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RESUMEN

Esta tesis se centra en e estudio tedrico de semiconductores desordenados utilizados
en celdas solares de nueva generacion. Se presentan y discuten resultados obtenidos mediante
Simulacion Numérica de Marcha Aleatoria (RWNS, del inglés Random Wak Numerical
Simulation). Este método proporciona una eficiente herramienta con la cual estudiar, a partir
de postulados basicos, mecanismos de transporte y recombinacion de carga en sistemas donde
el desorden (tanto energético como espacial) presenta un papel clave. Mas aln, esto se ha
conseguido en escalas de espacio y tiempo no abordables por métodos ab initio.

Principalmente, esta tesis tiene como objetivo discernir los mecanismos de transporte
y recombinacion que tienen lugar en una Celda Solar Sensibilizada con Colorante (DSC, del
inglés Dye-sensitized Solar Cell). En primer lugar, en el Capitulo 4 se llevaacabo un andlisis
del comportamiento del coeficiente de difusion e ectronico en funcién del nivel de Fermi y de
la temperatura suponiendo una probabilidad de transferencia electrénica entre estados
localizados dada por la férmula de Miller-Abrahams. Asimismo, se hace uso del concepto de
energia de transporte para la interpretacion de resultados. Por otro lado, en el Capitulo 5, se
utiliza e modelo de Multiple-Trapping como marco para € cadculo de la vida mediay la
longitud de difusién electronica en presencia de una probabilidad de recombinacion
independiente de la energia. En el Capitulo 6 se realiza un estudio mas amplio del origen dela
recombinacion no lineal observada en una celda DSC. Asi, se consigue explicar de manera
satisfactoria este fendmeno mediante un proceso de transferencia de carga entre una
distribucion exponencia de estados localizados en e 6Oxido y una distribucion de estados
aceptores en el eectrolito gobernada por el modelo de Marcus-Gerisher.

El papel que desempefia la morfologia del electrodo fotoactivo de una celda solar
nanoestructurada es también analizado en e Capitulo 7. Asi, se lleva a cabo un estudio
completo de la dependencia de la eficiencia de recoleccién con e grado de orden inducido
externamente en la direccion perpendicular a electrodo. De esta manera, se obtienen
resultados para varios grados de iluminacién y diversas probabilidades de recombinacion, o
cual se utiliza luego para discutir en qué circunstancias es beneficioso trabajar con electrodos
ordenados 'y en qué casos no.

Finamente, & Capitulo 8 de la tesis presenta un modelo para heterouniones entre
semiconductores desordenados. En primer lugar, se estudia €l proceso de separacién de carga
en términos del Fotovoltaje Superficia (SPV), estudiando su dependencia con respecto al
alineamiento de las bandas, la distribucién de estados localizados y la densidad el ectrénica.
Estos resultados se discuten luego en funcion de las evidencias experimental es encontradas en
celdas inorgénicas ETA. Por otro lado, se incluye luego en los célculos un término de
generacion continua de carga para estudiar e comportamiento en estado estacionario de una
heterounion desordenada. Asi, se hacen célculos tanto del voltagje a circuito abierto como de la
corriente de recombinacion y estos resultados se analizan, bajo ciertas suposiciones, en
relacion al funcionamiento de una celda organica BHJ.



ABSTRACT

This thesis is focused on the use of computational tools for the study of disordered
semiconductors with applications in new generation solar cells. Theoretical results as obtained
by Random Walk Numerical Simulation (RWNS), a type of Monte Carlo caculation, are
shown and discussed. It is proved that RWNS provides an efficient method to study from first
principles microscopic mechanisms of charge transport and recombination where both spatial
and energy disorder are taken into account. Importantly, this has been accomplished in the
long time and spatial scales, non accessible to quantum-mechanical methods.

This thesis mainly focuses on discerning actual electron dynamics involved in Dye-
Sensitized Solar Cells (DSC). On the one hand, a thorough study of the electron diffusion in
the nanostructured oxide as a function of the Fermi level is carried out. For this purpose the
two most widely accepted models of transport in disordered semiconductors are taken into
account: Hopping and Multiple-Trapping. In Chapter 4, the electron diffusion coefficient is
measured with respect to the Fermi level and the temperature from the Miller-Abrahams
hopping rates in the context of the hopping model. In addition, the concept of the transport
energy level is utilized and analysed to interpret the results. In Chapter 5, the multiple-
trapping model is used as a framework in which both the electron diffusion length and lifetime
are determined from RW calculations using a constant recombination rate. Finally, the origin
of non-linear recombination mechanism in a DSC is further studied in Chapter 6 by checking
the interplay between an exponential energy distribution of intra-band localized states in the
nanostructured oxide and the Marcus-Gerischer model with regard to the energy distribution
of acceptor states in the electrolyte.

The role of morphology of a photoactive electrode in the context of nanostructured
solar cells applications is investigated in Chapter 7. Thus, a complete study of the dependence
of the electron collecting efficiency on an externally induced order in one direction of a
disordered electrode is carried out. Results of efficiencies with respect to various degrees of
illumination and recombination rates are shown. This is utilized to discuss in which
circumstances working with an ordered electrode is beneficial and in which othersit is not.

Finally, a disordered semiconductor heterojunction model is developed in Chapter 8.
First of al, charge separation is studied in terms of the Surface Photovoltage (SPV) and its
dependence on different band-offsets, energy distributions of traps in each semiconductor and
initial densities in the absorber are analysed. The results are interpreted in terms of
experimental evidence collected in Extremely Thin Absorber Solar Cells (ETA). Secondly, a
charge generation term is included in the calculations so that the steady-state behaviour of a
disordered semiconductor heterojunction can be studied. This is then applied to the
functioning of a Bulk Heterojunction (BHJ) Organic Solar Cell under certain assumptions and
both the open-circuit voltage and the recombination current are determined and analysed.
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CHAPTER 1

Photovoltaic Solar Cells

This Chapter provides an overview of photovoltaic solar energy. First of all, a brief
summary of the origin and historical development of photovoltaic devices is
presented. In this context, the three generations of solar cells are introduced and
discussed. Afterwards, the basic functioning of a solar cell is detailed. The main
aspects of a solar cell that determine the photovoltaic effect are discussed. Thus,
the requirements for efficient processes of photon absorption, charge separation
and charge collection are considered. The p-n junction is taken into account in this
discussion as the classic charge-selective contact system. However, in a last
section, we pay attention to other charge selective contact structures, based on the
heterojunction of disordered semiconductors, which constitute the newest field of
research on photovoltaics.



Chapter 1 Photovoltaic solar cells

1. Photovoltaic Solar Cells

1.1. Solar energy

Nowadays, there is a recognized challenge to achieve a compromise between two
different aspects of energy consumption. First of al, it is expected that the world energy
demand will double by the year 2050t mainly due to the increase in globa population.
Therefore, a long-term energy supply is essential for political and economic stability.
Secondly, global warming is a well-known environmental problem which countries need to
address. Indeed, although in recent years more reserves of fossil energy have been found, and
the exhaustion of energy reserves does not seem to be the main problem at the moment, the
contamination of the atmosphere remains a mgjor environmental problem.

An energy revolution involving the development of carbon-free sources would be
highly desirable2. Among others, nuclear energy in the form of uranium isotope U235 and
others does not seem to be a long-term alternative, due to undesirable effects of pollution
from radioactive nuclear waste by-products. Fortunately, there are other ways of energy supply
from natural processes. Renewable sources make use of an energy coming from naturally
replenished resources. One of the most promising options is the conversion of sunlight
directly into electric energy using photovoltaic devices. The idea of such a clean and direct
process of energy conversion has motivated scientist to investigate in photovoltaic technology
since the 19" century. However, solar cells are still unable to compete with fossil fuels or
nuclear energy, mainly due to the high price of PV modules.

Photovoltaic devices are commonly separated in three generations, depending on the
strategy followed to achieve competitive energy conversion. The first generation of solar cells
is defined by the use of crystalline silicon as photovoltaic material. Currently, the photovoltaic
technology marketplace is dominated by crystalline and polycrystalline silicon-based solar
cells with achieved efficiencies of 25% and 20.4% respectively3. However, in contrast, the
need of alarge amount of material (the slice of p-type silicon must be a few hundred microns
thick) as well as the high temperatures required during the process of fabrication result in high
costs for the fabrication of silicon modules.

Other materials, concretely some I1-VI and I11-V compounds, like gallium arsenide
(GaAs), have been used in photovoltaic devices as aternatives to crystalline silicon. A second
generation of solar cells comprises the so-called thin-film solar cells. These solar cells are
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based on semiconductors with higher absorption coefficients as compared to crystalline S,
thereby allowing for a light absorption in alayer of 1 um in thickness or even less. Thin-film
solar cells have cost advantages as they can be fabricated with fewer processing steps as well
as with a simpler manufacturing technology. Currently, amorphous silicon (a-Si), cadmium
telluride (CdTe), copper indium selenide (CIS) and copper indium gallium (di)selenide
(CIGS) are the main materials for second generation solar cells production.

It is only recently that materials are developed mainly for their application in
photovoltaics. In this sense, new types of photovoltaic solar cells based on new concepts
(different from the traditional p-n junction used in previous solar cells) and materials (mostly
disordered inorganic and organic materials) are currently under intense investigation and
constitute the Third Generation of solar cells. Dye-sensitized solar cells (DSC), organic solar
cells or extremely thin absorber solar cells (ETA) are some examples of this new generation of
solar devices. They are very promising as low-cost photovoltaic solar cells but till in a phase
of investigation as the actual mechanisms of charge separation, transport or recombination are
not fully understood yet. This new generation solar cells are made of disordered
semiconductors, which brings about important consequences in these mechanisms. The main
objective of this thesis is to study these consequences from the theoretical point of view,
taking into account the effect of the disorder in their functioning.

1.2. Fundamentals of solar cells

Solar cells are devices that convert directly solar energy into electric energy. The basic
physical principle underlying the photovoltaic effect is the absorption of photons by an
appropriate material and the generation of electron-hole pairs. Besides, solar cells have some
kind of internal mechanism to locally separate the photogenerated charge carriers and to
transport them independently to the corresponding contacts before they disappear by
recombination.

Charge separation is acrucial processin every photovoltaic device. In standard devices
(for example, in classical silicon-based solar cells) it is achieved by the use of an appropriate
junction between two electronically different materials, generdly a p- and an n-type
semiconductor. Under dark conditions both materials are in equilibrium and their chemical
potentials are equal. When the p-n junction is illuminated electrons pass across the interface
and move towards the n-side whereas and that of holes toward the p-side. As a consequence, a
photocurrent is produced due to the excess of carriers. At open-circuit conditions, the
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separation of photogenerated charge carriers sets up a potential difference between the edges
of the material which is known as the open-circuit voltage, V,.. At the same time, if the two
contacts are short-circuited the flow of photocarriers into the circuit constitutes a current
density equal to the photocurrent (if the series resistance is zero) which is known as the short-
circuit current density Js..

When a load is present, a potentia difference is developed between the terminals of
the cell generating a current which opposes to the photocurrent, reducing the short-circuit
current value. This reverse current is called the dark current because it is in general equal to
the current which flows across the solar cell under a forward bias in the dark4. In most of the
cases, the behaviour of a solar cell in the dark resembles that of a rectifying diode and the
current-voltage characteristics of the solar cell under illumination can be seen as the
superposition of the dark current and the photocurrent (superposition principle). The -V
characteristic of asolar cell can be described by Eq. (1.1) (diode equation)

J = Jsc — Jo lexp (¢V/mkpT — 1)] 1y

where kg is the Boltzmann constant, 7'is the absolute temperature, g is the elementary charge,
Jo is called the saturation current, V'is the voltage at the terminals of the cell and m isthe so-
called ideality factor. Eq. (1.1) sets up in fact the same as the characteristic curve of a current

J
A

Irradiated J sC + °
— Pm

Dark

Fig. (1.1) I-V characteristics of a solar cell and equivalent circuit of an ideal solar cell. The
sign convention for current and voltage in photovoltaics is such that the photocurrent is
positive.
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generator in parallel with adiode (see Fig. (1.1).

If the total current under illumination is zero (open-circuit condition), then solution of
Eq. (1.1) gives

T (T
v, = s zn<—J +1> 12)
q Jo

As the short-circuit photocurrent is proportional to illumination, the open-circuit
voltage increases logarithmically with light intensity. The regime in which a solar cell
operates coincides with the range of bias from zero to V,.. Likewise, the maximum electric
power density (P=J-V) that a solar cell can generate occurs at an intermediate voltage V;,, with
a corresponding intermediate current density J,,,. This situation corresponds to the so-called
maximum power point. Finaly, thefill factor (FF) can be defined according to Eq. (1.3)

(1.3)

This parameter is useful for describing the square shape of the I-V curve and the
ideality of the solar cell. The higher FF'isthe more it corresponds to an ideal behaviour of the
solar cdl (m =1).

The efficiency of the cell () is defined by the power density supplied at the maximum
power point divided by the incident light power density (I). According to this definition, an
expression containing the main photovoltaic parameters can be obtained

JseVoe F'F

— zsefoer 7 14

; (L4)

From EqQ. (1.4), it isimmediate that in order to improve the efficiency of a solar cell it

is necessary to maximize the three photovoltaic parameters (Jsc, Voe, FIF). Following on from

this, we move to a description of the most significant aspects of the performance of a solar
cell and their implications for achieving high conversion efficiencies.

10



Chapter 1 Photovoltaic solar cells

Absorption of theincident light

To excite an electron by the absorption of a photon it is needed that the photon energy
equals or exceeds the band gap energy of the semiconductor E,. The band gap energy thus
defines the fundamental absorption edge of the material. In general, only photons with
energies higher than E, lead to band-to-band transitions, with the subsequent production of
excitons and free charge carriers. However, in disordered materials, with a considerable
density of intra-band localized states, other absorption processes are also possible, like band-
to-localized-states, that can aso lead to free electrons and holes.

The absorption coefficient aq(), defined as the probability of absorption of a photon
with a wavelength ), is a key parameter, characteristic of each material. The absorption
coefficient is strongly dependent on whether the transition process involves a change at the
momentum of the electron-hole or not, that is, whether the material has a direct or non-direct
band gap. Thus, “direct” materials, like GaAs, show values of aq up to 10¢ cm?, while
“indirect” materias, like Si, show smaller absorption coefficients, due to the fact that a

10 4
agh/ (10* cm™)

8

GaAs

0.0 0.5 1.0 15 20 2.5 30 35 4.0

EleV

Fig. (1.2) Absorption coefficient a Of the “direct” semiconductor gallium arsenide and the
“indirect” semiconductor Silicon. Adapted from figure 3.17. of reference 2.

1
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phonon is required for each electron-hole creation event to satisfy the conservation of
momentum. The penetration depth or absorption length, La, = 1/, defined as the distance
from the surface at which the illumination intensity is attenuated by a factor of ¢, is adso a
property of the material and likewise dependent on the type of transition. Thus, while solar
cells made of direct materials do not have a thickness larger than a few um, solar cells based
on indirect materials must typically have a thickness of more than 100 um.

In the absence of reflection, interferences or scattering processes, the light intensity
I(\,z) at apoint z of the solar cell isgiven by the Lambert-Beer law.

I(\2) = Io(A) exp [~/ Lap(V) (L5)

where Io(A) is the light intensity at = = 0. However, the wave properties of light are aso
important as reflection can take place at the interfaces of the device as well as interference
and scattering effects within the cell. In addition, processes of light trapping inside the
materia through a series of scattering processes can aso occur, which reduces the optical
thickness of the semiconductor®.

Absorber materials can be organic or inorganic semiconductors. In third generation
solar cells, light absorption is also accomplished by dye molecules or quantum dots. In all
cases, absorbers with transition energies appropriate to maximize the different photovoltaic
parameters (like the open-circuit voltage, the photocurrent and the solar spectrum) have to be
used. In this respect, athough the optimum energy is situated around 1.5 eV+4, band gaps
between 1 eV and 2 eV are commonly utilized in order to achieve relatively high efficiency.

Transport and char ge separation

In addition to good absorption properties, materials that can provide high charge
carrier mobilities are necessary. This is one of the reasons for the use of semiconductors as
photovoltaic materials. The absorption of photons is accomplished through the excitation of
charges into states of higher energies. After that, this extra energy is lost by generation of
phonons. In metals, due to the continuous band structure, the latter process is very fast and
takes place on a time scale of 102 s. In semiconductors, however, thanks to the particular
structure of two bands separated by a band gap, once electrons have reached the lower edge of
the conduction band further energy dissipation requires the loss of E, in a single step, which
Is much less probable that deexcitation through a continuous distribution of states. As a

12
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consequence, electrons can remain in the conduction band much more time without suffering
arecombination process.

In a semiconductor, photogenerated charge carriers can move as a consequence of two
driving forces. an electric field and/or a concentration gradient. Thus, the electron and hole
current density, J,, and J,, can be calculated as the sum of both components.

Jp = —ppnE — D, Vn
(1.6)
Jp = —pppE + DpVp

where n (p), pn(p) and Dy, (p) are the photogenerated electron (hole) density, mobility and
diffusion coefficient respectively and E is the electric field. The total current density is
J=Jdn+ Jp.

It has already been mentioned that an essential aspect of the working principle of a
photovoltaic device is the definition of an specific structure, generally asymmetric, in which
illumination takes place in a situation where there is a preference for the electron to move in
one direction while holes move in the opposite, thereby producing their separation. In this
sense, although the classical structure is the p-n junction, there are many more possibilities
that lead to a photovoltaic functioning. In connection with transport mechanisms, there are
two ways of achieving charge separation: by a built-in electric field that drifts the carriersin
different directions or by a built-in effective force field (for instance different electron and
hole chemical potentials) that |eads electrons and holes to diffuse in opposite directions.

Recombination losses

Electron and hole generation is a process that can be reverted by means of a
recombination process in which electrons and holes are annihilated. There are several types of
recombination mechanismsin asolar cell.

Radiative recombination is a mechanism in which an electron reacts with a hole and a
photon is produced. It is the inverse process of direct absorption and cannot be avoided due to
the principle of detailed balances. This process increases its rate U,.q with the density of
electrons and holes and has the following form?

13
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Urad = B(np —n3) (1.7

where B is a constant that depends on the semiconductor, n and p are the photogenerated
electron and hole densities respectively and n; is the intrinsic carrier density. In a pure
semiconductor in thermal equilibrium the density of electrons in the conduction band, no, is
equal to the intrinsic density. Moreover, as electrons are originated from the valence band, the
density of holesin the valence band py is also equal to n;.

Non-radiative recombination includes carrier-loss processes in which phonons and/or
other electrons and holes are involved. Auger recombination is the process in which the energy
released by recombination is absorbed by afree carrier. This energy is subsequently dissipated
by generating phonons in collision with the lattice. In the case in which the third carrier
involved is an electron the rate has the form

Uiug = C(n’p — n%po) (1.8)

where C'is a proportionality constant that depends on the temperature. Auger recombination
becomes more important when carrier densities are high (low band gap materials or doped

'
E ‘
o) O @
l {.
I Er
r

5 o 5 E,
band-to-band SRH trap-assisted Auger
recombination recombination recombination

Fig. (1.3). lllustration of the main types of recombination presented in a solar cell.

14
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materials), and it is another unavoidable process as it depends on the intrinsic properties of
the material.

Non-radiative recombination via defects or impurities in the crystal is known as
Shockley-Read-Hall mechanism. It is a process in which charge carriers give up their energy
in a process of trapping and this energy is released as phonons or photons or both. From this
time, if the trap captures a carrier of the opposite sign before the first carrier is detrapped a
recombination event is then produced. The following expression gives the rate corresponding
to recombination viaa single trap with energy E;.8

2
J 1.9
Tn,SRH (P + Pt) + Tp,srH (N + ny) (L9)

np—n

UsrH =

where 7, srr and 7, srr are defined as the lifetimes for the electron and hole trapping by
the single state, and n: and p: are the electron and hole densities when the electron and hole
Fermi levels are equal to the trap level. Fig. (1.3) shows an illustration of the different types of
recombination mechanisms here described.

Recombination is often studied experimentally via the measurement of the carrier
lifetime, a characteristic time constant that reflects the kinetics of the recombination of
minority carriers. This magnitude is defined by the time for the system to recover equilibrium
under asmall perturbation of the steady state. It is defined in its more general form bys.0,

-1
Tn = (w’"“) (1.10)

on

n

where U, is the recombination rate and n is the total electron density (or the carrier density,
in amore general situation). Determination of the lifetime as well as the diffusion length, the
average distance that electrons travel between recombination events, are key for the
characterization of a solar cell and the understanding of its recombination kinetics. As a part
of this thesis, both gquantities have been determined by computational tools and related to
microscopic parameters describing an specific recombination mechanism.

In connection with the electric model described in Fig. (1.1) thereis aso a source of
voltage losses from series and parallel resistances that prevent the fill factor from being
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Fig. (1.4) Equivaent circuit of area solar cell. Adapted from 4.

maximized4. On the one hand, series resistances, Rs, are commonly related to resistance of the
contacts and interconnections. On the other hand, current leakages are often responsible for
paralel or shunt resistances, Rs;. Both resistances must be considered in real solar cells,
requiring the use of amodified electric model (equivalent circuit) as presented in Fig. (1.4).

In area solar cell absorption, transport and recombination determine the conversion
efficiency. In accordance with the Shockley-Queisser limits, which establishes a maximum
theoretical efficiency of a single-junction solar cell in terms of the principle of detailed
balance, the maximum efficiency of a single-junction solar cell operating at 1 sun is
calculated to be 329 %. Smilarly, the same solar cell operating under maximum
concentration can theoretically reach an efficiency above 40%!?. The am of the third
generation of solar cellsisto design devices that can reach conversion efficiencies beyond the
Shockley—Queisser limit. The new strategy consists of defining alternative concepts for charge
separation that do not need the p-n junction of traditional photovoltaic structures. A brief
description of three of these alternativesis presented in the coming section.
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1.3. New generation solar cells

1.3.1. Dye-sensitized solar cells

One of the most promising solar cell technologies nowadays is the so-called dye-
sensitized solar cell (DSC). This is based on the heterojunction between a nanostructured
porous wide band gap semiconducting oxide (typicaly TiO;) and a hole conducting
electrolyte solution containing a redox couple (usualy Is/17) whereas light absorption is
achieved by dye molecules adsorbed to the semiconductori2:3, The nanostructured film is
deposited onto a transparent conductive oxide (TCO) electrode, through which the light
incides# and is permeated by the electrolyte solution. The cell is completed by another glass
plate coated with a platinum catalyst2s.

The reason to use a nanoporous film is the fact that it favours light harvesting as the
roughness of the surface allows for alarger number of dye molecules to adsorb directly to the

51 -+ ,'f Lc’;(."
VD '

110 Dye Redox

Fig. (1.5) Charge transfer processes at the oxide/dye/electrolyte interfaces of a Dye-
sensitized solar cell. Adapted from figure 1.3. of reference 16.
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surface while being simultaneoudly in direct contact to the redox electrolyte?”. Besides, high
charge injection efficiencies close to one are normally measured, due to injection rates orders
of magnitude faster than dye-electron recombination rates in those cases where afavourable
kinetic balance existsts. Another important feature of DSC is the long lifetimes and diffusion
lengths that are obtained for separated species in these systems, which are of the order of
microns, in spite of the proximity of positive and negative charge carriers.

