Mario GIAMPIETRO

ICREA Research Professor

Institute of Environmental Science and Technology • UAB Research Group on Integrated Assessment

Sustainable Development Indicators: Dealing with complexity in governance

INTERNATIONAL CONFERENCE ON DATA, INFORMATION AND KNOWLEDGE FOR WATER GOVERNANCE IN THE NETWORKED SOCIETY

9-11th June 2014, University of Seville, Seville 1. Make it simple but not simpler . . .

2. Key data and information requirement: the predicament of complexity for quantitative analysis

3. Participatory Integrated Assessment: the unavoidable entanglement between "normative" and "descriptive"

4. Quality assurance on the production and use of quantitative analysis used as input for governance: challenges

Key data and information requirement

Media, politicians, and the general public like scientists that "keep it simple"

BUT . . .

"Make everything as simple as possible, but not simpler"

The amount of controls and commands needed by a pilot

Would you fly on this airplane?

This is where the concept of "HOLON" enters into play . . .

Sustainability indicators have to check "sustainability" in relation to three issues:

- (i) **FEASIBILITY** compatibility with external constraints
- (ii) VIABILITY compatibility with internal constraints
 (iii) DESIRABILITY compatibility with normative values

Quantitative information useful to deal with one of these issues is not reducible to quantitative information useful for dealing with the others, so we have to learn how to hande multiple scales and multiple dimensions

SUPPLY OF NEEDED INFLOWS AVAILABLE "BY DEFAULT"

characteristics and proper

interaction of the parts

VIABILITY

"the view from inside"

COMPATIBILITY WITH INTERNAL CONSTRAINTS

PROCESSES UNDER HUMAN CONTROL

NEEDED SINK CAPACITY FOR OUTFLOWS AVAILABLE "BY DEFAULT" Values, Taboos, Cultural Identity Path Dependence (history matters . . .)

DESIRABILITY

"whose view counts?"

COMPATIBILITY WITH SOCIAL INSTITUTIONS

PROCESSES UNDER HUMAN CONTROL

Lessons learned from the FAO-GIZ project *the nexus between food, energy, water and land use* http://nexus-assessment.info/

The epistemological predicament faced when accounting food flows

Nutrients supply by agriculture or imports

What if we want to implement this food grammar to check the requirement of land and water availability?

Then we have to use categories of accounting relevant for the "external view"

Lessons learned from the FAO-GIZ project *the nexus between food, energy, water and land use* http://nexus-assessment.info/

The epistemological predicament faced when accounting energy flows

Spain 2004

Data are in PJ

Lessons learned from the FAO-GIZ project *the nexus between food, energy, water and land use* http://nexus-assessment.info/

The epistemological predicament faced when accounting water flows

Indicator/ Extract EXT EXT EXT USI WATER CYCLE Water Appropriation Indicator/ Extract EXT EXT EXT USI Whele (n) 1706 EFE 422 710 100	USF
Whole (n) 1706 EEE 422 710 100	Total
	1,599
Surface HH (n-1) 98 74 24 0 14	84
Water Inflow Water HH-Urban (n-2) 41 31 10 0	35
1000 Ground HH-Rural 57 43 14 0 (49
PW (n-1) 1,608 481 408 718 94	1,515
PW-SG (n-2) 17 13 4 0 2	15
PW-TR (n-2) 1.72 1.30 0.42 0	1
Precipitation PW-BM (n-2) 27 20 7 0 4	23
910 Soil Water PW-EM (n-2) 262 255 7 0 4	258
PW-AG (n-2) 1,300 192 390 718 84	1,218
Non Appropriated Water 2500 Ecosystems Indicator/Compart ment (Supply TOTAL Surface Ground Total	Extraction as (%) WRR
system) Inflow Inflow	
Semantic CategoriesTerritorial System Covered (n+1)1,4922,0557782,8	34 53
Mare Aux Vacoas- Upper (n+1) 252 344 130 44	74 53
Water appropriation (nins) Gross Water Use (hm3) Mare Aux Vacoas- Lower (n+1) 193 88 34 11	22 158
Direct use of is BluePort-Louis (n+1)2915622137	75 38
each compartment Green North (n+1) 291 259 98 3	58 81
South (n+1) 247 383 145 5 Fast (n+1) 220 151 175 175	28 47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 36
	50 19

