SUSPENSO 4

Nota examen EB menor que 4. Nota final:SUSPENSO 4

Nota examen prácticas entre 4 y 5, examen EB mayor que 4, nota media mayor que 7. Nota final, APROBADO 6.5.

Si la nota de prácticas es mayor que 5:

Nota examen EB mayor que 4 y menor que 6, con nota media mayor que 7. Nota final, APROBADO 6.5

Nota examen EB mayor que 5 y menor que 7, con nota media mayor que 9. Nota final, NOTABLE 7.5

Las distintas notas obtenidas a lo largo del curso se guardarán hasta la convocatoria de recuperación de curso. En la convocatoria de recuperación de curso se realizará el examen sobre las EB y/o sobre las prácticas de laboratorio (examen EPD) en caso de que alguno de ellos no se hubieran aprobado en la convocatoria de febrero. El examen EB y EPD de 2ª convocatoria de recuperación de curso tendrá la misma validez que el de la convocatoria de curso. La nota de recuperación de curso considerará pues las notas previamente obtenidas por el estudiante en los elementos de evaluación continua tal y como ha sido detallado anteriormente.

Si el alumno tuviera mas de un 4 el examen EB y/o examen EPD en la convocatoria de curso podrá pedir ser evaluado de nuevo para subir estas notas en la convocatoria de recuperación de curso, renunciando a las calificaciones obtenidas. Esta renuncia deberá ser realizada por escrito antes del plazo de cierre de actas de la convocatoria de curso.

Si un alumno no ha superado los requisitos para aprobar la asignatura en la convocatoria de curso y quiere renunciar a las notas de evaluación continua para la convocatoria de recuperación de curso, podrá hacerlo solicitandolo previamente por escrito. Al este alumno se le exáminara mediante una prueba única que evaluara los conocimientos y competencias trabajadas tanto en sesiones EB como sesiones EPD. En este caso, para aprobar la asignatura será necesario obtener una puntuación mínima de 5 sobre 10

puntos. La nota obtenida constituirá el 100% de la evaluación.

Para alumnos que no hayan seguido la evaluación continua se les aplicará lo recogido en el artículo 8-2-b para la convocatoria de recuperación de curso. Según lo recogido en el artículo 8-2-d, la asistencia a las prácticas de laboratorio será obligatoria para aprobar la asignatura.

8. BIBLIOGRAFÍA GENERAL

Manuales:

- P.Atkins y L. Jones, "Principios de Química. Los Caminos del Descubrimiento". Tercera edición. Editorial Médica Panamericana (2006). ISBN: 950-06-0080-3.
- R.H. Petrucci y W.S. Harwood, "Química General. Principios y Aplicaciones Modernas". Octava edición. Prentice Hall (2003). ISBN: 84-205-3533-8.
- R. Chang, "Química", 7^a.ed., McGraw-Hill, 2002.

Textos complementarios (monografías):

- S. Badui Dergal, "Química de los alimentos". Cuarta edición. Prentice Hall (2006). ISBN: 970-26-0670-5.
- J.R. Holum, "Fundamentos de Química General, Orgánica y Bioquímica".
 Primera edición. Editorial Limusa Wiley (1999). ISBN: 968-18-4637-0.
- O. R. Fennema, "Química de los Alimentos". Segunda edición. Ed. Acribia S.A. ISBN: 84-200-0914-8
- E. Lück, "Conservación química de los alimentos". Ed. Acribia S.A. Segunda edición, 2000. ISBN: 84-200-0898-2
- H. Hart, D.J. Hart, L.E. Craine, C.M. Hadad, "Química Orgánica", 12a edición, McGraw Hill, 2007