Fig. (1.5) shows a scheme of charge transport and interfacial transfer processes in a
typical DSC. Under light irradiation, excited electrons in the adsorbed dyes are injected into
the conduction band of TiO. and the injected electrons diffuse in the TiO, to TiO/TCO
interface, where electrons are extracted to the external circuit. Resulting dye cations are
reduced by I-. The |5 ions formed during the regeneration step diffuse to the glass plate coated
with the platinum catayst and the passage of electrons through the external circuit to the
cathode completes the cyclet.

Due to the complex morphology and heterogeneous character, the system isin general
more complicated than other solar cells. Thus, despite the nature of transport and
recombination is not well-known yet, it is seems that the nanostructured nature of the n-type
TiO,is determinant to clear up the actual dependences of the main dynamic magnitudes. With
respect to transport, electron trapping and detrapping from localized states within the band
gap is expected to occur. On the other hand, electrons can suffer recombination by two
different ways, either by reaction with the dye cations or with electron acceptors in the hole
conductor (electrolyte) and neither of them are expected to be linear with electron density2.

However, athough the system is complex in general, some simplifications can be made
for dye-sensitized systems®. For example, at least in the case of liquid junctions, the
electrolyte is concentrated enough and the ions mobile enough within the porous structure that
electric fields are not expected to exist within the electrolyte over more than a few nm. The
small size of the nanocrystals and the doping density of TiO, add to the restriction that the
porous film cannot sustain electric fields. This leads to the conclusion that transport should
occur by diffusion only2-23 (second term in Eq. (1.6)).

Furthermore, due to the fact that the density and mobility of charged species in the
electrolyte is high, transport of ionic species is presumed to be facile for common solvents and
only electron transport needs to be considered to explain transient phenomena. The electron
diffusion coefficient D,, depends on the nanoparticulate film preparation method and the size
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Fig. (1.6) lllustration of a energy distribution of intra-band gap localized states in a DSC.
Adapted from reference 16.

of nanoparticles by means of percolation effects. In addition, it is known that there is a power-
law dependence of D, on the electron density. This behaviour is interpreted in terms of
charge-filling effects in the presence of an exponential energy distribution of localized states
within the band gap of the TiO, film152425 (see Fig. (1.6)).

The open-circuit voltage is most likely related with the difference between the Fermi
level of semiconductor electrode and the redox potential of the electrolyte. Thisis given by the
Nernst equation?

kT In [ox]

Ere ox — E
d 0+ neq  [red|

(1.12)

where Ej is the standard reduction potential of the redox couple and n. is the number of
transferred electrons. The maximum theoretical potentia difference is limited by the energy
level of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO) of the sensitizer dyes. At the same time, the Fermi level of TiO. is related
with the density of injected electrons and the density of charge traps in the band gap of TiO;
(in situations of nonequilibrium the Fermi level should be replaced by the “quasi-Fermi level”.
However, for the sake of brevity, this distinction will be omitted in this thesis)
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Assuming fill factors around 75%, the maximum conversion efficiency is expected to
be around 14-15% at 1 sun for the standard solar spectrum. DSCs continue to attract attention
as potential low-cost aternatives to traditional photovoltaic devices?”. However, far from
leading to important improvements in the efficiency, this interest does not result in real
progress. The latest in the series of solar cell efficiency tables collated by Green et al. lists the
record validated AM 1.5 DSC efficiency as (11.4 £ 0.3) % for approximately 1 cm? cells.
Recently, a new record of 12.3% has been reported using a modified porphyrin as dye and
cobalt complexes as redox couples®. Nevertheless, the good behaviour of a DSC at low
illumination levels and moderate temperatures, and the possibility of designing flexible and
transparent devices, make this technology interesting for other applications in the photovoltaic
market, for example, as building integrated photovoltaic (BIPV) systems.

1.3.2. Organic solar cells

Organic solar cells (OSC) are based on the use of conjugated polymers, including
crystalline or polycrystaline films of conjugated molecules or amorphous films of small
molecules. A key property of these cells is that they can be processed from solution at
ambient temperature by application of spin coating or conventional printing techniques. These
materials also have high absorption coefficients (of the order of 105 cm?) so polymer films
can be very thin (100 nm). In addition, asin DSC solar cells, they alow for the possibility of
manufacturing flexible devices?e-22,

Photon absorption is controlled by optical excitation of partly delocalised m—bands.
Under illumination electrons are excited from the 7— orbital to 7*—band, which corresponds to
the optical excitation from the highest occupied molecular orbital (HOMO) to the lowest
unoccupied molecular orbital (LUMO). Most of organic semiconductors have a band gap of
2 eV and therefore limitations in light harvesting. Due to the low dielectric constant of organic
materials, the absorption of photons leads to the creation of bound electron-hole pairs —
excitons — which diffuse within the material in which they are created. Thus, excitons only
become free electrons and holes provided that some type of dissociation phenomenon takes
place supplying an input of energy between 0.1 and 1 €V. Normally, this last is accomplished
by the existence of a band offset between the two polymers. If both electron affinity and
ionisation potential are greater in one material (the electron acceptor, generally fullerene) than
in the other (the electron donor) then the interfacial electric field can drive charge separation.
Anillustration of the charge separation process can be seen in Fig. (1.7).
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Fig. (1.7). Scheme of the energy band diagram of a donor-acceptor heterojunction. Adapted
from figure 2 of reference 32.

Exciton generation occurs generaly in the light absorbing donor. The separation
process is then accomplished when the electron transfers to the LUMO of the acceptor while
the hole remains on the donor. This photoinduced charge transfer takes place very rapidly
within less than 100 femtoseconds so the charge separated state is quite stablex. Recent
reports have pointed out that photon absorption may result in a primary excitation where
electrons and holes are more delocalized than the relaxed exciton. Thus, diffusion of the
unrelaxed electron-hole pair to the interface can occur before relaxation (i.e. exciton
formation) is taking place. In this manner, the apparent contradiction between the mentioned
ultrafast charge separation process and the limited distance than an exciton can actually
diffusein such short scale of time can be explained.

Once the charge carriers have been separated, they need to be conducted to their
respective electrodes. This is achieved by the fact that the donor material sustains hole
transport whereas the acceptor material serves as electron conductor. In addition, charge
selective contacts are placed in both the anode and the cathode, hence favouring the
separation of charges and the creation of a measurable photovoltage in the external circuit.
Charge transport seems to occur by hopping between localized states, rather than through a
band?”38, Indeed, impurities are believed to act as deep traps that mainly act as recombination
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sites within the film resulting in lower mobilities as well as stronger dependences on the
temperature®. Another transport feature relies on the fact that each phase has to be
continuously connected for the transport of the respective charge carrier to separate electrodes
so percolation effects have to be taken into account in order to avoid recombination on
isolated traps.

The processes of carrier generation and charge transport are intimately related. As a
consequence of the low mobilities, photoexcitation will only lead to dissociation if the exciton
is formed very close to the interface between the acceptor and the donor polymers. Therefore,
both charge carrier generation and transport are highly dependent on the internal phase
structure of the blend. This is an important limitation because only a portion of absorbed
photons can effectively contribute to the photocurrent . A crucia development in organic
photovoltaics came with the introduction of a dispersed heterojunction, where the electron
acceptor and donor materials are intimately blended together forming a bulk heterojunction
(BHJ) solar cell“-42, The idea is that if the domain size of each phase is on the nanometer
scale then charge carrier generation will occur close to the interface, thereby leading to a more
probable charge separation process. Note here the analogy with the DSC described above,
where the structuring in the nanoscale also leads to good light harvesting and subsequent
photogeneration of carriers.

The enhanced charge dissociation achieved within a BHJ involves the disadvantage of
longer charge collection paths and of increased bimolecular recombination due to the higher
interfacial area between the two phases. In fact, organic solar cell technology is still new and
the field is clearly wide open. Theoretical studies are needed to enhance charge separation and
transport processes®. Therefore, further investigation on a fundamental understanding of the
interfacial  mechanisms involved in this type solar cell is necessary. Organic bulk
heterojunction achieve a AM 1.5 efficiency of (10.0 = 0.3) % for approximately 1 cm? in area
as reported by Green et al .3, thus yet competing with DSCs. Furthermore, the "learning curve"
has a much larger "slope" than that of the DSC, showing the great potential and rapid progress
made by this technology.
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1.3.3. Extremely thin absorber solar cells

Extremely thin absorber (ETA) solar cells are atype of solid-state device based on the
use of an inorganic semiconductor, acting as the absorber, that is placed between two
transparent nanostructured semiconductors. These solar cells are characterized by the high
interpenetration between its components as well as the strong confinement of the thin layer
between the semiconducting layers. As in DSC and BHJ solar cells, rough materias are
required as extremely thin absorbers to enhance the surface by a factor of 100 in the best
cases, thereby permitting the possibility of reducing the thickness in the same order of
magnitude.

ETA solar cells and dye solar cells have in common that both consist of
interpenetrating electron and hole conductors between which an absorber is sandwiched. The
main difference here is the concept of a photovoltaic device composed entirely of inorganic
materias, including the absorber. In this case, the fact of using extremely thin absorbers leads
to lower purity requirements because carriers are likely to be generated in the proximity

Light

glass |
Front contact

Donor:Acceptor
blend

Back contact

Fig. (1.8). Schematic diagram of ETA solar cell showing a superstrate arrangement on a
conducting glass substrate. Adapted from figure 1 of reference 43.
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Fig. (1.9). Band dignment of aETA solar cell. Adapted from figure 7 of reference 44.

of the interfaces so high diffusion lengths are not needed to reach the n- and p-type
semiconductors. Thus, inexpensive inorganic materials can be used, most of them not yet
widely investigated by photovoltaic scientists. In any case, materials have to be chosen in
order to guarantee efficient charge separation.

An energy diagram of this type of solar cell is shown in Fig. (1.9). It can be seen that
the band alignment of the three semiconductors is such that electrons tend to move only to the
n-contact while hole transfer occurs only to the p-type layer. Thus, hole transfer to n-type
semiconductor and electron transport into p-type layer are blocked due to the high band offset
between bands in both cases. Cell assembling techniques have to be aimed at achieving that
both absorber and p-type conductor are deposited throughout the nanostructured n-type
semiconductor layer. Therefore, a method allowing for the controlled infiltration of the
reactants into the pores of the electron conductor film is required. In general, annealing at
high temperature is necessary+. Spray ion layer gas reaction#47, chemical bath deposition or
spray pyrolysis® are some of these methods.

There are severa types of ETA solar cells currently being researched. The use of
CuSCN as p-type conductor is widely extended and gives the highest conversion efficiencies
until now. Concerning the n-type the two most utilized materials are nanoporous layers of
TiO, or wet chemically prepared ZnO nanorod arrays. For each n-type materials, the working
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principles of solar cells based on many different absorbers have been demonstrated. TiO, has
been used in combination with CulnS,, In(OH),S,/InPhyS, or In,S; as the absorber reaching
energy conversion efficiencies of up to 4%, 2.9% and 2.3% respectively®. Similarly, the
ZnO/1n,S/CuSCN solar cell is currently one of the most investigated ZnO-based ETA solar
cellst and has achieved an efficiency of 4.2%#2. In so-called two-component ETA solar cells
the absorber also serves as p-type semiconductor. In this case the p-component is usualy
CdTeor CulnS; while the n-type is often TiOs.

In summary, conversion efficiencies of the order of 2-5% have been obtained for
different concepts of inorganic nanostructured solar cells. Recently, the development of ETA
hybrid solar cells with conducting polymers replacing the inorganic hole conductor has
resulted in improved efficiencies, demonstrating the potential of the original concept of ETA
solar cells. Thus, conversion efficiencies of 5.1% and 6.2% have been obtained for P3HTS3
and PCPDTBT3 respectively. This research field is actually very new and there does not exist
a well-established theoretical background yet. To encourage development of this solar cells, a
better fundamental knowledge of the nanostructured interface that is responsible for the charge
separation process is required. In this sense, time-resolved surface photovoltage (SPV)
measurements constitute a useful experimental method to study charge separation in
nanostructured semiconductors®57. This thesis dedicates Chapter 8 to a detailed study of
different kinds of heterojunctions, including simulations of SPV measurements.
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CHAPTER 2

Disordered Semiconductors

A genera description of the main features of disordered semiconductors is
presented in this Chapter. The existence of a quasi-continuous distribution of
intra-band localized states in these materials is highlighted as the main difference
with respect to crystalline semiconductors. We then relate their particular
characteristics with dynamics properties. On the one hand, dispersive transport is
presented and discussed in detail. The two main charge transport models, hopping
and multiple-trapping, are also described. Moreover, an study of the main aspects
of the electron diffusion process in disordered semiconductors is presented. On
the other hand, on account of recombination, a trap-assisted mechanism is pointed
out as the main annihilation process. Specifically, we describe the most relevant
aspects of the recombination process in a DSC. Finally, the electron diffusion
length concept, a key magnitude to determine transport and recombination
mechanisms in disordered semiconductors, is introduced.
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2. Disordered Semiconductors

2.1. Properties of disordered semiconductors

For approximately 30 last years many efforts have been conducted to use disordered
semiconductors for multiple applications such as thin film transistors, electrophotografic
printers and copiers, photovoltaic solar cells and many other optoelectronic devices.
Disordered materials are defined by the absence of long-range order in the arrangement of
atoms and trandlation symmetry?, what results in a number of unique effects that makes it
possible to fabricate low cost devices based on new concepts. Polycrystalline or amorphous
systems, chalcogenide glasses, organic materials or nanostructured semiconductors are some
examples of this definition.

However, characterization of disordered materials are often given in comparison with
crystalline properties and this circumstance makes rather confusing to know for sure whether a
certain material is disordered or not. In the one hand, real crystals does not have an infinite
long-range order because of surface defects or doping effects. On the other hand, despite not
having a trandation symmetry, disordered semiconductors do have certain short-range order
(nearest neighbours) as well as medium-range order of atomic arrangement. Hence, sometimes
it is not straightforward to characterize an specific sample as a crystalline or disordered
material because the length of ordering corresponding to a crysta can be subject to
interpretation.

The electronic spectral structure determines all the classical properties of crystalline
semiconductors. It is well-known that solid state classic theory establishes that there is a
conduction and a valence band, separated by a band gap. In non-crystalline semiconductors,
where there is no periodic lattice, disorder varies the energy spectrum of the system although
it maintains the features of a band spectrum. Hence, regions of high density of states (the
allowed bands of the crystal) still exist and are separated by regions with much lower density
of states (the energy gaps of the crystalline semiconductor). The former states are usually
called extended states because, due to the high density, electrons are alowed to move through
them under the influence of concentration gradient or electrical field.

A crucial aspect of disordered semiconductors electronic spectrum is the existence of a
great number of localized states, that is, as defined by P. Anderson?, a state where an electron
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Fig. (2.1). Exponential decay of wave function in localization states. Adapted from figure
2.2 of reference 3.

with energy E+ AFE, located in volume large enough to satisfy the uncertainty principle, does
not diffuse from this volume. These states are produced from extended states in the presence
of a high number of defects or bounds. Localization involves that the wave function decays
exponentially from some point vector 7

W(r) ~ exp(—|r — 73| /o) (2.1)

where «; is the localization radius. For a sufficiently strong disorder, even al states can
happen to be localized (as for instance in a condensed phase of small molecules).
Nevertheless, in most of disordered semiconductors, localized and extended states coexist in
the system at different energies. Hence, it is defined an specific energy E. called the mobility
edge that separates el ectron extended states from those localized. Likewise, a mobility edge for
holes E, can be introduced. The region between E. and E,, where all of the states are
localized, is called the mobility gap in analogy with the band gap of a crystalline
semiconductor. The mgor difference with respect to crystalline materias, where intra-band
gap localized states can also be found, is that whereas in crystals they exist as discrete energy
levels, in disordered media they occur as a quasi-continuous energy density of localized states
(DOLYS).
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Fig. (2.2). Schematic representation of the energy spectrum of a disordered semiconductor.

The particular form of the DOLS is not well known for most disordered materials.
However, the experimental evidence leads to believe that in most inorganic non-crystalline
materials, such as amorphous, polycrystalline or nanostructured semiconductors the localized
states for electrons are distributed according to an exponential DOLS3

g(E) = k;VlTO exp {— %} (2.2)

where N is the total concentration of localized states in the band tail and kg7, determines the
mean energy of the distribution, which is believed to vary approximately between 0.025 and
0.1 eV, corresponding to characteristic temperatures, Ty, between 300 and 1100 K.

Anaogoudly, there is wide agreement in considering that for organic materials the
density of localized states follows a Gaussian distribution of site energies in accordance with
the Gaussian dipole modelsé

9(E, Er) = exp [—(E — E1)*/201% (2.3)

2moq
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Fig. (2.3). Time dependence of photocurrent density I(t) (left panel) and time evolution of
the distribution of carriers (right panel) for the case of normal dispersive transport. Adapted
from reference 4.

where E, isthe centre of the distribution and o is the width.

The existence of an exponential distribution of localized states in the mobility gap of
disordered inorganic materials is supported by the experimental observation of anomalous
dispersive characteristics as obtained from transient photodecay techniques, such as time-of-
flight experimentss. This technique allows to study the time dependence of the photocurrent
density I(t) following carrier excitation by means of a short pulse of illumination and then
extract the dispersion of transit times for charge carriers. Conventional dispersion of the form
of the left panel of Fig (2.3) isrelated to carriers that move exclusively in extended states. This
dispersive characteristics, associated with random variations in the transit time of individual
charge carriers, result from a Gaussian profile of a discrete packet of carriers that
progressively becomes broader (Fig (2.3) right panel). Hence, this transport regime is often
called Gaussian transport.

The behaviour exhibited in non-crystalline solids differs considerably. In this case, asit
can be seen in the left panel of Fig. (2.4), the photocurrent appears to decrease continuoudy
with increasing time over the whole time range of the measurement. In addition, the spread of
arrival times of individual carriers at the electrode, reflected in the behaviour at times greater
than ¢4 is much greater than expected from conventional theory. Even at times greater than ¢,
the magnitude of the current is such that it suggests that a significant number of carriers
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Fig. (2.4). Time dependence of photocurrent density I(¢) (left panel) on a double-
logarithmic scale and time evolution of the distribution of carriers (right panel) for the case
of anomalous dispersive transport. Adapted from reference 4.

remain within the system. Representation of the curve on a double-logarithmic scale (Fig.
(2.4), left panel) involves two approximately linear regimes where it is possible to determine a
time related to the change in the slopes (¢;;). Thus, one can describe both regimes of I(¢) in
the form

I (t) oc t—(me) (0 <t <ty)
(2.9

I(t) oct=(Fe2)  (t >4,

where a; and ap are smaller that unity and often identical.

In the right panel of Fig. (2.4) it is shown that the broadening is much more
pronounced, and a significant number of carriers remain localized close to the top electrode
even when other members of the distribution have approached or reached the extraction
electrode. The observed dispersion of transit times was first explained by Scher and Montroll?.
They suggested that the continuous random walk of a charge carrier could arisein aregimein
which carriers would move only between localized states and, thus, would undergo successive
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trapping events during their random walk. Afterwards, Pollak8 showed that the broad
dispersion of transient times could only be explained if there was in turn a broad energy
dispersion of traps.

2.2. Charge transport in disordered semiconductors

In accordance with the energy bands model described in the previous section charge
carrier transport in non-crystalline semiconductors can be possible either via extended states,
via localized states states or a combination of both. The motion of charge carriers through one
or other type of states depends on the temperature of the system. On the one hand, at
sufficiently high temperatures (as compared with the characteristic temperature of the DOLS,
Tv), alarge number of electrons are found in extended states and hence, they dominate charge
transport. In this case charge transport is similar to that of crystalline semiconductors. On the
other hand, at lower temperatures, the concentration of electrons in extended states decreases
exponentialy so its contribution to transport decreases. Instead of this, tunnelling transitions
of electrons between localized states with the assistance of phonons become significative. This
regime is called hopping transport and it is known to occur in many applications of interest at
working conditions.

2.2.1. Hopping transport

Charge conduction via tunnelling transitions between traps is produced at a range of
temperatures where carriers are excited to intra-band gap localized states. At this point, a
charge carrier jJump from alocalized state ¢ to a lower in energy localized state j depends on
the spatial separation r;; between sites; and j as

Vij b= o exp {— (2’”“)} (25)

where we assume the localization radius, «;, to be equal for sites ¢ and j. The prefactor vy is
usually called the attempt-to-jump frequency. It is simply assumed to be of the order of the
phonon frequency ~10% s?, athough larger values of 1y are often necessary to adjust
experimental data. Hence, this factor is frequently considered as a fitting parameter.
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According to the hopping model when an electron performs a transition upward in
energy from a localized state ¢ to a localized state j higher in energy, the transition rate
depends on the energy difference between the states. This difference has to be compensated,
for example, by absorption of a phonon with the adequate energy.

o] (2] (58]

Both formulas (2.5) and (2.6) can be condensed in one:

y E;, — E; +|E; — E;
vij T= 1o exp {— (25—;)] exp {— ( J 2;:BT] )] 2.7)

Thisis the well-known Miller-Abraham formula® and was written for the case in which
electron occupies site ¢ whereas site j is empty. If the system is in thermal equilibrium, the
occupation probabilities of sites with different energies are determined by the Fermi-Dirac
statisticss. With the help of Eqg. (2.7) the problem of the theoretical description of hopping
conduction can be easily formulated and applied to a considerable amount of materials and
devices, like new generation solar cells. The key issue is commonly to calculate the
conductivity or the diffusion coefficient produced by transition events described by Eq. (2.7)
for agiven distribution of localized states.

Two limiting cases can be distinguished in hopping systems. nearest-neighbour
hopping and variable-range hopping.

1. Nearest-neighbour hopping is produced when the states are strongly localized and the
inequality N;o;® >> 1 is fulfilled. In such case, hopping can be produced between nearest-
neighbours provided that the temperature of the system is high enough. This type of transport
takes place in many real systems. When nearest neighbour hopping is the dominant
mechanism, transport is mainly determined by the spatial termsin Eq. (2.7). Therefore charge
transport is extremely influenced by the average number of neighbouring sites and percolation
effects has to be taken into account in order to determine transport properties.

2. Variable-range hopping is produced at low temperatures with respect to the characteristic
temperature of the DOLS. In such case, nearest-neighbour hopping decreases and jumps
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Energy

\j

Space

Fig. (2.5). Types of hopping transport between localized states. Transitions (1) and (2)
correspond to nearest-neighbour hopping and variable-range hopping regimes respectively.
Adapted from Figure (2.4) of reference 3.

between two sites with smaller energy differences become more probable. The most efficient
transitions for transport in this regime are given between states with energies in the vicinity of
the Fermi level, since only in this energy range filled and available states with close energies
are found. The conductivity temperature dependence for this limiting case, given by Mott, is
characterized by a 7—/4 behaviour.