MuSIASEM as a simulator tool: scenario 2 in Mauritius

Transition from a cropping pattern based on sugar cane to another cropping pattern

Facing internal constraints: new crop mix is incompatible with the profile of HA

	DEMAND	FOOD (PJ-NFS)	ENERGY (PJ-GER)	WATER (hm3-GWR)	VALUE ADDED (million US\$)	HUMAN ACTIVITY (million hr)	LAND USE (ha)	POWER CAPACITY (GW)
	HH (n-1)	5.9	15	84	N/A	10197	28,070	11
	PW (n-1)	N/A	39	540	8266 (!)	1273 (!)	127,092	3
	SG THIS SCENARIO IS IMPOSSIBLE BECAUSE OF AN 680 (!)							1
						92 (!)	N/A	1
	BN TOO I	MUCH WC		RICULTURE		409 (!)	N/A	1
	AG (n-2)	IN/A	U	240	1,250	280	99,022	0
	EM (n-2)	N/A	2	260	212 (!)	8 (!)	negligible	0
	LOSSES	2.1	1	110	N/A	N/A	N/A	N/A
WHOLE (n)		8	56	730	N/A	11,469	127,092	14
	EXPORTS	negligible	0	200	5,197	N/A		N/A

SUPPLY	IMPORTS	5.3	48	480	5,648	N/A	211,466	N/A
	EM	N/A	7	N/A	N/A	N/A	N/A	N/A
	AG	2.7	N/A	N/A	N/A	N/A	20,516	N/A

MuSIASEM as a simulator tool: scenarios in Mauritius

N/A

2.7

N/A

N/A

N/A

21,815

N/A

AG

Transition from a cropping pattern based on sugar cane to another cropping pattern

Keeping the actual supply of AG-labor the new cropping mix would reduce Land Use

C	DEMAND	FOOD (PJ-NFS)	ENERGY (PJ-GER)	WATER (hm3-GWR)	VALUE ADDED (million US\$)	HUMAN ACTIVITY (million hr)	LAND USE (ha)	POWER CAPACITY (GW)
	HH (n-1)	5.9	15	84	N/A	10,197	28,070	11
	PW (n-1)	N/A	39	540	8,714	1,273	120,211	3
	SG (n-2)	N/A	8	15	5,178	680	N/A	1
	TR (n-2)	N/A	13	1	826	92	N/A	1
	BM (n-2)	N/A	16	23	2,158	409	N/A	1
	AG (n-2)	N/A	0	240	372	83	21,815	0
	EM (n-2)	N/A	2	260	180	8	negligible	0
	LOSSES	2.1	1	110	N/A	N/A	N/A	N/A
V	/HOLE (n)	8	56	730	N/A	11,469	120,211	14
E	EXPORTS	negligible	0	200	4,822	N/A	70,326	N/A
	IMPORTS	5.3	48	480	6,235	N/A	192,656	N/A
SUP	PLY EM	N/A	7	N/A	N/A	N/A	N/A	N/A

MuSIASEM as a diagnostic tool: Punjab

GDP p.c. and Share of Agriculture in GDP

State	GDP p.c. (US\$ ppp) (2005-06)	Share of Agriculture as % of Total GDP
Puducherry	6,600	5
Haryana	5,300	20
Maharashtra	4,700	10
Punjab	4,300	31
Gujarat	4,100	16
Kerala	4,000	17

The special situation of Punjab I

Economic Labour Productivity

Economic Sector	Economic Labour Productivity (\$/hour)
Agriculture, forestry and fishing	1.6
Manufacturing	3.6
Construction	1.2
Wholesale, retail trade	3.1
Transport, storage	4.2
Financing, insurance	3.1

Remittances as % of GDP

MuSIASEM as a diagnostic tool: Punjab

Subsidies: addressing an internal constraint . . .