The transport energy concept

We will focus now on the exponential DOLS (Eq. (2.2)). In this case the concept of the
transport energy is commonly useful. This is defined as a particular energy level below the
mobility edge that maximizes the probability of upward transitions independently of itsinitial
energy. Under some assumptions, it is useful to discriminate those localized states that
effectively contribute to the transport from those that not.

The important role of the transport energy in an exponential DOL S was first pointed
out by Grinewald and Thomast. They came to the conclusion that the vicinity of some
particular energy level dominates the hopping transport of electrons in the DOLS. In parallel,
Monroe2 showed that an electron, starting a relaxation process from the mobility edge, after
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Fig. (2.6). lllustration of hopping conduction in the framework of an exponential DOLS. A
hopping process via the transport energy (shown in blue) is produced.

making a series of hops downward in energy, changed its behaviour at some particular energy
E:r, which he called the transport energy and that was finally recognized to be the same
energy level than that discovered by Grinewald and Thomas for equilibrium hopping
transport.

The classic way of computing the transport energy can be obtained by considering the
expression for upward hops in the presence of an exponential DOLS and then finding the
energy difference § which provides the fastest typical hopping rate for an electron placed

initially at energy E;. According to Eq. (2.6) the typical rate of an upward hop of a carrier with
energy F; can be expressed as

vig 1 (B, 6) = v exp [_ (%)] exp [_ (kBLT)] 29

where 6 = E;— E; and r(E) is the average distance of traps for energies below E:

38



Chapter 2 Disordered semiconductors

r(E) =

— 00

. —1/3
% / dxg(x)] (2.9

So, the energy difference ¢ that provides the fastest typical hopping rate for an electron placed
initially at energy FE; can be determined by the condition %(5155) = 0. Using Egs. (2.2) and
(2.8) the maximum hopping rate is obtained as follows?3.

3kpTy(47/3)/3N 2oy

§ = 3kpThl _E
Skploln 2% T

(2.10)

We see from Eq. (2.10) that the fastest hop occurs to a state with energy in the vicinity
of the transport energy, independently of the initial E;. The first term in the right-hand side of
Eq. (2.10) determines the classical value of the transport energy FEi.

3kpTy(47/3)/3N 2y

E;. = 3kgThl
o = 3kpdoln kg

(2.11)

An aternative derivation of the transport energy is due to Arkhipov and coworkers.1415
This procedure, which has been put into question by Baranoskii, is based on computing
averages of the hopping frequencies expressed in Eg. (2.6) times the density of localized states
over the whole energy spectrum. For energies well below the band tail, the averaging of
Arkhipov proves to be independent of the starting site, and this leads to the definition of a
transport energy that determines the behaviour of the mobility.

The concept of effective transport energy, in the definition of Arkhipov's theories, will
be specialy relevant in this thesis. The necessity of introducing this concept is easly
understood if we consider that after an energetically upward jump into a hopping site, which
belongs to the transport level, a carrier will make several downward jumps to different states
from the starting one. However, as the target site is still a localized state it has only a few
hopping neighbours accessible for the next jump. Therefore, the starting site can inevitably be
one of those states, and it is quite possible that, after an upward jump, a carrier could return to
the initially occupied deeper site contributing to neither transport nor energy relaxation.
Therefore, Arkhipov and coworkers415 argued that one must distinguish between the energy
level onto which occur the most probable jumps from deeper traps (Baranovskii's thesis) and
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the effective transport level, which is the one that will most probably draw the carrier awvay
from the initially occupied state, avoiding backward jumps. We will show in Chapter 4 that
this effective transport energy is the one that governs the behaviour of the mobility and the
diffusion coefficient

2.2.2 Multiple-trapping model

When it is assumed that tunnelling transitions of carriers between localized states are
less probable than transitions between localized and extended states then the carrier transport
and energy relaxation can be easily described in the framework of the so-called multiple-
trapping model. In this model, it is assumed that localized states do not contribute to the
transport and carriers can move only via extended states above E.. The role of localized states
is then to slow down charge carriers by a succession of trapping-detrapping events.

One can express the release rate of an electron placed in a localized state with energy
Fas

> [

- . - {exiended stales)

E. TRANSPORT LEVEL

—_— \THAF’S

{localized stales)

I_-_..,
|...___

—_—— e = = = = = = — =

Fig. (2.7). Multiple-trapping mechanism of transport. Charges move through extended
states but conduction is slowed down by successive trapping/detrapping events.
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v(E) = vo exp (. — E) /kpT| (2.12)

This model is widely used for interpretation of many transport properties in disordered
semiconductors. In the context of the study of nanostructured materials used in novel devices,
the question of whether multiple trapping approach can be applied is still openeds”. One
reason is that the particular morphology of this type of materials may prevent for the existence
of extended states and therefore favour carrier jumps vialocalized states, according to hopping
model. Anyway, it appears as a good approach in the sense that can explain, without the need
of a more complex model, the characteristic dispersive charge transport that many disordered
semiconductors exhibit and that appear in nanostructured solar cells, as we discussed above.

2.2.3. Electron diffusion coefficient in disordered media

In this section we describe the properties of the electron diffusion coefficient for
activated transport in disordered materials. Experimental observations have demonstrated that
values of the chemical diffusion coefficient in non-crystalline and nanocrystalline
semiconductors lie severa orders of magnitude below bulk (single crystal) values'®®. On the
other hand, it is found that diffusion is strongly dependent on the electron density, with larger
values found when the electron concentration is increased, either by illumination or by
application of an external voltage2-23. This non-linear behaviour is caused by the fact that
Fermi level moves in the band-gap as carriers density is increased so the cost of releasing a
carrier to the transport level (either extended states or transport energy level) is significantly
modified according to the occupation of the localized levels. This is the so-called trap-filling
effect: as more electrons are added to the system, deep traps become filled and force electrons
to move through shallower traps thereby enhancing charge transport.

In crystaline semiconductors, where electron transport only takes place in the
conduction band, experimental information on the bulk diffusion is often derived by Fick's
law, that relates the current density J. to the gradient of the electron concentration.

J, = —D.Vn, (2.13)

where n. is the conduction band electron density and D. is the conduction band electron
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Fig. (2.8). Electron diffusion coefficient with respect localized electron density. Adapted
from Fig. 6 of reference 25.

diffusion coefficient in the bulk (note that if there is drift component, this should be added to
compute the total current density, as explained in Chapter 1, Eq. (1.6)). In contrast, in
disordered semiconductors, where either hopping or multiple-trapping transport dominate
diffusion, Eq. (2.13) is not valid, what makes more difficult to determine transport properties.
Nevertheless, an analytical expression for the chemical diffusion coefficient of electronsin the
presence of a distribution of localized states can be derived on the framework of the multiple-
trapping model. Firstly, we state the equations of conservation for electron density in both
extended and localized states assuming that are unmobile in localized states.

88?16 =—VJ,—rc+ 1,

(2.14)
8nl
Bt =T —Tp

where r. and r, are the rates of capture and release of traps respectively.

If we assume that free and trapped electrons maintain always a therma quasi-
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equilibrium even though the system is externally perturbed by, for example, a change in the
illumination intensity, it is then possible to apply a model due to Bisguert and Vikhrenko?. In
this formulation, the diffusion coefficient can be expressed as a function of the Fermi level,
Er. The model state a quasi-static condition by which free and trapped electrons maintain
always an internal equilibrium. They have a common value of the Fermi level as long as a
these particular evolution of the system is fulfilled

ony(t)  Ong One(t)
ot On. Ot

(2.15)

where dn;/0n. is a time-independent factor usually called trapping factor (¢;). With these
considerations, a complex problem of diffusion in the presence of trapping effects can be
reduced to an effective Fick's law diffusion of electrons in the conduction band. Indeed, if we
take into account Egs. (2.14) and (2.15) we obtain the following expression

on. ong\
v (1 + 8nc) =-VJ. (2.16)

So, we can reformulate Eq. (2.13) using an effective current density J,,
Jn = —D,Vn, (2.17)

where the chemical diffusion coefficient D,, is defined as4.26

ong\
D,, = (1 + ‘) D, (2.18)
on.

If the approximation on;/dn. >> 1 is fulfilled (what is accomplished in most of the
cases in which there exist trapping effects in the dynamics) we obtain

D, = (3”0) D, (2.19)
871[

In a recent work?” this equation has been used to construct a continuity equation for
electronsin a DSC.



Disordered semiconductors Chapter 2

In this thesis it is important to make a distinction between the chemical diffusion
coefficient, D,,, and the jump diffusion coefficient D;. The former has already been defined as
the diffusion of carriers as response to a change of the chemical potential in the disordered
network. It is a collective quantity that depends on the overall carrier density (in fact it is
commonly called the collective diffusion coefficient in Physical Chemistry textbooks). On the
other hand, D; is an individual property of the carrier, athough it might be affected by
interactions with other carriers. It is analogous to the self-diffusion coefficient normally
utilized in Physical Chemistry. The jump diffusion coefficient is determined by the random
walk of charge carriers by calculating the mean-squared displacement

1

<r¥ () >= 5 D () = zOF + [yi(t) = 5: 0 + [z:() - z:(0)")  (220)

3

where x, y and z represent the absolute coordinates of the carriers and N is the total number
of carriers. The relationship between these magnitudesis linear in normal diffusion processes.
In these cases, the mean-squared displacement behaves as a linear function of time and the
jump diffusion coefficient can be expressed as follows

Dj=— <7r%t) > (2.21)

In some cases, nevertheless, there is at first a given time during which the mean-squared
displacement is not a linear function of time. When this occurs, the process is called
anomalous diffusion? and Eq. (2.21) should be modified by introducing a power exponent
which isusually smaller than unity.

The jump diffusion coefficient is the magnitude that actually can be computed by
simulation and therefore it is essential for the results presented in this work. D; is often
expressed also as?e-3t

D;=<v><r’> (2.22)

in terms of a mean effective jump frequency < v >, and the sguare of effective jump length
< r?>. This equation also takes a numerical prefactor of order 1 depending on the
dimensionality. The relationship between chemical and jump diffusion coefficients is given by
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the following expressi on3o32
Dn=xnD; (2.23)

where x, is called the thermodynamic factor and it is found to be equal to

n on \ !
Xn = kB—T <E) (2-24)

Actually, the definition of , is often given in terms of the chemical potential, x4, so Eq. (2.24)
isonly valid if we assume that the conduction band position is not modified by a displacement
of the Fermi level and therefore O = OEr. Note that in Eq. (2.24), n is the total electron
density (n.+ n;) and can be determined by integration

n— / " (EVF(E — Ex)dE (2.25)

where f(E— EFr) isthe occupation probability and is given by the Fermi-Dirac distribution

1

fE =B = 1+ exp [%]

(2.26)

Diffusion coefficient in exponential DOLS

In the following an analytical expression for the chemical diffusion coefficient will be
derived considering a system with an exponential DOLS given by Eq. (2.2). We will proceed
by calculating the trapping factor §; = dn;/0n. in Eq. (2.19). First of al, from Egs. (2.25) and
(2.26) we can compute the total electron density with respect to the Fermi level for this
particular distribution

0 Ep Ep
k N Er—E,
— E)f(E — Eg)dE = E)dE = e
n /_Oog( ) ( r)d /_OO g(E)d /_OO T eXp{ T }
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Er — E,
= Njexp lFi]

kgTo

where we have used the zero-temperature limit of the Fermi-Dirac distribution. This equation
shows that the total density is an exponentially increasing function of the Fermi level. Now, we
can state that in the context of the multiple-trapping model, n;, >> n., and therefore n = n;.
Hence we can use an expression for the density of localized states as a function of the Fermi
level

Er — E.

2.27
oTo (2.27)

n; = Njexp [

| - o[ 25 £

kT

where we have used « = T/T) for the second equality. On the other hand we can assume that
the density of free electrons can be well described by Boltzmann statistics provided that
E.— Er >> kgT (Fermi level well below the transport level)

(2.28)

Er — F
ne = Ne.exp [7< ZBT C)}

where N. isthe effective density of states of electronsin the conduction band.

We are interested in determining the trapping factor as a function of both the Fermi level and
the density. For the latter, we continue by calculating the localized electron density derivative
from Eq. (2.27).

8nl . Nl
0Er  kgTp

Ep — EC}

2.29
o To (229)

exp {

We obtain the DOLS at the Fermi level (see Eq. (2.2)). Similarly, from Eqg. (2.28), the
conduction band electron density derivative with respect to the Fermi level takes the form

(2.30)

one N, o Er — E.
pr— X e ——
9Er kel 2| kpT

And then, from Egs. (2.29) and (2.30)
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8?10 NCTO 1 1
_ Ep—E) ([ — — 2.31
o~ NT P [( ! )</~cBT k:BToN (23D

The inverse of last equation can be derived directly if we take into account the two expressions
for the free and localized el ectron density. Thus, from Egs. (2.27) and (2.28)

ne (2.32)

and then, one obtains by differentiatting Eq. (2.32)

on;  aN a1
on. No ¢

c

(2.33)

With these considerations, aternative anaytical expressions for the chemical diffusion
coefficient D,, as a function of the Fermi level and the electron density can be finaly
obtained. On the one hand, taking into account Egs. (2.19) and (2.31), we obtain a first
expression in terms of the Fermi level, which takes the form33

NCTO
D, =
" NT

exp {(EF ) (kBiT - kBlToﬂ D, (2:3)

On the other hand, considering again that n ~ n;, the following expression for D, can be
inferred from Egs. (2.19) and (2.33)

—n'e" D, (2.35)

This is an important relation, as the total density is an experimentally accessible quantity.
Anyway, from this equation, one can also obtain an expression for D,, as a function of the
density of electrons in the extended states n.. We just must take into account Egs. (2.32) and
(2.35) and use again that n ~ n;

D, = net %D, (2.36)
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Now, It is convenient to obtain an analytical expression for the jump diffusion coefficient D,
asit isthe quantity that we will be determined numerically by simulation. For that purpose, we
have to determine first the form of the thermodynamic factor for an exponential distribution.
Thus, considering again that n ~ n;, we can conclude from Egs. (2.24) and (2.29) that y, is
constant for an exponential DOL S and takes the form

1o

Hence, according to Egs (2.23), the jump diffusion coefficient D, as a function of the Fermi
%

N, 1 1
D, = Neey {(EF B (—kBT - kBTO)}DC (2:38)

The concepts introduced for the multiple trapping model can be easily extended to any
approach, like hopping transport. As we discussed before, the theory of diffusion often allows
to separate the kinetic or jump diffusion coefficient in two factors, according to Eg. (2.22).
With the help of the transport energy concept, Eq. (2.22) provides a useful approach to obtain
analytical expressions for hopping transport as a function of Fermi level. Thus, introducing the
classical value for the transport energy and taking into account Egs (2.2) and (2.22) the jump
diffusion coefficient as afunction of the Fermi level can be calculated usings234

1 1

w_ 9., T 1
kT kply

Ty
— 51— e | 32 — (Eir — Er) (

D; )} a’ve (2.39)

We see that this theoretical expression predicts an exponential behaviour with respect
to the Fermi energy, in analogy with the multiple-trapping result as long as the transport
energy can be considered constant. In the context of a DSC, the Fermi level dependence of the
diffusion coefficient predicted by both Eqg. (2.38) and (2.39) is observed experimentally.
Therefore, further investigation is needed to establish which is the actual transport mechanism
involved in these devices. In Chapter 4 thisissue will be analysed in detail.
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2.3. Recombination in disordered semiconductors

Recombination via intra-band localized states is the most common charge loss
mechanism in disordered semiconductors. We presented in Chapter 1 the rate corresponding to
SRH recombination in the presence of a single localized state (see Eq. (1.9)). The description
of arecombination model when a quasi-continuous distribution of trapsis involved is however
a more complex problem. In this regard, it is useful to make a distinction between different
traps according to whether a trap can adopt or not the role of a recombination centre. Thus, a
trap will be act as a recombination centre when the rate for the capture of a carrier with the
opposite polarity is comparable or larger than the release rate by thermal activation (multiple-
trapping or hopping model). The so-called demarcation levels, defined by those energies at
which both rates are equal, have been widely used for modelling of recombination
mechanisms in disordered semiconductors*®. Since release rates decrease as traps move
further away from the mobility edges, electrons and holes situated between their respective
demarcation levels, Eq,, and Eq,, would have a higher probability of recombination than that
of release from their traps. As a consequence, there is a gap, between Eq4, and Eq,, where
traps effectively act as recombination centres and recombination takes place with alarger rate.

These concepts, defined in general for trap-assisted recombination, actually depend on
the properties of the particular system considered. Therefore, specific recombination models
have to be formulated. A widely used recombination model for disordered semiconductorsis a
distance-dependent radiative recombination mechanism via localized states. This model is
connected with the previous description and assumes that the creation of an electron-hole pair
is immediately followed by a trapping of both charges by localized states placed in the
mobility gap. Hence, if both charges are located between demarcation levels they can undergo
recombination from these states with atransition rate given by the following expression?

2R,
v (R) = 74" exp (— il p) (2.40)

where the prefactor is of the order of the typical dipole radiative rate ~ 108 s'! and R,, is the

electron-hole pair separation. Note the analogy of Eg. (2.40) with the hopping model of Eq.
(2.5).

Another classification of localized states can be made in terms of their different type of
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involvement in transport and recombination events. In the one hand, we can define shallow
states as those traps characterized by very small ionization energies (in the order of phonon
energies). On the other hand, we call deep states those having much higher ionization energies
where capture of carriers usually involve multiphonon transitions. At room temperatures, from
a statistic point of view, whereas electrons and holes trapped in shallow traps are reemitted
with high probabilities into delocalized states, charges located in deep traps are not released
easily so spend much more time immobile. Moreover, shallow states are often empty traps
located close to the mobility edges while deep traps are located below the Fermi levels (above
in the case of holes). Aswe will seein Chapter 6, both types of traps can act as recombination
centres in some disordered heterogeneous systems.

2.3.1. Recombination in dye-sensitized solar cells

It is widely reported in a DSC that 7, decreases as illumination intensity or forward
bias is increasedss. This behaviour has been related to a progressive filling of traps in the
nanostructured semiconductor as the light intensity is augmented. In this sense, an expression
for the effective electron lifetime was proposed in relation with the free electron lifetime .,
that is, the lifetime in the absence of traps¥.

Tn = Te <1 + 8nl) (241)
on.

Eqg. (2.41) is derived within a model that assumes the rate of recombination depends
linearly on the free electron density3. In addition, it is assumed that capture and release rates
are much faster than response times in typical experiments® (quasi-static approximation). In
the case in which dn;/dn. >> 1, EQ. (2.41) adopts the form

=T, (ggl) (2.42)

Thus, as the trapping factor 6; = dn;/0On. is positive and larger than unity, we can
observe that the resulting electron lifetime 7, becomes larger that 7., what is intuitive in the
sense that trapping effects reduce the probability of recombination in extended states.
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Fig. (2.9). Electron lifetime as a function of localized electron density. Adapted from Fig. 6
of reference 25

Assuming now that the DOLS in the TiO, has an exponential function as described in Eq.
(2.2) the following expression can easily be derived from Eq (2.33)24,

alNy _
Ty = a—1

~ S (2.43)

Hence, one obtains a power law with respect to the free electron density. As for the electron
diffusion coefficient, the electron lifetime can be expressed in terms of the total density.

Indeed, taking into account Eq. (2.32) (and bearing in mind again that n ~ n;) the following
relation is easily derived.

noe T, (2.44)

Agan, a power law with respect the total density is derived, as normally found in the
experiments¥.
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An equivalent circuit corresponding to the main processes of a DSC is often utilized®.
In this context, the concept of recombination resistance R,.. is usualy introduced

1 aUvrec !
Rrec - qL—A< (9EF ) (245)

where U, IS the recombination rate, L is the thickness of the film and A is the cell surface
area. If we assume that recombination rate is linear with respect to the free electron density,
that is, Uy = krn., then the recombination resistance adopts the following form

(EF - Eredoz)
kgT

Ryec = Roexp | — (2.46)

where FE,.q0. IS the redox potential of the acceptor species in solution and Ry is the
recombination resistance of a DSC in absence of illumination (Er = FEredor). Note that to
derive Eqg. (2.46) we have used the following relation between the free electron concentration
and the photovoltage, V = ¢ (Er — Eredox)

(2.47)

o |:(EF - Eredoac):|
Ne = N €XP

kpT

being no the electron density in the dark (see Eg. (2.28).

Eq. (2.46) describes the same effect than that of the electron lifetime, this is, the
recombination resistance decreases as electron density increases, what augments the
recombination rate. However, athough the same dependences are observed in measurements
of a DSC, recombination resistance curves with respect to the voltage usually show slopes
different from the thermal voltage k5T q:

ﬁ (EF - Eredo:n)
kT

Ryec = Roexp | — (2.48)

where 3 is a dimensionless parameter. Values of (3 obtained from impedance measurements in
a typica DSC are in the order of 0.5-0.73°40, meaning that the recombination rate is not
simply proportional to the conduction band electron density but expressed as
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U, = knf (2.49)

where &, is a kinetic constant with units of e¢m 3 s1. This non-linear behaviour of the
recombination rate with respect to the conduction band electron density has been related to the
fact that, as well as recombination through extended states, other channels of recombination
are present in parallel in a DSC, for example direct charge transfer of electrons from a
distribution of localized states close to the interface. Specifically, it has been proposed a
charge transfer mechanism341 from an exponential distribution of surface states in the oxide
gs(E), given by EQ. (2.2). The model also assumes that the probability of electron transfer at
the energy level E in the oxide to the distribution of acceptor species in the electrolyte is
governed by the Marcus-Gerischer model42 and takes the form#3

2ckpT o | (E — Eredor — \)?
JINeRT P ANepT

Vrec (E) = ko (250)

where ky is atime constant for tunnelling, which is dependent on the distance of the acceptor
to the surface and ¢ the concentration of oxidized species in the electrolyte. The parameter A
represents the outer sphere reorganization energy, that is the activation energy for the process
of transferring the solvation shell structure from equilibrium condition of the oxidized species
to the most probable structure of the reduced species (or viceversa). This parameter is equal
for both reduced and oxidized species so that

Eredo:z: - Eom — A= Ered + A (251)
where E,, and E,.q are the most probable energies for the unoccupied and occupied statesin

solution, respectively (see Fig. (2.10)). An expression for the outer sphere reorganization of a
redox-active ion at a semiconducting el ectrode can be calculated by the expressions445

P A S S S £ el S ko § (252)
8meg |7 \n2 € 2R\ n? +n2n2 n?+e2e?

where ¢ is the vacuum permittivity, r is the radius of molecules, R the distance between the
electrolyte and the electrode, ns and ¢, are the refractive index and the static dielectric constant
of the solvent, respectively and n.; and e; the dielectric constants of the electrode material (n.;
= 2.5 and ¢.; = 86 for anatase TiO,).
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Fig. (2.10). Diagram illustrating the exponential distribution of donor states in the oxide and
the Marcus-Gerischer transfer probability to the electrolyte.

Thus, in terms of this new charge transfer mechanism, the recombination rate can be
calculated as*

E.
Uree = / 95 (E)F(E — Ep)vrec(E)E (2.53)

Er(:do:l:

The corresponding expression of the recombination resistance from EqQ. (2.53) is then43,

(EF - Eredo.r - A)Q . EF - Ec
A\kgT keTy

Ryec(Er) = R exp (2.54)

where R’y is a constant. After a mathematical treatment and under the approximations
Er << Xand Er << A(1 + 2a) one obtains
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(EF - Eredo:r)

Rrec(EF) - Rg exp _6 k‘BT

(2.55)
with
1
g = 3 +a (2.56)

so we obtain the same dependence of the recombination resistance than that given by
Eg. (2.48). In this model, the recombination resistance decreases exponentially as a
consequence of an increase of both density of donor states (Eg. (2.2)) and charge transfer
probability v.. due to an increasing voltage. It isimportant to remark that eventualy v.. may
decrease at higher voltage, provided that Marcus inverted region is reached. In this situation
Eq. (2.55) is not longer valid and we should use Eq. (2.54). In Chapter 6 we will use RWNS to
describe recombination kineticsin a more general situation without approximations.

2.3.2. Diffusion length concept

Diffusion length was firstly introduced by Amaldi and Fermi in 1936 in the context of
neutron diffusion in paraffin samples as the distance that “a neutron will diffuse before it gets
captured by a proton”4. The diffusion length appears in the solution of the 1-D diffusion
equation with a single recombination term governed by a certain lifetime 7,,. The solution of
this equation is exponential, with the diffusion length occurring in the exponent: exp(—x/Ly).
L, is aso the first moment of the probability distribution function, which shows that this
parameter corresponds to the average vaue of the distance traveled by the particles before they
disappear by recombination.

In the context of electron transport, L, is acrucia parameter for any system in which
diffusion is the main transport mechanism. For instance, it is widely utilized in DSCs. The

diffusion length is commonly determined by independent measurements of the electron
diffusion coefficient D,, and the electron lifetime 7,,, according to*

L, = \/Dyp7n (2.57)

It is wal-known that, in contrast to both electron diffusion coefficient and lifetime,
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whose values cover a wide range of order of magnitudes with an increasing density, diffusion
length values are usually maintained in the same order of magnitude. In the context of
previous models, we can see from Egs. (2.19) and (2.42) that there is a compensation effect
when the diffusion length is calculated. Thus, eectron diffusion length of Eq. (2.57) adopts
the following form

L, =+/D.. (2.58)

which is constant with electron density. Similarly, for the case of an exponential distribution of
states, applying Egs. (2.36) and (2.43) a constant diffusion length is again obtained due to the
fact that the same factor lies in carrier equilibration for both chemical diffusion coefficient
(D) and lifetime (7,)24. A more intuitive explanation of this compensation behaviour is based
on the assumption that recombination is transport-limited4-% so that the recombination
constant (the inverse of the lifetime) should be proportional to the diffusion coefficient. This
implies that the product contained in Eq. (2.58) should remain constant upon variations of the
Fermi level since diffusion and recombination have exactly the same Fermi level dependence.
In other words, if the system diffuses more quickly it also recombines more quickly, so that the
diffusion length remains constant.

However, increasing diffusion lengths with respect to the Fermi level have been
reported in recent experiments in DSCs#5, To solve this problem a reinterpretation of EQ.
(2.41) has been made in terms of the effective free electron lifetime, 7 3952

Tn = Tf (1 + gzl> (2.59)

where 7 is calculated taking into account the non-linear recombination rate given by Eq.
(2.49)%52

_ Ll
Tf = 5]67» exp ]{BT

(EF - Eredox) (260)

Hence, Egs. (2.59) and (2.60) lead to a Fermi level dependence of the electron lifetime
Tn given by3®
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(2.61)

Tn ~ €XP [(Oz —B) &]

kT

which predicts an increase of 7, with respect to the free electron density but with an slope
different than that given by Eqg. (2.43).

With these new expressions it can be seen that factors in Egs. (2.34) and Eq. (2.61) do not
compensate so Eq. (2.57) leads to a non-constant diffusion length with respect to the Fermi
level, given by

1-— B EF - Eredom
b (152 () -

In a recent paper it has been pointed out that the diffusion length, defined as the
average value of the distance travelled by electrons until a recombination event occurs, is
equivalent to the diffusion length obtained via Eq. (2.57) using a D,, and a 7, obtained by
small perturbation methodss2.
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CHAPTER 3

Random Walk Numerical Simulation

The Random Walk Numerica Simulation (RWNS) method is presented in this
Chapter. We firstly review the most relevant studies that have been carried out by
means of the RW method. Later on, we describe in detail the basic functioning of
the RW agorithm. The advantages of using RWNS to study disordered
semiconductors with a broad dispersion of energies are discussed. We provide
details of the most important properties of the simulation method and relate then
to the dynamic models discussed in Chapter 2. The specific boundary conditions
utilized in the calculations are also described. Finally, we describe the main
properties that can be obtained from the calculations. Thus, extraction of energy
level populations as well as dynamics properties, like the diffusion coefficient, the
lifetime and the diffusion length are outlined.
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3. Random Walk Numerical Simulation

3.1. Simulation and modelling

The use of electronic computing machines as a vauable method of research is well
established. Its benefits are to gain insight in the internal mechanisms, which are not available
to measurements, and therefore to enable interpretation of them. In addition, simulation and
modelling provide information for improvements in device applications suggesting proper
strategies. The recent rapid progress of performance of computers has alowed an inexpensive
way to research in this direction. Among other techniques, the Monte Carlo method, based on
the massive generation of random numbers, has been extensively applied in Condensed-
Matter Physics and Theoretical Chemistry.! The Monte Carlo method provides a way to
replace the solution to a particularly difficult analytical or numerical problem by proposing a
suitable algorithm based in random numbers. This algorithm is then fed to a computer so that
the difficult numerical work is done by the machine and valuable physical information can be
obtained as a results of a thorough analysis.

Current research on new architectures for low-cost photovoltaic devices based on
disordered materials and the boom in nanotechnology provides new exciting fields in which to
apply computer simulation methods. An useful route to study the carrier transport in these
photovoltaic systems is to use random walk numerical simulation (RWNS), a type of Monte
Carlo simulation. It is useful for those cases in which one is interested in geometrical details
of disordered semiconductors, for example, in the influence of a particular morphology on
transport and recombination magnitudes. Likewise, it is specially suitable to study
characteristics of materials from first principles in amorphous or nanostructured
semiconductors. The main reason consist on the fact that RWNS allows, without huge
computational demands, for a flexible description of randomly localized states with a broad
dispersion in energies, what is crucia for the understanding of the transport and
recombination in these devices, in the long time and spatial scales.

The use of RW methods to study charge transport in disordered materials goes back to
the early eighties, mainly due to the works of Movaghar, Béssler, Baranovskii and coworkers?5
who used this simulation technique to test the validity of analytical results to describe hopping
and trapping processes. The famous 1993 work of Bassler2 illustrates the utility of the RW
method to describe conduction in organic semiconductors. The applications to modelling of
nanostructured TiO, solar cells were pioneered in 1999 by Nelson, who adapted the
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Continuous Time Random Walk (CTRW) theory of Scher and Montroll to design a RW
simulation algorithm that sampled efficiently the trap energy distribution characteristic of
nanocrystalline titanium dioxide. Later on, RW calculations have been efficiently used to study
electron mobilities’, diffusion coefficients-1© and recombination propertiest-3 in dye-
sensitized solar cells. It has also been applied to obtain surface photovoltage trans ents415,

3.2. Main features of the random walk numerical algorithm

The RW simulation methods01617 js a stochastic calculation in which particles are
moved at random in a 3-dimensiona network of traps arranged on a lattice not necessarily
ordered. In the most simple version traps or sites are randomly distributed in space with the
same average distance, athough, as we will see, more complex configurations can be
implemented®®,. RW methods allow for an analysis of different spatial disorder or
morphologies, as well as different degrees of energy disorder in the studied material.

Energy disorder in a RW simulation is considered by making the traps to conform to an
arbitrary distribution of energies. For example, it is possible the implementation of the two
typical densities that are encountered in most of inorganic and organic disordered materials,
I.e., Egs. (2.2) and (2.3). In this thesis we will focus on the exponentia distribution because,
besides we deal mostly with inorganic materials, where exponential functions are generally
assumed20, it has been argued than a band tail can be also considered for organic solar cells
when the Fermi level is well below the mobility edge (i.e. low carrier densities)2.22, This has
also been demonstrated in nanocrystalline TiO, by Anta et a.” These authors used gaussian
distributions to model the distribution or energies and found that, at realistic electron
densities, only the tail of the distribution determined the behaviour of the conductivity. Hence,
each trap ¢ will be associated to a particular value of energy FE; according to Eq. (2.2).
Moreover, the procedure for the assignment of energies to a particular trap is at random within
this distribution so that no energy correlations between neighboured traps are considered.

The random walk method works by giving to each trap a release time according to a
certain expression that depends on the model we use to describe the transport process. This
way, RW simulation makes it possible to implement a specific mechanism of transport (the
model) and check, from first principles, how the dynamic properties (diffusion coefficient,
electron populations, recombination rates and so on) depend on the microscopic structure of
the material, that is, the particular distribution of localized states and the morphological
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features. In the context of solar cells applications!®!'*!7, two alternatives are relevant and can be
used for the computation of the release times, following models previousy described in
Chapter 2: hopping and multiple-trapping. In both cases, the transport implies that detrapping
isthermally activated with the trap energy being the activation barrier.

If we use the multiple-trapping model2-25 the release time to the transport level ¢; is
given by

t; = —In(R)toexp [(E. — E;)/kBT)| (3.1)

where R is a random number uniformly distributed between 0 and 1 and ¢y (=1/w0) is the
attempt-to-jump time. In this equation, E. is areference value of the energy that represents the
transport level (i.e., the mobility edge).

Alternatively, if we use the hopping model%-28, the release time, ¢;;, for hopping
between two sites i and 7, is calculated via®

(3.2)

where r;; is the distance between the sites, «; is the localization radius and E; and E; are the
energies of the target and starting sites, respectively. In both models, the use of a random
number R implies that different release times from a certain trap are possible. The factor
factor In(R) guarantees that the distribution of detrapping times for a single trap energy FE;
conforms to a Poisson distribution (which is the characteristic distribution for first order
relaxation kinetics governed by a single lifetime).

Actually, the release times that arise from Egs. (3.1) and (3.2) correspond to the inverse
of the frequencies or rates presented in Chapter 2 and used by some authors**. Thus,
calculations in the time domain should lead to the same results.

Basic algorithm of a RW smulation based on times

A RW simulation based on times is organized as follows:
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1. The smulation starts at time to = v ! by distributing randomly the carriersin the traps.

2. Carriers are given release times according to Egs. (3.1) or (3.2) for the energies and
positions of the sites they visit. Waiting times are then defined as the difference between the
release time of the carrier and the time already spent by the carrier in aparticular site.

3. For each simulation step the carrier with the shortest waiting time (¢.:») is alowed to
move.

4. The waiting times for the rest of the carriers are reduced by ¢,,:,. On the other hand, it is
computed a new release time for the carrier that has just moved, i.e., this carrier adopts the
release time corresponding to the trap it jumped to.

5. The process is repeated by means of subsequent movements of the carrier with the shortest
waiting time, so that the simulation advances by time steps of length ¢,,,. Thistime increment
is a variable quantity that depends on the current configuration of the system and the sites
occupied at each particular moment.

@]
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Fig. (3.1) Illustration of the random wak method employed in this work. Traps (open
circles) are distributed on a simulation box of size ar. Some of these traps are occupied by
charge carriers (grey circles). For a certain carrier (black circle), hopping times to
neighboured traps are computed but restricted to those traps within the cut-off radius 7y

that are not occupied.
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Point 5 above shows that a RW numerical ssimulation is an adaptive time-step ssimulation
procedure. The broad dispersion in energies of the sites in nanocomposites, as we can see in
Eq. (2.2), leads to a variation in waiting times of various orders of magnitude, so an adaptive
time-step is very convenient to describe transport adequately. For example, if a a given time
the shortest waiting time correspond to atrap of alow energy FE, then, the simulation advances
along time (corresponding to the release time of a very deep trap) only in one step, reducing
the execution time of the simulation. This feature of the RW method is very important,
because it makes it possible to study phenomena that occur in a very long time scale, not
accessible to atomistic or "ab initio" methods?!.

Along the simulation, each carrier must have, as well as a waiting time, a most
probable jump specified by the label of the trap it is aimed to jump to. This neighboured trap
must accomplish some conditions:

It must be located inside an sphere of a cut-off radius, r.... Therefore, given atrap 4, a
neighbouring trap j is not considered if the distance between the traps r;;, is larger than rc.:.

RW simulation is carried out with the restriction that no more than one carrier is allowed
per site. Therefore, amoveis forbidden if the trap is aready occupied.

If agiventrap isaready atarget site for another carrier, then it is not considered either.

In the case of the multiple-trapping model, the release time does not depend on the
target site (see Eq. (3.1)). Hence, the trap that finally acts as a target site is chosen randomly
among al the available traps. On the contrary, in the hopping model, the release time does
depend on the target site, (see Eq. (3.2)) and the trap that provides the shortest release time is
chosen to act as target site among the rest of the traps for a particular carrier. Note that this
process must be executed before the RW algorithm is started. On the other hand, convergence
should be ensured by choosing a cut-off radius which is long enough (but not too long, to
avoid excessive computational times).

Periodic boundary conditions along the three directions of space are applied by default
in most of the simulations carried out in thisthesis. Hence, a carrier crossing a simulation box
boundary is automatically reinjected through the opposite side of the box. Proceeding this
way, a stationary state (signalled by a constant carrier flux or a constant diffusion coefficient)
is rapidly achieved. To implement the periodic boundary conditions it is necessary to keep
records in the simulation of the absolute coordinates of the carriers, in order to compute
properties (like the mean square displacement), which depend on them.
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Fig. (3.2) Hopping transport in a packing of nanospheres. The simulation box is
periodically replicated in the three directions of space to smulate the hopping transport
(right), but real coordinates are considered to describe injection and collection (left). The
dashed line stands for the carrier generation profile, which resembles a Lambert-Beer law
for light coming on the x-direction. Black dots represent the traps on the surface of the
nanospheres

However, in Chapter 7 an study of the charge collection efficiency on a surface is
carried out, and this requires to consider charge generation in accordance to optical absorption
lengths of the order of microns. However, the use of a simulation box of the order of microns
is not computationally feasible for the trap densities characteristic of the materias studied
here. To surmount this problem we have devised a numerical procedure where the actual
distance of the carrier with respect to the collecting substrate is continuoudly stored during the
simulation. In practise, we carry out atypical smulation of an infinite system (with periodic
boundary conditions). However, in addition, the actual x-position of the carrier is also taken
into account. Thisis considered in two steps of the algorithm: (1) when carriers are injected in
the sample along x-direction according to the Lambert-Beer law (see Fig. (3.2)), and (2) when
carriers are collected at x = 0. Therefore, the fictitious coordinates arising from the application
of the periodic boundary conditions are only considered in Egs. (3.2) and (2.2), but injection
and collection are modeled according to areal coordinate. This way a macroscopic film with a
size of microns can be adequately simulated with a manageable number of nanospheres and

traps.
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3.3. Extraction of Properties From RW Simulations

Energy Level Populations

It is known that, under equilibrium conditions, the electron concentration n is
determined by the density of states g( E) and the Fermi-Dirac distribution f( E-Er), dependent
on the position of the Fermi energy Er (or on a quasi-Fermi energy in the case of stationary
excitation of electrons). This relation is given by Egs. (2.25) and (2.26). RWNS calculations
can be carried out for different electron densities in order to extract dynamic properties as a
function of Fermi level. Thus, by running a long enough RWNS calculation it is possible to
construct a histogram N(E) of the number of carriers that occupy levels of energy between E
and E+dE. From these histograms the corresponding occupancy probabilities can be
extracted. Since we implement the distribution of states g(F), we can compute the probability
of atrap of energy between E and E+dFE to be occupied by means of N(FE)/g(FE). The result
is that, as a consequence of the restriction that no more than one carrier is allowed per trap,
this probability tends to adopt the Fermi-Dirac shape”0 with a well-defined Fermi level (see
Fig. (3.3)) as the system approaches the stationary regime. It is important to notice that, in
contrast to previous studiess2-3 the Fermi—Dirac function is not imposed a priori, but it arises
naturally from the calculation instead.

Diffusion Coefficient

In accordance to the RW agorithm, carriers diffuse through the lattice of trap sites.
Thus, the jump diffusion coefficient D; can be computed from the mean-squared
displacement < r2(t) > by Eq. (2.20). The mean square displacement is observed to be linear
at longer times (normal diffusion). This allows extracting the diffusion coefficient from the
slope of the curve in the time plot according to the following expression

1 1 Y ’
D; = <<N ;An) > (3.3)

where N is the total number of carriers. Very high numerical demands are often required
when simulating systems with a considerable number of carriers and trap states. In those
cases, to compute jump diffusion coefficients (or other transport and recombination
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Fig. (3.3) lllustration of the trap energy distributions used in the multi-electron and single-
electron RWNS calculations.

properties) with a reasonable computational time, the following approximation is
implemented: the exponential distribution in Eq. (2.2) is truncated for energies below the
Fermi level, hence assuming that deeper traps are always occupied. This is the so-called one-
electron approximation that makes it possible to simulate transport at a given position of the
Fermi level with the movement of asingle carrier'. Thisideaisillustrated in Fig. (3.3).

Monte Carlo simulation has shown that the tracer diffusion coefficient, D*, which
gives the random walks of asingle particle

1 N
D* = lim <Z (Ari)2> (3.4)

=1

is practically equal to the jump diffusion coefficient defined by Eq. (3.3) in a broad range of
densities and temperatures®. RWNS results for the diffusion coefficient versus Fermi level
obtained from both types of calculations are essentially the same, which shows that collective
diffusion is equivaent to the random walk of a single carrieric. This result shows that the kind
of systems studied here behave ideally, and that carrier-carrier interaction can be neglected.
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Lifetime and Diffusion Length

In most of the work accomplished in this thesis, we have implemented recombination
of carriersin a RW simulation. Following classict317.3 and recent literatures’38 we assume that
recombination in a DSC is determined by trapped-carriers. We make a further assumption
giving a recombining character to both shallow and deep traps, as described in Chapter 2.
Thereby, all the traps in the distribution are allowed to act as recombination centre. Hence,
when a carrier reaches one of these traps, there is a probability, dependent on the specific
recombination mechanism used for each system, to undergo recombination and be removed
from the sample.

Taking into account this situation, we compute both the average time and the average
distance that a carrier is moving until it becomes effectively recombined. In order to simulate

G(E)

Fig. (3.4) Illustration of the random walk numerical procedure utilized in this thesis to
compute the diffusion length L,. A three-dimensional network of traps is distributed
randomly and homogeneously in space. The energies of the sites are taken from an
exponential distribution. A recombining character is given to an arbitrary amount of traps
(solid circles) so that, when an electron reaches one of these traps, it may undergo
recombination and be removed from the sample.
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a solar cell at open-circuit conditions and under illumination a constant carrier density is
maintained in the sample. This is achieved by imposing that when a carrier has just
recombined another one isimmediately injected into the system in another site at random. For
this fresh carrier both time and distance are reset so that average time and distance between
recombination events can be computed, stored and represented versus total simulation time.
Finally, these magnitudes are renormalized by the total number of carriers and the tota
number of recombination events so that the result is effectively an average distance and time
for one single carrier.

One can argue that these magnitudes are not computed as collective quantities defined
from kinetic equations based on densities. Nevertheless, we will show in Chapter 5 that,
despite computing individual diffusion length and lifetime from smulation averages, these
magnitudes effectively correspond to those defined according to Egs. (2.57) and (2.59)
respectively.

The implementation of all the properties and procedures described in this Chapter have
been programmed using Fortran 90. (For more details see Appendix C).

References to Chapter 3

(1) Frenkel, D.; Smit, B. Academic Press 2002.

(2)  Bassler, H. Physica Status Solidi B-Basic Research 1993, 175, 15-56.

(3) Movaghar, B.; Grunewald, M.; Ries, B.; Bassler, H.; Wurtz, D. Physical Review B
1986, 33, 5545-5554.

(4)  Silver, M.; Schoenherr, G.; Baessler, H. Physical Review Letters 1982, 48, 352-355.

(5) Baranovskii, S. D.; Efros, A. L.; Gelmont, B. L.; Shklovskii, B. 1. Journal of Physics
C-Solid State Physics 1979, 12, 1023-1034.

(6) Nelson, J. Physical Review B 1999, 59, 15374—15380.

(7) Anta,J. A.; Nelson, J.; Quirke, N. Physical Review B 2002, 65.

(8)  Kopidakis, N.; Benkstein, K. D.; Lagemaat, J. van de; Frank, A. J.; Yuan, Q.; Schiff, E.
A. Physical Review B 2006, 73.

(9) Benkstein, K. D.; Kopidakis, N.; Lagemaat, J. van de; Frank, A. J. Journal of Physical
Chemistry B 2003, 107, 7759-7767.

(10) Anta, J. A.; Mora-Sero, L.; Dittrich, T.; Bisquert, J. Physical Chemistry Chemical
Physics 2008, 10, 4478—4485.

(11) Petrozza, A.; Groves, C.; Snaith, H. J. Journal of the American Chemical Society 2008,

70



Chapter 3 Random Walk Numerical Simulation

130, 12912-12920.

(12) Nelson, J.; Haque, S. A.; Klug, D. R.; Durrant, J. R. Physical Review B 2001, 63, 6320.
(13) Kopidakis, N.; Benkstein, K. D.; Lagemaat, J. van de; Frank, A. J. Journal of Physical
Chemistry B 2003, 107, 11307-11315.

(14) Anta, J. A.; Mora-Sero, I.; Dittrich, T.; Bisquert, J. Journal of Physical Chemistry C
2007, 111, 13997-14000.

(15) Mora-Sero, I.; Anta, J. A.; Dittrich, T.; Garcia-Belmonte, G.; Bisquert, J. Journal of
Photochemistry and Photobiology a-Chemistry 2006, 182, 280-287.

(16) Anta, J. A. Energy and Enviromental Science 2009.

(17) Nelson, J.; Chandler, R. E. Coordination Chemistry Reviews 2004, 248, 1181-1194.
(18) Anta, J. A.; Morales-Florez, V. Journal of Physical Chemistry C 2008, 112, 10287—
10293.

(19) Bisquert, J.; Fabregat-Santiago, F.; Mora-Sero, I.; Garcia-Belmonte, G.; Barea, E. M.;
Palomares, E. Inorganica Chimica Acta 2008, 361, 684—698.

(20) Monroe, D. Physical Review Letters 1985, 54, 146—149.

(21) Kirchartz, T.; Pieters, B.; Kirkpatrick, J.; Rau, U.; Nelson, J. Physical Review B 2011,
83.