5. MuSIASEM as a simulator tool: scenarios in Punjab

Slide 29

Participatory Integrated Assessment: the unavoidable entanglement between "normative" and "descriptive"

Lessons learned from the PARTICIPIA Project: *Participatory Integrated Assessment of Energy Systems to Promote Energy Access and Efficiency* http://www.participia.net/

Chain of choices leading to the selection of an indicator on the NORMATIVE SIDE

Chain of choices leading to the selection of an indicator on the DESCRIPTIVE SIDE

NORMATIVE UNCERTAINTY

ENTITIES		CONSIDERED ALTERNATIVES				
CONSIDERED AS RELEVANT	RELEVANT ATTRIBUTES	"High Tech" commodity for the market	"Organic" quality product for the market	"household" subsistence		
	final price	GOOD	MORE OR LESS	GOOD		
the consumer	quality of milk	MORE OR LESS	GOOD	MORE OR LESS		
	convenience	GOOD	BAD	BAD		
	production cost	MORE OR LESS	MORE OR LESS	GOOD		
the producer	available subsidies	GOOD	MORE OR LESS	BAD		
	risk protection	MORE OR LESS	MORE OR LESS	BAD		
	reliable supply	GOOD	MORE OR LESS	MORE OR LESS		
the country	food safety	GOOD (?)	GOOD	BAD		
	rural development	BAD	GOOD	BAD		
	GHG emission	BAD	GOOD	GOOD		
the environment	N leakages	BAD	GOOD	GOOD		
	deforestation (feed)	BAD	MORE OR LESS	GOOD		

DESCRIPTIVE UNCERTAINTY

Problem Structuring: a brutal simplification of the information space

POSSIBLE OUTPUTS

EQUITY MATRIX APPLIED TO THREE ALTERNATIVES OF MILK PRODUCTION

ENTITIES CONSIDERED AS RELEVANT	High tech commodity for the market	Organic quality product for the market	Traditional subsistence production				
the consumer	low price; concerns about health and taste	higher price; better milk quality	Very low convenience				
the produ Discusing the quality of the option space: ve; Are these the more useful alternatives?							
the country (government)	robust supply	reducing tensions in the food chain	lack of rural development				
the environment	externalization on supply side; bad on sink side	better on both sides (depending on density)	OK if population density low				

IMPACT MATRIX APPLIED TO ALTERNATIVES OF MILK PRODUCTION

ENTITIES		CONSIDERED ALTERNATIVES			
CONSIDERED AS RELEVANT	RELEVANT ATTRIBUTES	High tech commodity for the market	Organic quality product for the market	Household subsistence	
	final price	GOOD	MORE OR LESS	GOOD	
the consumer	quality of milk	MORE OR LESS	GOOD	MORE OR LESS	
Discus	ing the quali	ity of the re	presentati	on: AD	
				DOD	
the produ Are the	ese the more	e useful indicators?		AD	
	risk protection	MORE OR LESS	MORE OR LESS	BAD	
	reliable supply	GOOD	MORE OR LESS	MORE OR LESS	
the country	food safety	GOOD (?)	GOOD	BAD	
	rural development	BAD	GOOD	BAD	
	GHG emission	BAD	GOOD	GOOD	
the environment	N leakages	BAD	GOOD	GOOD	
	deforestation (feed)	BAD	MORE OR LESS	GOOD	

ETHICAL MATRIX APPLIED TO ALTERNATIVES OF MILK PRODUCTION

ENTITIES	ETHICAL PRINCIPLES						
WE SHOULD CARE FOR	Preserve Wellbeing (health & welfare)	Improve Wellbeing (health & welfare)	Autonomy/Dignity (express identity)	Justice (fairness)			
the consumer	Preserving the existing quality of life	Improving the existing quality of life	Empowerment Informed choices (labels!)	sharing stress			
the produc Discusing the quality of the process: Are we including all the relevant entities							
the country that "we" should care for?							
the environment	Conserving the environment	Restoring the environment	Let biodiversity express itself	sharing stress			
the cow	Preserving the existing cow welfare	Improving the existing cow welfare	Behavioural Freedom	sharing stress			

PARTICIPATORY INTEGRATED ASSESSMENT

MuSIASEM: Multi-scale Integrated Analysis of Societal and Ecosystem Metabolism

A more complex world requires more complex characterizations

All these instruments require relevant, reliable and timely data!

Mario GIAMPIETRO

Jesus RAMOS

Sandra BUKKENS

Pedro LOMAS

François MAURIN

Alevgul SORMAN

Tiziano GOMIERO

Gonzalo GAMBOA

Zora KOVACIC

Cristina MADRID

Juan CADILLO

Integrated Assessment: Sociology Technology and the Environment

Tarik SERRANO