(22) MacKenzie, R. C. 1; Kirchartz, T.; Dibb, G. F. A.; Nelson, J. The Journal of Physical
Chemistry C 2011, 115, 9806-9813.

(23) Tiedje, T.; Rose, A. Solid State Communications 1981, 37, 49-52.

(24) Bisquert, J. Physical Review Letters 2003, 91.

(25) Vanmacekelbergh, D.; de Jongh, P. E. Phys. Rev. B 2000, 61, 4699—4704.

(26) Hartenstein, B.; Bissler, H. Journal of Non-Crystalline Solids 1995, 190, 112-116.

(27) Gonzalez-Vazquez, J. P.; Anta, J. A.; Bisquert, J. Physical Chemistry Chemical Physics
2009, /1, 10359.

(28) Bisquert, J. Journal of Physical Chemistry C 2007, 111, 17163—17168.

(29) Miller, A.; Abrahams, E. Physical Review 1960, 120, 745-755.

(30) Novikov, S. V.; Dunlap, D. H.; Kenkre, V. M.; Parris, P. E.; Vannikov, A. V. Physical
Review Letters 1998, 81, 4472-4475.

(31) Calvo-Muifioz, E. M.; Selvan, M. E.; Xiong, R.; Ojha, M.; Keffer, D. J.; Nicholson, D.
M.; Egami, T. Phys. Rev. E 2011, 83, 011120.

(32) Arkhipov, V. L.; Heremans, P.; Emelianova, E. V.; Adriaenssens, G. J.; Bassler, H.
Applied Physics Letters 2003, 82, 3245-3247.

(33) Li, L.; Meller, G.; Kosina, H. Applied Physics Letters 2008, 92.

(34) Bisquert, J. Physical Chemistry Chemical Physics 2008, 10, 1-20.

(35) Uebing, C.; Gomer, R. Journal of Chemical Physics 1994, 100, 7759.

(36) Peter, L. M. Journal of Physical Chemistry C 2007, 111, 6601-6612.

(37) Villanueva-Cab, J.; Wang, H.; Oskam, G.; Peter, L. M. The Journal of Physical
Chemistry Letters 2010, 1, 748-751.

(38) Jennings, J. R.; Wang, Q. The Journal of Physical Chemistry C 2010, 114, 1715-1724.

71



CHAPTER 4

Random Walk Numerical Simulation for
Hopping Transport at Finite Carrier
Concentrations

The RWNS method is used to compute diffusion coefficients for hopping
transport in a fully disordered medium at finite carrier concentrations. We use
Miller—Abrahams jumping rates and an exponential distribution of energies to
compute the hopping times in the random walk simulation. The computed
diffusion coefficient shows an exponential dependence with respect to Fermi-level
and Arrhenius behaviour with respect to temperature. This result indicates that
there is awell-defined transport level implicit to the system dynamics. To establish
the origin of this transport level we construct histograms to monitor the energies
of the most visited sites. In addition, we construct “corrected” histograms where
backward moves are removed. Since these moves do not contribute to transport,
these histograms provide a better estimation of the effective transport level energy.
The analysis of this concept in connection with the Fermi-level dependence of the
diffusion coefficient and the regime of interest for the functioning of dye-
sensitised solar cellsis discussed.
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4. Random Walk Numerical Simulation for Hopping
Transport at Finite Carrier Concentrations

4.1. Introduction and methodology

As discussed in Chapter 2, the theoretical description of electron transport in
disordered materials is a chalenging issue with implications in the fields of dye-sensitised
solar cells (DSC)1, plastic solar cells?, organic light emitting diodes? and organic electronics-.
In these materials, the transport rates are determined by two kinds of microscopic disorder:
energetic disorder characterized by a broad distribution of localized statess and spatial
disorder, related to the morphological features of the material 7. The correct description of the
influence of these two kinds of disorder and their microscopic parameters on the transport
features of the material is crucial to the design of better performing devices.

Two main approaches have been used to study electron transport in these materials: the
multiple-trapping model and the hopping model. Both mechanisms have aready been
described in Chapter 2, where it was pointed out that, in order to obtain analytical expressions
for the electron diffusion coefficient, it is necessary to make averages over spatial and energy
disorder. This anaysis is especialy cumbersome in the context of the hopping model since
both energetic and spatial disorder must be taken into account. However, this problem can be
simplified if the distribution of energies for the localized statesis very steep. In this caseit has
been shown that a particular level, known as transport energy, determines the dominant
hopping events for carriers sitting in very deep statest3. The existence of an effective
transport level reduces the hopping transport to multiple trapping, with the transport energy
playing the role of a mobility edge. This concept has been utilized to derive Eq. (2.39), a
theoretical expression for the diffusion coefficient of electrons moving via a hopping
mechanism in an exponential distribution of localized statess. Nevertheless, the transport
energy has been shown to be affected by the fact that the system is not ided, that is,
correlations between carriers may play an important role. These correlations can be due to
exclusion effects, which makes the transport energy depend on Fermi level position®4, or due
to energetic correlations between charges and dipoles!sis,

Hopping transport in disordered semiconductors has been amply studied over the last

decades in relation to inorganic semiconductors such as amorphous silicon and aso to organic
conductorst’. The interest in electronic transport in the presence of an exponential distribution
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of states has increased with the application of nanostructured wide bandgap semiconductorsin
DSCs1, Indeed, it has been shown that for systems using relatively thick TiO, porous
nanocrystalline layers, electron transport may impose limitations to charge extraction. Hence,
since DSC operate at large electron densties, it is crucia to determine the transport
mechanism in these systems as a function of charge density and, especially at high Fermi
levels, beyond the analytical approximations adopted previoudy, that use commonly multiple
trapping argumentst2L,

In this chapter we apply the random walk numerical simulation (RWNS) method?z>-27 to
obtain the jump diffusion coefficient in a hopping system with an exponential distribution of
localized states and at finite carrier concentration. In addition, we use our calculations to cast
light on the foundations of the transport energy approximation in this case. To do that, we
implement the hopping mechanism via the Miller—Abrahams jumping rates?, given by Eq.
(2.7). The RWNS calculations yield the jump diffusion coefficient as afunction of Fermi level
and temperature22. We have carried out our simulations on a network of randomly distributed
sites. Placing the sites on an ordered spatial arrangement has been shown to affect the results
for the carrier mobility2e. Thus, to work with a fully disordered system permits us to eliminate
the effect of introducing an artificial spatial order on the simulation results.

We have used the simulations to construct histograms of the most visited energies so
that the probability for the electrons to jump to target sites of specific energy can be
calculated. The form of this histogram for jumps upward in energy will allow us to identify the
existence of a well-defined maximum and how it depends on carrier concentration and Fermi
level. As noted by Arkhipov et a.1, the transport energy can differ noticeably from the energy
of the most probable jump due to the influence of neighboured sites close in energy. These
sites make carriers hop back and forth many times so that those moves do not contribute to
transport and hence to the computation of the diffusion coefficient. The RWNS method makes
it possible to remove those jumps from the calculation so that a better approximation to the
“effective transport energy” can be obtained for the studied cases.

Calculations were carried out with 1-100 carriers and the size of the simulation box
ranged between 10 and 65 nm. A density of traps of N; = 10 m= was used in all cases. This
corresponds to an average distance between traps of 1 nm. It must be stressed that, as traps are
distributed randomly, hops can be executed for distances either longer or shorter than this
averaged distance. Hereafter, the simulations are described by a label N/ar, where N is the
number of carriers and az, the size of the simulation box in nm’s.
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Fig. (4.1). Jump diffusion coefficient as a function of cut-off radius from RWNS
calculations with Miller-Abrahams hopping rates.

As mentioned in Chapter 3, to save computing time a certain cut-off radius r..: is
introduced. Neighbours located beyond this distance are not considered as target sites. Since
the hopping times in Eq. (3.2) do depend on distance between traps, the cut-off distance
should be large enough to ensure that the results are not significantly affected. In Fig. (4.1) the
diffusion coefficient as a function of r.,: is plotted for two values of the localization radius.
As it could be expected, a larger localization radius requires a larger cut-off radius to ensure
convergence. Hence, for a; = 0.5 nm and 2.5 nm a cut-off radius of 2.5 nm and 4.5 nm were
found to be sufficient, respectively. These are the parameters used henceforth.

With the idea in mind that hopping transport can be rationalized using the concept of
transport energy, we have monitored the energies of the target sites for jumps upward in
energy in the RWNS calculations. The method followed here consists in computing an
histogram of the energies of the target sites only when the energy of these traps is higher than
the starting sites of electrons. Hence, in each step of simulation, if the target trap fulfils this
condition, its energy is stored in the histogram. For reasons than will be discussed later,
another kind of histogram of energies is implemented in the simulation. Now, in each step of
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simulation, the energy of the target site is stored only when its energy is higher than the
starting site and when in the previous step of simulation this site was not the starting one. In
this manner, we ignore backward jumps for the computation of the histogram of upward jumps
energies.

4.2. Results and discussion

Energy of the most probable jump and transport energy concept

For an exponential distribution of localized levels, the classical resulto® s that the
fastest upward jump occurs in the vicinity of the so-called transport energy©

Et’r — Ec - AEtfr’ (41)

where AFEy;, is given by Eq. (2.11) independently of the energy of the starting site. This
expression is obtained by maximizing the upward hopping rate for an average hopping
distance. Alternatively the transport energy can be obtained by averaging the hopping rate
below a certain energy value as reported by Arkhipovitsi, This latter procedure has been put
into question32 due to the difficulty of considering the effect on transport of all relevant hops.
In any case, the existence of atransport energy implies that the hopping model should behave
inasimilar way to the multiple trapping model, where there is atransport level by definition.

In connection with the transport energy approximation, we have monitored the
energies of the target sites for jumps upward in energy in the RWNS calculations. These
values were used to construct a histogram of energies. Results can be found in Fig. (4.2) for
two densities corresponding to labels 100/12% and 100/15° (o; = 0.5 nm, 7Tp = 800 K and
T = 275 K). The results reveal that most carrier moves take place in the vicinity of a certain
energy that always lies (as expected) above the Fermi energy for each particular case.

In this chapter we make a critical analysis of the following assumption: the maximum
of the energy histogram, F..., can be assimilated to the value of the transport energy. We
must note that the former is just a simulation result whereas the latter is a theoretical concept
obtained under certain approximations whose origin we want to test using numerical
simulation. Monte Carlo simulation has been used by Cleve et a.23 and Novikov and Malliaras
with similar purposests. However, Cleve et a.® investigate an empty system with no
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N(E) (arb .un.)

Fig. (4.2). Occupation probabilities (f(E-EF), full symboals) and histograms of the energies
of target sites (IV(E), open symbols) in RWNS calculations for jumps upward in energy.
The latter have been normalized with respect to the maxima. Parameter vaues are
a;=05nm, Tp = 800 K, T'= 275 K and densities corresponding to labels 100/123 (circles)
and 100/15® (squares). The following values are obtained from the simulations for both
densities: Er = -0.22 &V (Emez = -012 eV) and Er = -0.26 €V (Eme: = -0.18 eV)
respectively. The solid line stands for an exponential trap distribution of T = 800 K.

influence of the concentration of carriers. On the other hand, the work in Ref. 15 investigates a
Gaussian distribution that applies in organic conductors.

The most relevant feature of the present calculations is that E,,.. is found to move
upwards in the energy scale when the Fermi level is raised. A similar effect has been
described for the transport energy with a Gaussian distribution of states“. The variation of
FEnax With density and Fermi level is shown in Fig. (4.3) for two characteristic temperatures
(To = 600 K and Tp = 800 K). The calculations have been extended to the regime of very low
densities, with Fermi levels between 0.17 and 0.61 €V and densities up to 7-10% cm3. It must
be noted that at low densities the statistics of the simulation is very poor, which increases the
uncertainty of E.... Thisis extracted when the population distribution if found to relax to a
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Fig. (4.3). Energy of the most probable jump versus Fermi level (upper panel) and carrier
density (lower panel) as obtained from RWNS cal culations with Miller-Abrahams hopping
rates with o; = 0.5 nm. Results shown correspond to 7y = 600 K (circles) and Tp = 800 K
(triangles). The dashed and dotted lines represent the classical values as obtained from Eq.
(2.12).

Fermi—Dirac distribution with awell-defined Fermi levdl.

The poor statistics in the low density limit are related to the occurrence of spurious
peaks in the energy histograms. These are due to carriers jumping many times back and forth
between sites that happen to be close in distance and in energy and tend to disappear when the
simulation is very long. As a matter of fact the RWNS predictions at low densities do not
converge to the classical value of Eg. (2.11) as it could be expected. The reasons for this
disagreement, in connection with the concept of effective transport energy of Arkhipov et al.t
will be discussed below.

In any case, if we assume that E,,., can be assimilated to the transport energy, the

same behaviour is found by Arkhipov and coworkers® and Li and coworkers.’ The carrier
density dependence of E... is aresult of the progressive filling of the localized states, that
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prevent carriers from hopping to neighboured sites for which the Miller—Abrahams formula
yields high probability. The carriers are then forced to jump to levels of higher energies, hence
producing a larger value of the transport energy. At very low concentrations this filling effect
is negligible and E,,., remains constant. Nevertheless, the real connection between E,,.. and
the transport energy is subtle and requires further anaysis, as discussed below.

Fermi level dependence of the diffusion coefficient

As explained before, the jump diffusion coefficient for carriers can be computed from
the RWNS calculations as a function of Fermi level. Results in reduced units for two test cases
(y=05nm$m, Tp =800 K, T'= 275K and o; = 2.0 nm, Tp = 800 K, T'= 275 K) are presented in
Fig. (4.4). The ssimulation data show that the logarithm of diffusion coefficient scales almost
linearly with Fermi level. Diffusion coefficients are found to be higher for large localization
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— — Eq.(239) T T T
[ | O Eq(42)with E_fromEq.{(2.11) T
S O Eq@ywithE =E' —
[ | X Eq.(d2)withE_=0 1
10 -
—_— '-].5 B ]
= | N
. a0l -
=] | |
— -
S o ]
E |
S5 ]
101 — -
[ 33-- ’ ]
13 __ E A o,=2.0nm __
20k %> . I i I .
-0.6 -0.4 -0.2

Fig. (4.4). Jump diffusion coefficient vs. Fermi level as obtained from RWNS calculations
with Miller-Abrahams hopping rates (full circles) and several theoretica predictions (see
text for details): Eq. (2.39) (solid line), Eq. (4.2) with E;, taken from the classical value of
Eqg. (2.11) (open circles), Eq. (4.2) with Ey = E’ye. (Squares), Eq. (4.2) with By, = 0
(times). The dashed line is a linear fit of the simulation data. Results shown correspond to
T'=275K and Ty = 800 and localization radius of a; =2 nm and 0.5 nm.
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radius. Thisis explained by the fact that delocalization favours jJumps to traps further apart and
produces shorter average hopping times.

The exponential dependence of the diffusion coefficient with respect to the position of
the Fermi level is analogous to the typical prediction of the multiple trapping model. This
result suggests that there should exist a well-defined transport level that controls the transport
of carriers under equilibrium conditions. However, the results presented in the previous
subsection revea that the energy of the most probable jump does move to higher energies
when the trap distribution becomes progressively filled. This appears to be contradictory to
the fact that there is a fixed transport energy. In the next subsection this issue is discussed and
clarified.

Diffusion coefficient and transport ener gy

In Chapter 2 it was established that the jump diffusion coefficient D; can be separated
in two factors according to Eq. (2.22) where < r? > is an average hopping distance and < v >
is an average hopping frequency3436. In hopping transport, there is not a well defined
separation between hopping at different distances and hopping at different energy levels.
However, the rationale for the transport energy approximation is that the relevant jumps occur
to a well defined level, and in this case Eq. (2.22) may provide a useful approach to obtain
analytical expressions for hopping transport as a function of Fermi level. The numerical
simulations performed in this work constitute an excellent tool to check the validity of such
approximations. Therefore, following the work from previous authorsg?, we compute the jump
diffusion coefficient using Eq. (2.22). According to the transport energy concept both
quantities can be calculated from

A . -1/3
<r(Ey)> = [%/ g(E)dE

— 00

(4.2)
[P (B, Ew)g(E)f(E — Ep)dE
[ g(B)f(E — Ep)dE

<V > =

where < v(E, Ey,.) > is the frequency for an upward hop from the energy E to the transport
energy Ei (Eq. (2.7)) at afixed distance r =< r >.
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By applying the zero-temperature limit of the Fermi—Dirac distribution in < v > of
Eqg. (4.2) and introducing the classical value of Eq. (2.11) for the transport energy, Bisquert
found the expression given in Eq. (2.39) for the diffusion coefficients. This theoretical
expression predicts an exponential behavior with respect to the Fermi energy, in analogy with
the multiple-trapping result and in accordance with the simulation (see Fig. (4.4)). However,
the theoretical dope (27.71 eV for Tp = 800 K and oy = 0.5 nm) is dightly larger than the
simulation result.

In spite of this encouraging result, the exponential behavior of the diffusion coefficient
is not consistent with the upward shift of the average hopping energies when the Fermi level is
increased. Asit can be observed in Fig. (4.2) and (4.3), the maximum of the energy histogram
FEna lies dways above and approximately at a constant distance with respect to the Fermi
level. If we would assume that E,,.. can be assimilated to the transport energy, this behaviour
would lead to a constant diffusion coefficient according to Eqg. (2.39).

Effectivetransport energy

To disentangle from the paradox posed in the previous subsection, the concept of
effective transport energy of Arkhipov and coworkerst is especially useful. These authors
make a distinction between the energy that controls transport at equilibrium conditions and the
energy of the most probable jumps. That these two are different has been already observed in
Monte Carlo simulations for hopping systemsin a Gaussian density of states.

As mentioned above, RWNS calculations at low densities produce energy histograms
with spurious peaks in the low energy region. These peaks arise from carriers jJumping back
and forth between neighbouring sites. The consequence in the numerical simulation is that
these “oscillatory” moves do not contribute to the diffusion of the carriers and therefore
should be excluded in the estimation of the transport energy. Bearing this is mind, we have
extended the computation of the histograms of hopping energies to the situation in which
backward jumps are ignored. To achieve that, the coordinates of the starting site are stored for
every move so that when the carrier returns to its original position, the target energy is not
used to compute the energy histogram, since these jumps do not produce a net spatial
displacement of electrons.

Results for both types of energy histograms are presented in Fig. (4.5) for calculations

with a single carrier in an empty exponential trap distribution and for a finite density
corresponding to label 10/15%. The most visible feature is that the spurious peaks tend to
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N(E) (arb. un.)
N’(E) (arb. un.)

Fig. (4.5). Histograms of the energies of the target sites N(E), (squares) and the same
without considering backward jumps between pair of sites N’(E) (triangles, see text for
details). Results for simulations at a finite carrier density (10/153) (upper panel) and for a
single carrier (lower panel) are shown. The parameters used were T'= 275 K, Ty = 800 K
and oy =0.5nm.

disappear when backward jumps are ignored. However, sharp peaks are not completely
removed. This is due to the fact that oscillatory moves between pairs of sites are not the only
moves that do not contribute to transport. Carriers can get “trapped” between small groups of
sites and follow circular trgjectories before escaping, especially at lower energies. Nevertheless
to remove these “second-order” moves is much more difficult in the numerical computation
and goes beyond the scope of the present work. The occurrence of spurious peaks is magnified
in the present calculations by the fact that we perform our simulations on a random network of
traps. As mentioned above, this leads to the possibility of traps that happen to be very close to
each other. This problem does not appear in the simulations of Bassler and coworkers®3337,
which are executed on a cubic lattice. Simulations on-lattice reduce the numerical demands
and produces results more in accordance to the assumptions of the theory (see first expression
in Eq. (4.2) for instance) but at the cost of losing the subtleties of the positional disorder
implicit to these kind of systems.
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Fig. (4.6). lllustration of two different types of jumps. Upwards jumps of the left picture do
not establish areal contribution to the diffusion coefficient so should not be stored in the
energy histogram. In contrast, upward jumps of the right picture contribute to transport so
the energy of the target sites should be stored in the energy histogram.

A second feature of the corrected histograms is that the maximum, that we call E 44,
lies at higher energies than in the original histogram. That the effective transport energy lies
above the energy of the most probable jump is the main conclusion of the work of Arkhipov et
al.1 and it is confirmed in the present caculations. The smulations of Hartenstein and
Basslerso and Cleve et al .23 also predict energies for the most probable jump below the classical
value of Eg. (2.11). On the contrary, the computation of the histogram without backward
jumps for asingle carrier leads to a maximum much closer to the theoretical value of -0.26 eV
predicted by Eq. (2.11) (see Fig. (4.5)). It must be born in mind that Eq. (2.11) is obtained
under the assumption that all hops occur at a constant average distance whereas in the
simulation traps can be occasionally very close to each other and this induces the appearance
of the oscillatory moves mentioned above.

The energy of the maximum of the corrected histograms, E ';,,4., allows us to propose a
better estimate for the transport energy that is implicit to the diffusion coefficient dependence
on the Fermi level. Results for this are collected in Fig. (4.7) together with the values of the
most probable jump as computed in Fig. (4.3). Here it is observed that E ..., lies dways
above E,,., and that it converges to the classical value of Eq. (2.11) at low densities.
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Figure (4.7). Energy of the most probable jump (triangles), Fmq, and estimation of the
effective transport energy, E ’maz, (Circles) as a function of Fermi level. The first are
extracted from the maxima of the energy histograms whereas the latter are extracted from
the maxima of the “corrected” histograms with backward jumps between pair of sites
removed. The horizonta line represents the classical value predicted by Eq. (2.11). The
parameters used were T'= 275 K, Ty =800 K and a; = 0.5 nm.

Simulated diffusion coefficient versustheoretical predictions

The concepts introduced in the previous subsections allow us to use the E 4, values
from the simulated histograms to produce theoretical values of the diffusion coefficient
according to Egs. (2.22) and (4.2). The results, together with the simulated data and the
predictions of the approximate formulas (2.11) and (2.39) can be found in Fig. (4.4).

We observe that Eq. (2.22) and (4.2) with the transport energy assimilated to £ oz
reproduce Bisguert's formula at low Fermi levels. This is not surprising if we take into
account that the simulation reproduces the classical value of Eqg. (2.11) in this regime as
explained above. The agreement between the theories and the simulation is aso good in the
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low Fermi level region for the localized case. However, as we move towards large carrier
densities the theoretical values separate from Bisguert’s formula although they tend to remain
close to the smulated data. This effect is basically a consequence that Eq. (2.39) is derived
under the assumption that the Fermi level is well below the transport level. By introducing the
proper Fermi—Dirac function in Eq. (4.2) the match with respect to the smulation is improved.
This effect is more visible in the delocalized case («; = 2 nm) for which the classical transport
energy is-0.55 eV, than in the localized case («; = 0.5 nm) for which the classical value equals
-0.26 V.

Due to this saturation effect, we find that Egs. (2.22) and (4.2) in combination with the
transport energy values obtained from the simulated histograms do predict a linear
dependence at low values of the Fermi level only. Nevertheless the simulation predicts an
almost linear dependence at all regimes. To understand this we have to take into account that
at high occupations a substantial amount of the upward hopping moves go to levels close to
the conduction band level (see Fig. (4.2)). This introduces a distortion in the average implicit
to Eq. (2.39) because no hops above E = 0 are allowed. To ascertain the magnitude of this
distortion we have performed calculations with Egs. (2.22)-(4.2) assuming that the transport
level coincides with the conduction band level, i.e., Ei,. = 0. This calculation renders a linear
dependence in the full density range. The agreement with the simulation data is good at high
Fermi levels (where upwards hopping moves are controlled by the upper limit of £ = 0 but
poor at low Fermi levels, where transport is controlled by jumps to the transport energy level.

The results shown in Fig. (4.4) indicate that the real transport energy should lie
between the classical value of Eg. (2.11) and the conduction band level E = 0. The vaues of
E’ma. Obtained from our corrected histograms are close but not the same as E,.. To obtain this
we should distinguish moves that contribute effectively to transport from those that do not.
This calculation would require to remove also the “ second-order” moves discussed previoudly.

Temper atur e dependence of the diffusion coefficient

RWNS cal culations were performed to obtain the effect of ambient temperature on the
diffusion coefficient. Arrhenius plots for these calculations are shown in Figs. (4.8) and (4.9)
in the temperature range 260 — 340 K. Nearly linear plots are obtained, with an activation
energy that is larger for deeper Fermi levels, as it could be expected. The Arrhenius behavior
is characteristic of the multiple-trapping transport2238 This is an indication, as discussed
above, that at afixed Fermi level, there is a well-defined transport energy that makes transport
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Fig. (4.8). Jump diffusion coefficient vs. inverse of ambient temperature as obtained from
one-particle RWNS calculations with Miller-Abrahams hopping rates at 7y = 800 K and
oy = 0.5 nm. Results shown correspond to £y =-0.3 eV (circles) and E = -0.4 eV (squares).
The activation energies derived from both set of data are 0.15 and 0.24 €V respectively.

to occur effectively via thermal activation to a transport level. A similar result has been
obtained by Vissenberg and Matters using percolation theory.

It must be noted that the theoretical framework contained in previous expressions is
shown to predict a quasi Arrhenius behaviour as well. This is due to the fact that the
temperature dependences of the prefactors and the transport energy are much weaker than the
energetic exponential factor. Furthermore, the transport energy is either a constant (at low
occupations) or it moves towards higher values (at high occupations). In both cases an
Arrhenius behaviour with respect to temperature is expected.

The Arrhenius behavior is maintained if the characteristic temperature of the
distribution is lower. Another important feature is that the activation energy is smaller for the
delocalized case. This indicates that carrier percolation becomes facilitated when the range of
the mean jump islarger, so that sites of similar energies are available for carriers.
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Fig. (4.9). Same as Fig. (4.8) but for Tp = 600 K and multi-particle calculations for
a; = 0.5 nm (squares) and «; = 2.0 nm (triangles). The activation energies derived from
both set of dataare 0.10 and 0.11 eV respectively.

4.3. Conclusionsto Chapter 4

It is interesting to make a connection with the relevant regime in DSC and related
devices. It is known that at 1 sun illumination the electron density inside the semiconductor
oxide is approximately equal to 10 cm= = 10* nm2® (1 electron per nanoparticle®). For a
characteristic temperature of 7p = 600800 K and a trap density of 102 cm?, which are
realistic values?4t for nanocrystalline TiO,, this density corresponds to Fermi energies below
0.60 eV. Asit can be observed in Figs. (4.3) and (4.7), this value corresponds to the regime for
which the effective transport energy converges with the classical value given by Eq. (2.11).
Hence the predicted behaviour for the diffusion coefficient is close to that yielded by the
approximate formula (2.39) and thus indistinguishable from that predicted by the multiple-
trapping model.

Furthermore, Arrhenius behavior with typical activation energies of 0.10-0.15 eV are
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commonly found in the experiments® for nanocrystalline TiO,. Best agreement with the
simulation data is found for 7Tp = 800 K and o; = 0.5 nm. Again the fact that there exists a
well-defined transport level in the regimen relevant for the functioning of DSC under
operating conditions produces Arrhenius like behaviour like the multiple-trapping model.

In summary, the random walk numerical simulation (RWNS) method has been used to
compute diffusion coefficients for hopping transport in a fully disordered medium at finite
carrier concentrations. The computed diffusion coefficient shows an exponential dependence
with respect to Fermi-level and Arrhenius behavior with respect to temperature, what indicates
that there is a well-defined transport level implicit to the system dynamics. To establish the
origin of this transport level histograms to monitor the energies of the most visited sites have
been constructed. In addition, we have constructed “corrected” histograms where backward
moves are removed. The result is that since these moves do not contribute to transport, the
latter histograms provide a better estimation of the effective transport level energy.

However, the difficulty of predicting the real transport energy from the simulation
suggests that the best method to estimate its value could be from the results of the diffusion
coefficient itself. Hence, the effective transport level would be defined as the value that
reproduces the “experimental” D; via Eq. (2.39). This value will always lie between the
classical value of the transport energy (Eqg. (2.11)) and £ =0.
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CHAPTER 5

Determination of the Electron Diffusion
Length in Dye-sensitized Solar Cells by
Random Walk Simulation

The diffusion length is a crucial parameter controlling the electron collection
efficiency in dye-sensitized solar cells (DSC). In this Chapter, we carry out a
direct computation of this parameter for a DSC with a short diffusion length by
running a random walk numerical simulation with an exponential distribution of
trap states and explicit incorporation of recombination. The diffusion length and
the lifetime are estimated from the average distance travelled and the average
survival time of the electrons between recombination events. The results
demonstrate the well-known compensation effect between diffusion and
recombination that keeps the diffusion length approximately constant on a wide
range of illumination intensities or applied biases. The assumptions considered in
the present model indicate that the two alternative views described in the literature
to rationalize this effect (either “dynamic” or “static”) are equivalent.
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5. Determination of the Electron Diffusion Length in Dye-
sensitized Solar Cells by Random Walk Simulation

5.1. Introduction

The good performance of DSCst2 and other new generation solar cells relies on the
favorable dynamic competition35 between photoinduced processes and recombination
pathways that cause a reduction of the collection efficiency. Among the first, the transport of
photogenerated electrons through the semiconductor nanostructure is central for good
performance. For a DSC device to work efficiently, photogenerated electrons travelling
through the semiconductor nanostructure should be collected to a fraction close to a 100%. As
the electron diffusion length L,, represents the distance that electrons travel on average before
recombining with an electron acceptor, efficient cells must be characterized by L,, values that
exceed the semiconductor film thickness.

As we pointed out in Chapter 2, it has been observed experimentally in common DSCs
that the electron diffusion length remains approximately constant on a wide range of
illumination intensities or applied biases8. This behaviour arises from the opposite
dependences of D, and 7, with respect to the applied bias, which makes their product
approximately constant. In the one hand, the diffusion coefficient increases when the
illumination is augmented (or a more negative potential is applied). In contrast, the lifetime
becomes shorter when the light intensity or the negative applied potential is increased. While
the former is often explained by a trap-filling mechanism either in the context of the multiple-
trapping model or the hopping model, the latter is somehow a more complicated effect to
rationalize and two different views can be found in literature.

On the one hand, it can be assumed that if the electron transport becomes faster when
the Fermi level is raised, then the probability for an electron to find an electron acceptor is
larger, so that the electron lifetime is shortened. We call this interpretation the “dynamic”
view and it can be found in the works of Nelson et a.9, Kopidakis et a°, Anta et al,
Villanueva et al.1213 Also Petrozza and coworkers discussed recombination in connection
with this"dynamic" view. On the other hand, a careful analysis of the multiple-trapping model
under the assumption that the rates for trapping and detrapping are much higher than the
typical recombination rate, demonstrate that free and trapped electrons maintain a common
equilibrium even if the system is perturbed by, for instance, a recombination event. This result
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is due to Bisguert and Vikhrenkos and we call it the “static” view (in fact, this is usualy
referred to as the “quasi-static approximation”, described in Chapter 2). From these
considerations, a constant diffusion length is derived (see EQ. (2.58)). The approximation of
Bisguert and Vikhrenko demonstrates that it is not necessary to resort to a dynamic, transport-
l[imited mechanism to explain the observed behaviour of the lifetime and the diffusion length.

As discussed in Chapter 2, a later studys further clarified the interpretation of the
electron lifetime, which was formulated in the form of Eq. (2.59), where 7y is a free electron
lifetime. This quantity is interpreted as the effective probability of survival of electronsin the
conduction band. In general, 7 depends on the specific recombination mechanism, and it will
be a constant if the rate of recombination of free electrons is proportional to their density.
However, the recombination mechanism may involve a combination of charge transfer
channels, especially due to the contribution of a distribution of surface states™s. In a first
approximation the recombination rate is effectively observed to depend on a power on the free
electron density131920, UJ,... = k:rnf, which has important implications for the variation of the
diffusion length with bias illumination or potential in the solar cell® (for a more detailed
explanation of the origin of this "non-linear" recombination we refer the reader to Chapter 6).
Thus, from Egs. (2.18) and (2.59) we obtain

Ly, = /D7y (5.1)

which predicts that the diffusion length should increase with the steady-state Fermi level via
the Fermi level dependence of 7;. As amatter of fact, recent reports on DSCs indicate that the
electron diffusion length is not strictly constant but it increases with applied voltagez-24,
Specifically the study by Villanueva-Cab and coworkers® has carefully determined the
variation of L, at different bias illumination and good agreement has been found with the (-
recombination model. Hence, these recent reports suggest that equilibration (trapping) factors
present in both the diffusion coefficient and the measured lifetime are essentially the same
number, dn;/0dn., o that the asymmetry of these two quantities refers to the free electron
lifetime, which causes a variation of the diffusion length.

The purpose of the work presented in this Chapter is twofold. On the one hand we
pursue to compute the electron lifetime and electron diffusion length for a dye-sensitized solar
cell, at potentiostatic conditions (fixed Fermi level) by means of the Random Wak Numerical
Simulation (RWNS). On the other hand we intend to cast some light on the origin of the
compensating behaviour of the electron diffusion length and to establish how the *dynamic”
and the “static” views mentioned above are in fact equivalent. We will see that the RWNS
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method employed here, athough based on dynamic postulates (random generation of
detrapping and recombination times) reaches a quasi-stationary state that reproduces the
theoretical dependences predicted for the diffusion coefficient and the lifetime, hence
explaining the compensation behaviour).

5.2. Results and discussion

The procedure outlined in Chapter 3 permits us to run a multi-electron calculation at
fixed density or Fermi level. However, to approach conditions similar to those typical of an
operational cell, a huge amount of computer time is required. To save time when computing
the electron diffusion length at realistic conditions, most of the simulations presented in this
Chapter are carried out using the one-electron approximation, also described in Chapter 3. It
is demonstrated?s26 that this procedure reproduces the electron diffusion coefficient of the full
calculation with reasonable precision.

It may be argued that the one electron calculation does not correctly capture the
slowing down of the lifetime by the trapping-detrapping process, that is described in the
model by the factor on;/dn.. However, it must be observed that the main limiting factor in
the trapping-detrapping dynamics is detrapping from deep traps, and the fastest of such
occupied traps are on average those at the Fermi level. Therefore the convenient truncation
procedure still keeps the main aspect of the collective dynamics. This conclusion is further
supported when the results are compared with those of the time decay of the full population
by recombination, asit will be discussed below.

The RWNS procedure here devised allows for simultaneous computation of the
electron diffusion coefficient, the electron lifetime and electron diffusion length at the same
Fermi level position. In order to avoid excessive computationa times, we have taken into
account parameters reported in the literature22627 for a DSC with a solid-state hole conductor
to carry out our calculations. However, in Chapter 6, simulations reproducing longer diffusion
lengths than those studied in this Chapter are considered. Hence we take ¢y = 10 s
To = 1100 K and T'= 300 K. The total trap concentration is assumed to be22° N; = 107 m?3. In
addition one recombining trap is introduced per 64000 norma traps and a further
recombination probability of 0.05 isimposed. Finally a cut-off radius of 2.5 nm is introduced
in the computation so that jumps to neighboured traps beyond this distance are not considered.
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With these parameters the ssimulation predicts an electron diffusion length of 1.6 um, whichis
consistent with the values reported in the literaturer2” for this kind of solid-state solar cell.

In Fig. (5.1) the time evolution of the derivative of the mean square displacement
(related to the jump diffusion coefficient), the lifetime and the electron diffusion length is
reported. It is observed that the ssmulation reaches rapidly a stationary situation in which the
mean square displacement behaves linearly with time (constant time derivative) within the
statistical uncertainty of the simulation (normal diffusion). This has been shown to
correspond, in multi-electron simulations, to the situation in which the electron population
reproduces Fermi-Dirac statistics?. On the contrary, the lifetime and the diffusion length are
found to reach the stationary state at longer times. This is easy to understand if we bear in
mind that the characteristic times for detrapping (as derived from Eq. (3.1) for electrons
sitting at the Fermi level) are much shorter than the characteristic time for recombination (the
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Fig. (5.1). Time evolution of the derivative of the mean square displacement (upper panel),
electron lifetime (middle panel) and electron diffusion length (lower panel) in a typical
RWNS calculation carried out in this work. Data shown correspond to a multi-electron
calculation with 50 electronsin a simulation box of 18 x 18 x 18 nm3.
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lifetime). In Table (5.1) values obtained for these characteristic times are reported. The results
demonstrate that the assumption on which the quasi-static approximation is based (that is, that
equilibration between free and trapped electrons much faster than recombination) holds in this
case. On the other hand the simulation time is long enough to sample efficiently many
recombination events so that the values of the lifetime and the electron diffusion length are
estimated correctly.

Table (5.1): Characteristic times for the one-electron RWNS cal culations performed in this Chapter.

Er/ eV Releasetime Average lifetimer, / s Total simulationtime / s
fromEr / s
-0.35 7.7-10° (813 + 3.50)-10% 0.05
-0.45 3.7 - 107 (1.38 £ 0.22)-10° 0.5
-0.55 18-10° (2.22 £ 0.46)-102 1
-0.65 8510 (3.75+ 0.63)-10" 50

Results for the diffusion coefficient, the lifetime and the diffusion length as a function
of Fermi level can be found in Fig. (5.2). The RW simulation provides a nice demonstration of
the compensation effect discussed in the Introduction. The diffusion coefficient scales
exponentially with Fermi level as reported befores30 and shown in Chapter 4 (although for a
hopping model). The dopes obtained from the simulated data were 31.86 €V -1 and 28.09 eV
for D; and 7, respectively. These values compare favourably with the predictions of the
theoretical formula derived in the context of the multiple-trapping model (see Eq. (2.38))%.
This equation predicts 28.15 eV-* for 7'= 300 K and 7p = 1100 K. As a consequence of the
equal but opposite behaviours of D; and 7, the electron diffusion length remains constant
within the statistical uncertainty of the ssmulation, in accordance with the predictions of the
diffusion-limited model or the quasi-static approximation.

It is important to establish whether the average lifetime and average diffusion length
extracted from the ssimulations correspond to the real quantities occurring in Egs. (2.59) and
(2.57). As mentioned above, the diffusion length appears in the solution of the 1-D diffusion
equation with a first-order recombination term332, On the other hand the lifetime is the
parameter controlling the exponential time decay of a first-order recombination reaction. In
order to clarify this point we have computed the distribution of surviva times and distances
travelled by the electrons before they recombined (see Fig. (5.3)). It is found that these
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Fig. (5.2). Jump diffusion coefficient (upper panel), electron lifetime (middle panel) and
electron diffusion length (lower panel) vs. Fermi level. In the middie panel two methods to
compute the electron lifetime are plotted: average of survival times (circles), time decays
(triangles). Note that due to the logarithmic scale, the error bars fall within the symbol size
in the case of the diffusion coefficient and the lifetime.

distributions do indeed follow an exponential behaviour. However the result obtained for the
distribution of distances do not fit to an exponential in the short lengths region. Ignoring this
region in the fitting, we obtain reasonable agreement between the average value of the
diffusion length (1.62 £ 0.15 um) and that derived from to the fitting (1.44 um). The
agreement is more remarkable for the lifetimes: 1.38 £ 0.22 ms (average) versus 1.23 ms
(fitting).

The result of this analysis indicates that the average value obtained from the ssmulation
correspond to the real diffusion length of Eq. (2.57). A similar assumption can be established
for the lifetime. However, it must be born in mind that this is normally introduced as a
collective magnitude, defined from kinetic equations based on total densities. We should then
distinguish between the individual magnitudes (computed by the ssimulation) and collective
parameters in analogy with the distinction between “jump” and “chemical” diffusion
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Fig. (5.3). Distribution of surviva times (upper panel) and distances traveled by the
electrons before recombination (lower panel) as obtained from one-electron RWNS
calculations at Er = - 0.45 eV. The solid lines stand for fittings to an exponentia function.
The data are normalized with respect to the first point in the distribution.

coefficient.®® Note in this regard that a simple relationship is found for the chemical diffusion
coefficient if the trap distribution is exponential (Egs. (2.23 and (2.37)).

1
D,, = ?0 D, (5.2)

This relation states that the Fermi level dependence of both diffusion coefficients is the same,
at least for an exponential distribution. We might think that the same relation holds for the
lifetimes since an exponentia behaviour with respect to Fermi level is obtained.

However, as we will show below by multi-electron calculations, this lifetime is
observed to correspond to the collective lifetime 7,,. Hence we can compare directly the
electron diffusion length obtained from the simulation average to that derived from Eq. (2.57).
Results can be found in Table (5.2).
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Table (5.2). Vaues of the chemical diffusion coefficient, lifetime at different Fermi levels as obtained from RW
simulation. Vaues of L, have been obtained from Eq. (2.57) and RW simulation respectively. Note that the
diffusion coefficients shown are extracted from the simulated ones according to D,, = (To/T) D;.

Er [ eV Dy [ em?s! T/ 8 é;; é;;n?z) ?éV(/lfg)l
-0.35 (517 = 0.08)-104 (8.13 + 3.50)-10° 250+ 0.46 161+ 021
-0.45 (2.80 £ 0.42)-10° (1.38 £ 0.22)-103 197+ 0.30 162+ 015
-0.55 (1.37 £ 0.37)-10¢ (2.22 £ 0.46)-102 174+ 0.42 161+018
-0.65 (345 £ 118)-10°® (3.75+ 0.63)-10* 114+ 0.29 162+ 0.20

We observe that the diffusion length obtained “indirectly” does not preserve the
constancy with respect to Fermi level. This is a consequence of the fact that, due to the
statistical uncertainty of the simulation, the slopes obtained for D; and 7,, are not exactly
equal. In any case, our results show that the individual quantities maintain the same behavior
that their “chemical” counterparts. Hence, the compensation behavior predicted by the
theories.

The determination of the lifetime, above, has been obtained from a direct computation
of the survival time of the electron population. However, experimentally the lifetime is usually
obtained by monitoring the decay of the Fermi level. To provide further support to the method
employed here to compute the electron lifetime, we have carried out multi-electron random
walk simulations aimed to resemble a typical open-circuit voltage decay experiments4.
Hence, we have run simulations with an initial number of electrons that correspond
approximately to the Fermi levels studied in Table (5.2) and with no energy cut-off in the trap
energy distribution. The calculation is performed with the same recombination features as in
the one-electron simulations (same concentration of recombining traps and same probability
of recombination). However, in this case no new electrons are introduced after recombination
so that the concentration of electrons in the sample decreases with time. This a Random Walk
method analogous to that used by Petrozza et a.1 The analysis of this decay at short times
shows that it is exponential, and the numerical fitting yields an approximate value of the
lifetime at the corresponding vaue of the Fermi level. Results are shown in Fig. (5.2) (middle
panel, triangles) and in Fig. (5.4). It is observed that the lifetimes reproduce quite accurately
the values obtained from the "average" method. The new diffusion lengths shown in Table
(5.3) dso remain approximately constant, within the statistical error, upon Fermi level
variation.
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Fig. (5.4). Variation of the electron concentration with time as obtain from multi-electron
random walk simulation including explicit recombination with recombining traps. The
results correspond to an approximate initial Fermi level of Er = - 0.561 V. The red line
represent the fit to an exponential function at short times.

Table (5.3). Vaues of the lifetime at different Fermi levels as obtained from multi-electron RW simulations and
analysis of the decay in the population of electrons (See Fig. (5.4)). The Fermi levels were extracted from fitting
the occupation probability in the multi-electron calculation. Vaues of L, have been obtained from Eq. (2.57).

Er/ eV Tn/ 8 é; {2'75777%)
-0.36 (315 + 0.04)10° 128+ 0.02
-0.46 (1.25 + 0.02)10° 187+016
-0.56 (3.87 £ 0.10)-10° 230+ 034
-0.66 137+ 0.09 217+ 044

At this point it is important to discuss the two “views’ presented at the beginning of
this chapter. We must take into account that the RWNS procedure is a dynamic method in
which electrons move on a random network of traps within a certain time span. If the Fermi
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level is raised, the electrons move faster on average, and therefore they are more likely to
encounter a recombining trap. This explains why the lifetime becomes shortened when the
Fermi level is raised and supports apparently the “dynamic” view of the recombination
process. However it must be taken into account that the simulation reaches at a certain time an
stationary situation in which the diffusion coefficient (at earlier times) and the lifetime (at
later times) remain constant for the same Fermi level. In multi-electron calculations this
situation is found to correspond to a situation in which the electron population relaxes to the
equilibrium Fermi distribution.2s Hence, the results provided by the ssmulation arise from the
fact that the system is at interna equilibrium with a trapping-detrapping rate which is much
faster than the characteristic recombination time. Therefore, the “static’ view in which
diffusion coefficient and lifetime arise from a quasi-equilibrium with a well-defined Fermi
level isin accordance with the results analyzed here.

On the basis of the preceding results we can further discuss the interpretation of
transport and recombination in a DSC according to the two approaches that have been used in
the literature. The transport limited recombination is a statement that recombination becomes
faster (shorter lifetime) as transport becomes faster. Inherent to multiple trapping mechanisms
is a displacement of electrons in the conduction band. Given a distribution of recombining
traps, the only factor causing an acceleration of recombination at higher Fermi level is the
progressive filling of deep traps. But this is precisely the same process causing the
acceleration of the transport rate. So indeed, transport limited recombination and quasi-static
model describe a unique model.

As discussed in the introduction, recombination shows additional features (i.e. a
power-law dependence on free electron density) to those derived from the simple multiple-
trapping description.13141925 This means that the compensation effect that we have just
demonstrated will be only partly satisfied and the electron diffusion length is not a constant. A
more detailed description of this, with the reproduction of non-constant diffusion lengths will
be presented in Chapter 6.

5.3. Conclusions to Chapter 5

One-electron random walk ssimulations within the multiple- trapping approach have
been carried out. Direct computation of the diffusion length has been implemented, and
values of the order of micrometers have been obtained for realistic parameters extracted from
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recent literature. We find that the diffusion length maintains a constant value upon Fermi level
variation. Electron lifetimes at different densities have aso been computed, and we have
obtained an exponential dependence with respect to the Fermi level, producing linear-log plots
with slopes quite similar, although with opposite sign, also in agreement with previous
experimental and theoretical studies.

The numerica method and the results obtained in this work indicate that both the
“dynamic” and the “static” views to explain recombination in DSCs are indeed equivalent.
Extensive multielectron calculations that take into account a more fundamental point of view
that can reproduce, at a finer level, the behaviour of the diffusion lengths, are reported in
Chapter 6.
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CHAPTER 6

Origin of Non-linear Recombination in
Dye-sensitized Solar Cells

In this Chapter, the transport and recombination mechanisms of photogenerated
electrons in dye-sensitized solar cells are modeled by random walk numerical
simulations with explicit description of the electron transfer process in terms of
the Marcus-Gerischer model. The recombination rate is computed as a function of
Fermi level in order to extract the electron lifetime and its influence on the
electron diffusion length. The simulation method alows to relate the
recombination reaction order to the trap distribution parameter, the band edge
position and the reorganization energy. The results shows that a model involving
electron transfer from both shallow and deep traps adequately reproduces all the
experimental phenomena, including the dependence of the electron lifetime and
the electron diffusion length on the open-circuit voltage when either the
conduction band or the redox potentia are displaced. Non linear recombination is
predicted when the electron diffusion length increases with Fermi level, which is
correlated with a reaction order different from one, in an open-circuit voltage
decay “experiment”.
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6. Origin of Non-linear Recombination in Dye-sensitized
Solar Cells

6.1. Introduction

In nanostructured metal oxide electrodes, recombination between photogenerated
electrons in the oxide and electron acceptors in the electrolyte and at the semiconductor
surface (dye cations) is a complex process in which the energetics of the semiconductor
electronic structure and the distribution of relevant acceptor states play an important role. In
addition, spatial disorder such as the position of the reaction centers (recombination sites,
traps, etc...) and charge transport in the nanostructured oxide and in the liquid electrolyte also
influence the kinetics. Charge transfer reactions across the semiconductor-electrolyte interface
also include electron injection and dye regenerationi2, The adequate description of these
important charge transfer reactions is now becoming a primary topic in the theoretical
description of nanostructured solar cells.

The fact that the recombination kinetics in the DSC exhibit non-linear features was
noticed more than ten years ago in the works by Schlichtorl, van de Lagemaat, Frank, Peter
and coworkers-¢. Later, the importance of non-linear recombination kineticsin DSC has again
been stressed.”° Non-linear features are detected in the non-ideal dependence of the open-
circuit photovoltage on illumination intensity (with an slope larger than 59 mV/decade) and in
the non-ideal behaviour of the recombination resistance with respect to applied bias
(measured viaimpedance spectroscopy-13). Moreover, non-linear effects result in the increase
of the electron diffusion length as the electron density in the semiconductor is increaseds-104,

Non-linear recombination is normally expressed in terms of the kinetic equation
Upee = kynf (6.1)

A reaction order (8) of one, indicative of simple unimolecular recombination via
conduction-band states, leads to an ideal slope of 26 mV (59 mV/decade) in the open-circuit
voltage (Voc) - log(illumination intensity) plotis and to an electron diffusion length that is
constant with respect to illumination intensity. However, reaction orders ranging between 0.6
and 0.8, indicative of sub-linear recombination kinetics with respect to free electron density,
are generaly found in dye-sensitized solar cellsi©1316-19, The reaction order has important
implications for the photoconversion efficiency. Assuming an ideal dependence of the free
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Linear and sublinear recombination
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Fig. (6.1). Comparison between linear (5 = 1) and sub-linear (3 < 1) recombination
kinetics. & is the pseudo-first order recombination constant. Taken from reference 22

electron density with respect to voltage, the described recombination rate leads to a current-
voltage curve given bys

J=Jsce —Jo [eXp (qu/kBT - 1)] (62)

which is equal to Eq. (1.1) with 8= 1/m. Eq. (6.2) predicts that reaction orders significantly
smaller than one lead to current-voltage curves with small fill factors, hence showing a
reduced efficiency with respect to an “idea diode” solar cell. The recombination losses can
aso be enhanced under illumination, as recently discussed22l. Recently, non-linear

recombination kinetics has been included in the numerical description of the I-V curve of a
DSC=,

In this Chapter we focus on the attempt to understand the effect that the energetics of
the redox pair and semiconductor produce on the transport-recombination Kinetics. In addition
we pursue to determine the fundamental origin of a recombination order different from one.
To do so, we analyze the recombination kinetics at the semiconductor oxide-electrolyte
interface starting from the molecular mechanisms involved in the electron transfer reaction.
Asit is generally accepted that electron trapping plays a significant role in the recombination
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reaction?.2324, we focus here on the interplay between the energetics of the electrons in the
semiconductor nanostructure and the density of states of the electron acceptors. Hence, we
combine the theoretical description of trap density distributions®s26 and trap-limited
transport427-20 with the well-known Marcus-Gerischer (MG)15% theory of charge transfer at
semiconductor-el ectrolyte interfaces.

The MG model has been utilized33 to describe the kinetics or recombination from a
distribution of localized states to a distribution of acceptor states in the electrolyte. In
summary, their approach is based on Eq. (2.53). This equation ssmply states that the
recombination rate is a consequence of the interplay of three contributions: the number of
states available at each value of the energy in the semiconductor (described typically by an
exponential distribution for an inorganic semiconductor), the probability that this energy state
is occupied (Fermi-Dirac) and the number of states available in the electrolyte, as determined
by the MG formula. To obtain the net recombination rate the product of these three
probabilities should be integrated to all values of the energy between the redox Fermi level
(Eredoxz) @nd the semiconductor conduction band edge (E.). Starting from this basic scenario,
it has been derived an approximate analytical expression for the recombination ratelss:
applying the zero temperature limit of the Fermi-Dirac distribution and assuming that the
Marcus reorganization energy is much larger than the photovoltage.

According to this simplified formalism, the reaction order is given by Eq. (2.56).
1
ﬂ=§+a (6.3)

Hence, for characteristic temperatures or around 900-1200 K,2632 recombination orders of ~
0.75-0.85 are predicted, close to the experimental values. This model is also successful to
predict the correct temperature dependence of the recombination order?, although abnormally
high characteristic temperatures seem to be required to fit the experimental data. On the other
hand, to assume that the reorganization energy is much larger than the photovoltage may be
too strong of an approximation, since reorganization energies of the order of 0.4-1.2 eV are
commonly reported for typically used redox couples+3033-35, An additional complication is
that assuming that the reorganization energy is very large, excludes the possibility that the
system may enter the Marcus inversion regime, a situation that has been claimed in the
literaturetoso,

MG theory has recently also been applied by Ondersma and Hamann3s to successfully
predict the shape of the electron lifetime curve versus voltage in DSCs with outer-sphere
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redox shuttles. The formalism of these authors is also based on the description represented by
Eq. (2.53), but with explicit consideration of inner and outer reorganization energies (see EQ.
(2.52)). The model devised by these authors includes electron transfer mediated by surface
states, that can play a significant role in the recombination reaction. More recently Ansari-Rad
et a.3¢ aso use Eq. (2.53) as a starting point to devise a theoretical model where the 3
exponent is calculated as a function of Fermi level, showing that it is always less than unity,
except when the Fermi level approaches the conduction band. It has to be noted that most of
these previous studies focused on the determination and analysis of the electron lifetime, a
magnitude which is usually measured at open-circuit or at a position-independent Fermi level.
However, a solar cell at working conditions does not operate at open circuit, but in the
presence of a density gradient, which drives electrons to the external contact. Hence the
interplay between transport and recombination (as manifested by the value of the diffusion
length) is decisive for good electron collection at real operating conditions.

In the previous Chapter, we applied the random-wak numerical simulation method
(RWNS)27-29 to evauate the lifetime (7,,) and the diffusion length (L,,) for electrons moving in
an exponential distribution of trap energies. This procedure requires to incorporate
recombination kinetics in the algorithm, which was assumed to occur according to a constant
probability. This way, only trapping/detrapping events and the population of the electronic
states (traps) contribute to the Fermi level dependence of 7, and L,,. Using this smplified
method, the compensation effect predicted by various authors®™4 can be nicely reproduced
from a microscopic mechanism of transport/recombination. In this Chapter we extend this
method by introducing a non-constant recombination probability, which depends on the
energy of the donor and the acceptor state according to the MG model54., As stated in Eq.
(2.53), the probability of recombination and the recombination rate should depend on the
population of electronic states in the semiconductor (controlled by the Fermi level position)
and the reorganization energy of the redox couple in the electrolyte. It is expected that all
these microscopic parameters produce complex kinetics that cannot be described by areaction
order of one.

6.2. Methodology

The aim is two-fold: on the one hand we intend to analyse the problem posed by the
Kinetic equation and Eq (2.53) from first principles, using RWNS, a versatile tool to study,
simultaneoudly, transport and recombination. On the other hand we intend to extend previous
theoretical work by establishing unambiguoudly the effect of the reorganization energy and
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the relative positions of redox energy and conduction band on both the diffusion length and
the lifetime.

To do so, we have introduced an energy-dependent recombination mechanism in the
RWNS agorithm, which is described by the MG model. The MG model has been introduced
previoudy by a number of authors’15%0313 to describe recombination in DSCs. To our
knowledge, this work represents the first time that MG theory is incorporated in a RWNS
calculation. Basicaly, this is done by giving a recombining character to the network of traps
in such a way that its energy distribution serves as the medium from which a direct charge-
transfer from traps is applied. However, in order to achieve a complete recombination model
two alternative stochastic procedures based on the MG description have been implemented. It
has to be noted that these two models represent different recombination mechanisms, in which
transport plays a distinct role.

The first recombination procedure brings about the computation of a probability of
recombination Pr each time an electron reaches a trap of energy E. This is obtained via the
following expression

[kpT E—E,,)
Pr(E) = ko Aj—)\ exp {—W} (6.4)

with k.0 = 2koc, where ko is a time constant for tunnelling and ¢ is the concentration of
oxidized speciesin the electrolyte in accordance to Eq. (2.50). This description, which we will
call Model 1, can be seen as an extension of the calculations of Chapter 5 in which a constant
recombination probability is replaced by a more realistic energy-dependent probability4. By
this procedure we can simulate the interplay between the random walk of the electrons and the
charge transfer to the electrolyte.

The second recombination procedure involves a formulation based on times instead of
probabilities. Thus, the waiting times numerical algorithm is modified in such away that each
electron is assigned a recombination time along with its detrapping time. These recombination
times are computed according to the inverse of Eq. (6.4)

A\
kT

rec
ti

= —In(R)tro

(Ez - on)2:| (65)

P { ANkpT

where R is a random number uniformly distributed between 0 and 1 and t, is a adjustable
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prefactor that controls the time scale of recombination. The implementation of this algorithm
(that we will call Model 2) is as follows. once charge carriers have been injected, detrapping
and recombination times are computed for all of them via Egs. (3.1) and (6.5) respectively.
Both types of times are stored in the same list of waiting times in such a way that if the
minimum time corresponds to detrapping, that carrier is selected to move into its target site.
On the contrary, if the minimum time corresponds to recombination, the carrier is removed
from the sample. Once executed either the move or the recombination, both detrapping and
recombination times of the rest of the carriers are reduced by t,in.

A mechanism based on times rather than on rates or probabilities leads, in principle, to
the same results because according to Egs. (6.4) and (6.5) a low recombination time is
equivalent to a high recombination rate (and vice versa). However, there is an important
difference between both models, which is based on the sequence in which the simulation
moves are executed. In Model 1 the MG formula is applied after each detrapping event.
Hence, transport will influence recombination to some extent. On the contrary, in Mode 2,
the application of the MG formula runs in parallel. Hence transport and recombination are
separated and uncorrelated. Furthermore, in Model 2 direct transfer between trapped
electrons and electrolyte acceptors is possible, whereas in Model 1, only electrons that have
been previoudy detrapped (i.e. quas free electrons), are allowed to recombine. In both
models, however, recombination can take place starting from any trap state (either via a
previous detrapping or by direct transfer) and not only from the conduction band.® Thisis a
reasonable assumption if we consider that the great maority of electrons will be trapped
(approximately 90% as recently estimated)2+ and that electrons spend a much longer time in
trapped states than in the conduction band.

It must be noted that in the RWNS formalism utilized in this thesis there is strictly no
conduction band level. E. isjust the parameter that determines the transport activation energy
in the multiple-trapping description of Eg. (3.1) and the origin of energies in the exponential
distribution of Eq. (2.2). Furthermore, simulation times are always normalized with respect to
to in Eq. (3.1), which represents the average residence time of electrons in the conduction
band. Hence, electrons do no effectively stay in the conduction band and they cannot undergo
direct recombination from the conduction band, within this particular formalism. However, as
the mechanism of recombination based on Eq. (6.4) (Modéd 1) involves that electrons should
get detrapped before they have the possibility to undergo a recombination process, it can be
seen as an aternative view to a “conduction band recombination probability” under certain
conditions. In fact, if we bear in mind that detrapping times from shallow traps are much
shorter than from deep traps and that most of the sites have energies close to the “conduction
band” (for an exponential distribution) one expects that Model 1 samples preferentially
recombination from shallow traps whereas M odel 2 samples recombination from deep traps.+
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ENergies

.

space

Fig. (6.2). lllustration of the transport and recombination processes studied in this Chapter.
The meaning of the reorganization energy, A, and the Fermi level position (showed as a
shaded region) is explicitly indicated in the figure.

In this Chapter we study the Fermi level dependence of the electron diffusion length
for both kinds of recombination mechanisms. In addition, we present the results for a hybrid
model, which is a combination of both. In all cases, the recombination rate of specific
electrons will depend on their energies and this will introduce a number of recombination
events in the smulation for a given set of input parameters. Hence, the objective of the
simulation procedure is to store the time and the distance that electrons survivel/travel before
they recombine. As we will see below, only the hybrid model is capable of adequately
reproducing the behaviour of the system with respect to Fermi level and conduction band
position. In Fig. (6.2), a schematic representation of the numerical procedure and the physical
processes involved is shown. Using the different models, we perform random walk
simulations of two experiments that are generally used to characterize recombination kinetics:
(i) determination of kinetic parameters under constant illumination intensity and under open
circuit voltage conditions; an (ii) open circuit voltage decay measurements upon switching off
the light source.

In a first kind of simulations (steady-state RWNS), as the solar cdll is simulated at
open-circuit conditions and under constant illumination intensity (fixed Fermi level), a
constant electron density should be maintained in the sample. This is achieved by imposing
the restriction that when an electron has just recombined, another electron is immediately
injected into the system in another place at random. For this fresh electron, both time and
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distance are reset such that the average time and distance between recombination events can
be computed, stored and represented versus total smulation time. Finally, these magnitudes
are renormalized by the total number of electrons and the total number of recombination
events so that the result is effectively an average time and distance for one single electron. We
have demonstrated in Chapter 5 that this procedure yields true electron lifetimes and diffusion
lengths4.

In a second kind of simulations (transient RWNS), the restriction of re-introducing
electrons is removed. This procedure makes it possible to simulate a typical open-circuit
voltage decay experiments. As no new electrons are introduced after recombination, the
concentration of electrons in the sample decreases with time according to certain kinetics. It
has been found that this decay can be described by a power law, such that the reaction order g
with respect to free electron density can be extracted by means of afitting procedure to the
integrated version of Eq. (6.1).

In Chapter 1 we saw that the electron lifetime is defined by Eq. (1.10). The lifetime is
hence defined as the variation of the recombination rate for small variations of the total
density, and it is the lifetime extracted from small-perturbation techniques such as impedance
spectroscopy. Alternatively a pseudo-first order lifetime can be defined20223643 |n the same
way, the electron lifetime with respect to the Fermi level can be monitored from the decay
according to744

. n
dn/dt

(6.6)

T =

As shown in Ref. 36, both lifetimes are not equal. In Ref. 22 it has been shown that the two
life times are proportional to each other and related by a constant (equal to «/3).

In this Chapter we use Eg. (6.6) to extract the lifetime from the transient RWNS
calculations. It is shown that this procedure reproduces the values of lifetimes obtained from
the "average" method described above, for the same Fermi level, quite accurately. This is
consistent with results contained in Chapter 5, where it was found that the distribution of
survival times for electrons was exponential in a simulation performed at constant Fermi level,
corresponding to first-order recombination kinetics. The time constant of this distribution
coincided with the lifetime obtained by averaging the survival times of the electrons.

In order to keep the number of adjustable parameters as small as possible, we have
employed values reported in the literature for most of the parameters used in the
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simulations4®. Hence, we use Ty = 700-1100 K, 7' = 300 K, N; = 107 m? (meaning an
average trap-trap distance of 1 nm) and tp = 10 s. A cut-off radius of 1.5 nm isintroduced in
the simulation so that jJumps to neighboured traps beyond this distance are not considered. To
study the effect of a shift of the band edges, we have used two different values for the position
of the conduction band extracted from the work of Jennings and Wang®: E. = 0.95 eV for the
case of no additivesand E. = 0.7 eV in the presence of 2M Li* in the electrolyte solution. The
only adjustable parameters are those controlling recombination (k.o or t,o (or both) and X ).
Independent adjustment of k.o and ¢,o gives us freedom to favour one model over another.
Both parameters depend on the distance between electron and acceptors and can vary with the
composition of the electrolyte. For instance, addition of adsorptive species such us TBP or Li*
can increase the distance between electrons in the semiconductor and the redox-active ions, as
suggested by Nakade et a .34 Furthermore, different tunnelling factors are expected for traps of
different energy. However, for simplicity, we have considered both k.0 and ¢, factors
independent of energy.

As can be seen in Appendix A, the adjustment of k¢ and ¢, for each model (and the
ratio of them in the case of a combination of both) does not modify the Fermi level
dependence of the lifetime and the diffusion length so we are able to represent the results
normalized by the maximum value of the measured magnitudes in each case. Moreover, to
avoid excessive computational times, systems with relatively small diffusion lengths have
been simulated with the restriction that it must always be ensured that the time scale for
trapping/detrapping is much shorter than the time scale of recombination, as shown in our
previous work. Finally, a sufficient number of independent simulations (defined for different
random number sequences) have been carried out in order to ensure good statistics in the fina
results.

6.3. Results and discussion

Results of steady-state RWNS simulations using Model 1 for two different values of
the reorganization energy are presented in Fig. (6.3) (upper panel). Electron diffusion length
calculations are shown as a function of the energy difference Er— Eycdor, Which corresponds
to the open-circuit voltage (V,) produced by the solar cell at steady-state. In the dark,
Er— Eedor = 0, and the system remains in thermodynamic equilibrium.

It is observed that the diffusion length increases with V,. with an energy-dependent

recombination probability provided that the reorganization energy is sufficiently low (i.e.
A =0.2eV). In contrast, for a higher reorganization energy (A = 0.6 €V) the electron diffusion
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Fig. (6.3). Top: Electron diffusion length calculated by steady-state RWNS calculations
using Model 1 for two vaues of the reorganization energy. Bottom: Distribution of
energies for electrons undergoing recombination. The same two vaues of the Fermi level
are shown for both reorganization energies. Er — FE,u: = 0.25 €V (solid line) and
Er — Eredor = 0.07 €V (dashed ling). The characteristic temperature of the trap energy
distribution utilized in the simulation was Tp = 1100 K and a band offset of
E; — Eredor = 0.7 €V was considered.

remains constant. The predictions of Model 1 presented in Fig. (6.3) can be explained as
follows. For an exponentially increasing trap density distribution, the detrapping probability of
electrons increases upon shifting the Fermi level to higher energies. As a consequence, the
time spent in the nanostructured film is shorter, making recombination less likely. However,
the probability of recombination also depends on the number of acceptor states, as described
by Eq. (6.4). At this point, two scenarios can be observed: (1) Linear regime: for a redox
couple with areorganization energy larger than V., the recombination probability is increased
due to the increase of the available acceptor states upon raising the Fermi energy. As a result,
there is a compensation effect that keeps the diffusion length approximately constant. (2)
Non-linear regime: for redox couples with a small reorganization energy, the recombination
probability decreases with increasing V.., when the system enters the Marcus inverted region.
In this case, the diffusion length is expected to increase with increasing (open-circuit) voltage,
since the recombination kinetics become slower due to the lower probability of electron
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transfer to the solution.

The origin of the dissimilar behaviour of the diffusion length can aso be understood
by inspecting the lower panel of Fig. (6.3), where the distribution of trap energies from which
the electrons undergo a recombination event is shown. For the case in which the diffusion
length does not increase with voltage, this distribution is exponential, indicating that most
electrons recombine from states close to the conduction band. On the other hand, when the
diffusion length increases with voltage, the distribution exhibits a maximum at intermediate
energies. The appearance of this maximum is a consequence of the interplay between two
opposite effects. the increase of the density of donor states characteristic of an exponential
function, and the decrease of the density of acceptor states as the energy of the electron is
raised. More importantly, the two regimes differ in another feature. For the linear case the
distribution of states from which recombination occurs does not change when the Fermi
energy, i.e. the electron density, is varied. Hence, the diffusion length remains constant. On
the contrary, for the non-linear case the distribution maximum gets displaced towards lower
energies. This change in the recombination probabilities explains why the diffusion length
tends to increase as more electrons are accumulated in the semiconductor for the non-linear
case.

The previous result shows that a non-constant behaviour of the diffusion length with
respect to V,. (non-linear regime) can be reproduced with an energy-dependent recombination
probability using Model 1. However, it must be recognized that this regime is only accessible
if the open-circuit voltage is above the most probable oxidation energy in the electrolyte (E,.),
i.e. in the Marcus inverted regime. This last requirement implies that for typical values of the
open circuit voltage of standard DSC of 0.6-0.8 V, very small values of the reorganization
energy are needed. However, values below A = 0.4 eV are rather unrealistic®s. On the other
hand, the models of Bisquert et a.”15 and Villanueva-Cab et a.4 show consistent formalisms
according to which an increasing electron diffusion length with respect to V,. can be achieved
assuming much higher values of the reorganization energy. Hence, it is concluded that M odel
1 does not achieve an adequate description of non-linear recombination in DSCs, implying
that other charge-transfer mechanisms must be taking place.

As described in the previous section, the alternative Model 2 assumes that direct
transfer between trapped electrons and electron acceptors can take place. Thisis implemented
by computing recombination times via Eq. (6.5) and allowing for removal of electrons when
these times are shorter than the transport times, in accordance with the usua RWNS
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Fig. (6.4). Electron diffusion length calculated by steady-state RWNS calculations using
Model 2 for different values of the reorganization energy and the characteristic temperature:
To =700 K and, A =2 eV (circles), Tp = 700 K and A\ = 2 eV (squares) and Ty = 1000 K,
A =20 eV (triangles). Results are obtained from the Marcus-Gerischer formula (Eq. (6.5))
and a density of electronic states in the semiconductor given by Eq. (2.2). A band offset of
Ec — Eredor = 0.95 €V was considered. Dashed lines correspond to fits to Eq. (2.62).
“Theoretical (th)” and “simulated (RW)” values of the adimensional parameter ~ are also
indicated in the graph.

algorithm. Steady-state results for the electron diffusion length obtained by Model 2 are
presented in Fig. (6.4).

First of al, it can be observed that, in contrast to Model 1, Model 2 predicts an
increasing diffusion length versus the open-circuit voltage for a high value of the
reorganization energy. Moreover, the curves exhibit exponential behaviour in accordance to
the theoretical models’# where Eq. (2.62) is derived” with a theoretical value for the
exponential parameter given by EQ. (6.3). However, although the simulations with Model 2
predict an exponential behaviour, the parameter (5 extracted by fitting to Eq. (2.62) does not
coincide with the theoretical value of Eq. (6.3). This is due to the fact that those equations
were derived under the assumption that the reorganization energy is several orders of
magnitude larger than the open-circuit voltage (which isindeed a strong approximation). As a
matter of fact, curves in Fig. (6.4) using a reorganization energy of A = 20 eV do offer a

116



Chapter 6 Origin of non-linear recombination in dye-sensitized solar cells

possibility to test the prediction of (6.3). Such an unredlistic value of the reorganization
energy (although otherwise appropriate for theoretical reasons) permits us to obtain simulated
dopes closer to the theoretical values of (6.3). On the other hand, Model 2 reproduces
qualitatively the temperature dependence of the diffusion length. Thus, it is found that for
Ty = 1000 K the slope of thelog (L,, / LI"** vs. Er— Eredos) CUrvesis higher than for 7y = 700
K in accordance to the theoretical prediction of (6.3)7. In summary, Model 2 seems adequate
to explain many of the experimental facts aswell as the occurrence of a non-linear regime.

However, it is essential to find a model that it is capable of reproducing all
experimental observations in DSCs in order to clarify the charge-transfer mechanisms
involved in this type of solar cells. In this context, recent reports by Jennings et al. 1030 showed
that it is possible to induce a change from the non-linear to the linear regime by addition of
lithium ions to a iodide/tri-iodide electrolyte. This change has been interpreted as a
consequence of the displacement of the semiconductor conduction band towards more
positive potentials upon Li* addition. To describe this observation we have carried out
simulations for different values of the E. parameter with respect to the electrolyte equilibrium
redox level, but keeping the total number of traps constant. In this context it has to be noted
that some authors?43546 have pointed out that the electrochemistry of the iodide/tri-iodide
system is very complicated as it involves a multi-electron process and intermediate species
such as |,. However, in this work we do not study the actual mechanism of electron transfer
but the effect that the relative positions of conduction band and redox level, as well as the
reorganization energy, have on the recombination kinetics. Even if charge transfer involves the
production of |, instead of |5 there will aways be a distribution of acceptor energies given by
Eqg. (2.50), which would be sensitive to displacement of either the conduction band in the
semiconductor or the equilibrium redox level of the electrolyte.

Results for both models, together with experimental results from Refs. [10,30] for two
compositions of the electrolyte, can be found in Fig. (6.5). As indicated in the previous
section, we can represent results normalized with respect to the maximum value for both
experimental and smulated cases. The simulation results show that it is possible to
approximately reproduce the experimental curves using Model 1. However, again, an
unrealistic low value for the reorganization energy (A = 0.25 eV) is required. On the other
hand, it is observed that if we use Model 2 the diffusion length slope can not be changed
when the band is displaced, neither by using a large reorganization energy (A = 2 €V) nor an
intermediate one (A = 0.6 eV).
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Fig. (6.5). Left: experimental measurements (Ref. 10) of the electron diffusion length for a
DSC with Li* (red circles) and without Li* ions (black sguares) in the electrolyte and the
predictions of Model 1 with A =0.25 eV, Ty = 700 K and 7'= 300 K are presented. Values
of E. — Eredor = 0.7 €V (red dashed ling) and 0.95 eV (black solid line) are used for aDSC
with and without Li* ions in the electrolyte respectively. Different values of k.o (see Eq.
(6.4) have been used for each case: ko = 510° arb. un. for E. — Ereqor = 0.7 €V and
5.104 arb. un. for 0.95 eV. Right: Predictions of Model 2 with the same parameters:
To=700K, T=300K, E;. — Eredoz = 0.95 €V (solid lines) - 0.70 eV (dashed lines). Two
values of the reorganization energy: A =2 eV (red) and A = 0.6 eV (black) are used for each
type of electrolyte.

The change of the electron diffusion length behaviour upon band displacements has
been interpreted as a modification of the main recombination mechanism involved in the
semiconductor/electrolyte interface, from recombination via trap states to recombination via
conduction band states.10% Here it is important to stress again that Model 1 can be interpreted
as an alternative view of the so-called conduction band recombination if a high enough
reorganization energy is applied. Indeed, it can be seen in Fig. (6.3) that when the
reorganization energy is higher than the photovoltage the energy distribution for electrons
undergoing recombination is exponential meaning that most of the sites from which
recombination events occur are those very close to the conduction band edge. These shallow
states correspond to “nearly free” electrons, which are more likely to recombine. Hence, for
an exponential distribution of trap energies, the shallow states (close to E.) play the role of an
effective conduction band, with faster transport and more rapid recombination if there are
acceptor states available closeto F = E.. At the same time, Modéel 2 has proven to be ideal to
reproduce recombination from deep traps due to its capacity to reproduce theoretical features
that take into account this specific charge-transfer mechanism. In summary, it is reasonable to
assume that an adequate combination of the two models may be able to explain al the
experimental phenomenology, including the effect of the change of the diffusion length slope
when plotted versus V.
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In the following, RW simulation data as obtained by a combination of Model 1 and
Model 2 (Hybrid Model) are presented. In these simulations electrons being detrapped are
allowed to recombine by generating probabilities with Eq. (6.4), as defined by Model 1.
Simultaneoudy, unmobile electrons are also alowed to recombine directly from traps
according to waiting times obtained by Eq. (6.5), as defined by Model 2. The relative weight
of each type of recombination is controlled by adjusting the parameters k.o and to,
respectively.

Results obtained by this hybrid model, along with experimental data for different
compositions of the electrolyte, are shown in Fig. (6.6). The calculations were carried out
using 7o = 700K, T=300 K, A = 0.6 &V, ko = 8:10° arb. un., t,0 = 1.25-108 ¢¢. The simulation
results show that it is possible to reproduce the change of slope observed experimentally for
realistic values of these microscopic parameters. It is observed, however, that a displacement
of the conduction band towards lower energies (more positive electrochemical potentials),

A=0.6eV
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Fig (6.6). Electron diffusion length from experiments (symbols) and calculated by steady-
state RWNS calculations (lines) using the combination of Model 1 (Eq. (6.4)) and Model 2
(Eq. (6.5)) (Hybrid Modél). The simulations correspond to a system defined by A = 0.6 eV,
To = 700 K, T'= 300 K and E; — Eredor = 0.95 (black ) and 0.7 eV (red), using
kro = 8:10% arb. un. and t,o = 1.25-108 ;. Note that data are normalized with respect to the
maximum value.
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leads to longer diffusion lengths. Longer values of the electron diffusion length have been
found experimentally when lithium ions are added in the electrolyte®. However it has been
reported™ that freshly fabricated DSCs with LiTFSI (simulated system) exhibited higher L,
than DSC with no additives and that after a certain time L, decreased, athough the
dependence with respect to the open-circuit voltage is preserved. The lowering of the electron
diffusion length maintaining the dependence at the same time has a so been reproduced as can
be seen in Fig. (6.6). To achieve this we have modified the prefactor k.o in Eq. (6.4),
specifically from 8-:10° to 2.5-10° arb. un.

It might be argued that the chosen value of the reorganization energy is somehow
arbitrary. Hence, we have tried to fit the experimental data using a large value of the
reorganization energy. Results of these RW simulations are presented in Fig. (6.7) for
A =2 eV and two different values of the recombination prefactors (k.o and t,0). In that case,

Hybrid Model & =2 eV

T ‘ T . T . ]

—_— F =005V :
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Fig. (6.7). Electron diffusion length calculated by steady-state RWNS cal culations using the
hybrid model. The simulations correspond to a system defined by A = 2 eV, Tp = 700 K,
T=300K and E. — Eredor = 0.95-0.70 V. Results are obtained from the Marcus-Gerischer
formula (Egs. (6.4) and (6.5)) and density of electronic states in the semiconductor (Eqg.
(2.2), trap energy distribution).
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an appreciable change of the Fermi level dependence of the diffusion length upon band shift is
not observed, hence, we can conclude that only by using an intermediate value of the
reorganization energy, which is lower than the two studied values of E. — Ercdoz, the
experimental behaviour can be reproduced. In other words, a certain contribution of the well-
known Marcus inverted regime is necessary to reproduce the observed trends®. To further
clarify this point, the energy distributions for electrons undergoing recombination
corresponding to the simulations of Fig. (6.6) are shown in Fig. (6.8) for two different values
of the Fermi level in each case. For E. = 0.95 eV (no additives in the electrolyte), it is
observed that the most probable donor energy is located in the vicinity of the Fermi level
energy and is, therefore, different for each simulated open-circuit voltage. On the other hand,
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Fig. (6.8). Distribution of energies for electrons undergoing recombination for the two
values of the conduction band energy studied in Fig. (6.6) as predicted by the Hybrid
model. Two Fermi levels are represented for each conduction band position:
For E. — Eredox = 0.95 €V (top) the cases Er — FEredor = 0.45 €V (solid line) and
Er — Eredor = 0.58 €V (dashed line) are represented. Likewise, for E. — Eyedor = 0.7 €V
(bottom) the cases Er — Eredox = 0.39 €V (solid line) and EF — Eredor = 0.5 €V (dashed
line) are represented. Calculations were carried out using k.o = 102 arb. un. and ¢,o = 107 ¢.
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for E. = 0.7 eV (with 2M Li*in the electrolyte), the most probable donor energy is situated in
the vicinity of the conduction band position for both cases and does not change with respect to
Voe. Therefore, a correspondence is actually observed between the electron diffusion length
behaviour and the energy distribution function of recombination sites. This observation can be
related to the Marcus inverted regime described in Fig. (6.3), where an increasing electron
diffusion length is expected when the recombination site is at a higher energy than E,, (the
most probable energy of the electron acceptor in solution). In conclusion, the interplay of the
Marcus inverted regime and the displacement of the conduction band can correctly explain the
change from a V,. - independent to a V,. - dependent diffusion length as a change of the main
charge transfer mechanism, from recombination controlled by shallow traps to recombination
controlled by deep traps.

To establish the “ degree of non-linearity” we should estimate the reaction order G with
respect to free electron density. As indicated in the previous section and in Chapter 5, the
RWNS method can be utilized to simulate an open-circuit photovoltage decay experiment.
The kinetics of the recombination reaction can be numerically extracted by fitting to the
expression for the total electron density:

—le—? =kn" ;3 g#1 (6.7)

which can be integrated to give:

n t 1
— d—”:k/ dt = n=(At+B)T (6.8)
0

no n’Y

where A and B are constants. In Egs. (6.7) and (6.8), the exponent - is the reaction order with
respect to the total electron density. Under quasi-static conditions (internal equilibrium

between free and trapped electrons), the total and free electron densities are related to each
other. The following relationship can be derived+

M) 0

where ny is the total density in the dark and n.o the density of free electrons in the dark.

122



Chapter 6 Origin of non-linear recombination in dye-sensitized solar cells

Introducing Eq. (6.9) in Eq. (6.7), and taking into account Eq. (6.1) we find
v ? (6.10)
a

Note that the reaction order with respect to the total electron density () can be larger than
one, even when (as it will be discussed below) the recombination rate is sub-linear with
respect to free electron density (3 < 1).

The result of the fits to the electron density decays between specific Fermi levels in
Fig. (6.9) show that a larger slope of the electron diffusion length with respect to V. is
correlated to a larger degree of non-linearity of the recombination kinetics. Hence, for the
case of E.— Eredox = 0.7 €V, where the diffusion length is independent of V. as shown in Fig.
(6.6), a reaction order of 5 ~ 0.99 is obtaned. In contrast, for the case of
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Fig. (6.9). Evolution of the total electron population in atransient RWNS calculation using
the Hybrid model of recombination for the same cases as those studied in Fig. (6.6). The
solid line represents the result of the fitting to Eq. (6.8). Note that results shown correspond
to rapid recombination kinetics (short-diffusion length).
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E.— Ereior = 0.95 eV, where the diffusion length is dependent on V,. (Fig. (6.6)), avalue of 5
~ 0.78 is obtained. The results were obtained for a fast recombining system (short diffusion
length). However, as shown in Appendix A, modifying the value of the prefactorsin Egs. (6.4)
and (6.5) does change the absolute value of L,, but not its variation with respect to Fermi
level. Hence, we can conclude that the observed correlation between non-linear recombination
and diffusion length behaviour is therefore in agreement with the results of Bisquert and
Mora-Ser¢e and Villanueva-Cab et a .0

By means of EqQ. (6.6) the electron lifetime can be extracted from the electron density
decays. The results are compared with the electron lifetimes obtained from the steady-state
simulations using the averaging procedure in Fig. (6.10). It isfound that both methods provide
the same results, hence confirming that the behaviour of the diffusion length is actually
connected to the kinetics of the recombination reaction. It is interesting to note that the
behaviour of the lifetime is the same as observed in experiments.124 Indeed, the electron
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Fig. (6.10). Electron lifetimes for a system defined by A = 0.6 eV, Ty = 700 K, 7'= 300 K
and E. — Eyedor = 0.95 (black) and 0.70 €V (red). Symbols stand for results of the steady-
state RWNS calculations and lines refer to lifetimes extracted from transient RWNS
calculations and Eg. (6.6). Calculations were carried out using the Hybrid Model with
kyo = 103 arb. un. and t,o = 107 ¢.
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lifetime is reduced upon shifting the conduction band to lower energies meaning that the
recombination rate is enhanced. This is an expected characteristic, since when the conduction
band is lowered, it gets closer to afixed Fermi level, which is similar to raising the Fermi level
(Er— Eredox) towards a fixed conduction band energy. As the recombination rate is increased
upon addition of Li*, the open-circuit voltage of the solar cell at the same illumination
intensity is reduced. This suggests that it is kinetics rather than thermodynamics that
determine the variation of V,. in a DSC when the semiconductor conduction band is
displaced. A similar effect is produced when a redox pair with a different equilibrium
potential is used, as is the case for novel redox shuttles, including those based on cobalt
complexes.452 On the other hand, Fig. (6.10) shows that the electron lifetime slope
for the case of E. — Ereioe = 0.7 €V is higher (defined positive) than for the case of
E. — FEreaor = 0.95 €V. This is consistent with the fact that a compensation effect that
maintains the diffusion length constant is accomplished in the first case but not in the second.

6.4 Conclusions to Chapter 6

Electron transport and recombination processes in dye-sensitized solar cells are
described by means of arandom-walk numerical simulation procedure based on the multiple-
trapping model, and where recombination is explicitly considered using Marcus-Gerischer
theory. This model permits to relate the non-linear features of the recombination rate usually
found in the experiments with the molecular mechanisms of transport and electron transfer
that take place in the nanostructured semiconductor and at the semiconductor/electrolyte
interface. Only a hybrid model that takes recombination from shallow traps and from deep
traps into account at the same time reproduces all the experimental observations correctly.
This work helps to understand how a non-linear regime can arise from the relative positions
of the Fermi level and the equilibrium redox potential of the electrolyte.

We have observed that non-linear recombination kinetics can be detected for high
values of the reorganization energy. However, only if we consider a driving-force for
recombination in the Marcus inversion regime, corresponding to a value of the oxidation
energy lower than the conduction band position (small or moderate reorganization energy), it
is possible to reproduce the experimental observation that a positive band-edge displacement
leads to a change in the diffusion length behaviour, from being dependent on V. to becoming
independent of V,.. We explain the experimental observation as a consequence of a change in
the main recombination mechanism involved in the system, from a shallow traps controlled
charge transfer mechanism (constant diffusion length) to a deep traps controlled charge
transfer mechanism (diffusion length dependent on V,.). We believe that the results are very
relevant to understand the performance of new redox-shuttles in dye-sensitized solar cells.
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CHAPTER 7

Charge Collection Efficiency in
Nanostructured Solar Cells

The collection efficiency of carriers in solar cells based on nanostructured
electrodes is determined for different degrees of morphological one-dimensional
order. The transport process is modelled by RWNS in a mesoporous electrode that
resembles the morphology of nanostructured TiO2 electrodes typically used in
DSCs and related systems. It is found that the partialy ordered electrode can
almost double the collection efficiency with respect to the disordered electrode.
However, this improvement depends strongly on the probability of recombination.
The collection efficiency is found to reach very rapidly a saturation value,
meaning that, in the region of interest, a slight degree of ordering might be
sufficient to induce a large improvement in collection efficiency. A theoretical
study of the influence of shape of the charge generation profile on the collection
efficiency of a nanostructured solar cell is aso presented. The numerical results
show that if the charge generation profile is gaussian, the collection efficiency is
found to increase exponentially as the centre of the gaussian approaches the
collecting electrode. Furthermore, the collection efficiency is roughly independent
of the gaussian width for devices where there is no bias field. Simulations where a
gaussian absorption is superposed on top of an exponential profile showed that the
corresponding improvement in efficiency is very much dependent on the diffusion
length.
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7. Charge Collection Efficiency in Nanostructured Solar
Cells

7.1. Introduction

One of the reasons why new generation solar cells are attracting so much interest
between scientists and technologists is the fact that they use materials in a disordered phase
(although nanocrystalline in certain cases). Disordered media make unnecessary the highly
expensive purification and crystallization process characteristic of high performance solar
cells. Furthermore, they allow for transparency, multi-angle light harvesting, flexibility, etc.1-5
However, there is recently a renewed interest in improving the efficiency of these devices by
working with 1-dimensional (1D) ordered nanostructures such as nanowires, nanotubes, etc.&-
0 The idea is to improve the collection of charges using a photoanode where there is a more
direct path towards the external circuit. This way faster transport and slower recombination is
theoretically achieved, so that charge and energy losses are minimized. Nevertheless, these
structures are commonly difficult to prepare with the quality required for making efficient
devices. Hence, the use of 1D nanostructures leads to the following paradox: the advantages
of using a disordered material is sacrificed for the sake of improving the efficiency of the
device. This paradox rises the question of how important is the benefit of using 1D
nanostructures.

In areport by Tirosh et al.it the issue of the influence of the ordering of an anatase
nanocrystalline structure on electron diffusion was studied. These authors found a substantial
increase in the electron diffusion coefficient when a partial ordering is induced in the
nanocrystalline electrode by means of an electric field that is applied during the deposition
procedure. This enhancement was interpreted in terms of percolation effects. The influence of
the percolation path in TiO, nanocomposites (considered via a variable porosity) has also
been studied by Dittrich et a.22 and Ofir et a.13 These effects have also been described
successfully by numerical modelling (random walk techniques)4-7. The effect of morphology
on charge transport has also been studied for many other systemss-20 However, the effect of
the ordering with both the consideration of transport and recombination, which is crucial to
understand the performance of nanostructured solar cells, remains to be comprehensively
studied. In this regard, it has been pointed out recently that the aleged benefit of using 1-D
nanostructures should be taken with reserve, especially for DSC architectures where charge
collection aready approaches a 100%.
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In this Chapter we address this issue by exploring the relationship between degree of
order and charge collection efficiency. The main objective is to find a semiquantitative
functional relation between the increase in efficiency and an appropriate order parameter. This
functional relation will help to assess the improvement produced by a hypothetical ordering of
a disordered nanostructure substrate typically used in dye-sensitized solar cells2. This
problem is addressed from the theoretical point of view, using numerical methods24. The
advantage of using numerical simulation is that degree of order and the charge collection
efficiency can be more easily and unambiguously measured, isolating the effect of the order
from other effects such as specific surface or the recombination rate. For instance, very
recently? ab initio simulation has been proven very useful to describe non-adiabatic charge
transfer from quantum dots to the TiO, surface. Here we study the effect of order on charge
transfer, including transport and recombination, but on a larger spatial scale, not accessible to
ab initio methods. The aim is to clarify and help guiding future research, which should be
focused on obtaining better functioning devices by addressing the key issues that limit
efficiency2t.

7.2. Methodology: computation of the collection efficiency for
realistic nanostructures

The charge collection efficiency in photoelectrochemical cells is defined as the ratio between
the number of charge carriers (electrons or holes) collected in the external circuit and the
number of photogenerated carriers. This can be expressed as?

Trec
== - 7-1
et Trec T Ttr ( )

where 7. and 7, are the lifetime and the transport time of charge carriers, respectively
(measured at coincident positions of the Fermi level). The collection efficiency has typically
been discussed in the current literature in terms of the diffusion length?-%, As discussed in
detail in Ref. 28 even if recombination is not linear, EQ. (2.57) is used to define a “small
perturbation” diffusion length, which is still useful to diagnose the collection efficiency of the
device. Hence, the longer is L,, the larger is the probability of collecting charges in the
external contact. Both Egs. (7.1) and (2.57) show that good collection efficiency arises from a
balance of fast transport and slow recombination. The effect expected from the use of 1D
nanostructures is either to accelerate transport or to minimize recombination (or both).
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Fig. (7.1). Top left: Simulation box (size ~ 400 nm) with a random-packing of nanospheres
with electron traps located on the surface (R2 model). Top right: same as left but with a
partial order induced along z-direction by Monte Carlo energy minimization. The external
periodic potential is plotted with a red solid line. Bottom: “columnarity” of the array of
nanospheres (symbols) for various replicas and energy difference with respect to the
minimum (solid line) versus the number of cycles executed in the minimization procedure.
Energy variation is normalized with respect to the starting situation,
1-(E— Emin) / (Emaz— Emin) and scaled for comparison purposes.

With the am of studying the effect of working with a 1D nanostructure, we introduce
order in a random packing of nanospheres (see Fig. (7.1)) that simulates realistic disordered
porous TiO, nanostructures. To do so we start from a random hierarchical packing generated
by means of the cluster model2. In this calculation, a nanosphere radius of 20 nm has been
considered and a low overlapping (about 10 %) between neighbouring nanospheres has been
imposed, which was kept constant along al the smulated structures. Given the statistical
uncertainty implicit to the construction agorithm, we have worked with five different replicas
statistically independent, and averages were extracted. All of them comply with the following
morphological parameters: specific surface area, S = 27.0 £ 0.8 m?/g, porosity, P=56 + 3%
and density, p = 1.7 + 0.1 g/cm?. To induce an ordering effect, these random structures are
then exposed to an external 2D sinusoidal potential parallel to the collecting substrate with to
complete cycles inside the simulation box (see Fig. (7.1)). By minimizing the potential
energyof the system using the Monte Carlo (MC) techniquest, 1D order is progressively

132



Chapter 7 Ordered electrodes to improve the charge collection efficiency

induced in the system. On each iteration, all the spheres (typically ~700 spheres) were allowed
to decrease its potential energy, changing the morphology of the system. As interactions are
being computed, the system changes progressively its morphology from typical random-
packing of particles arranged in hierarchical clusters, to 1D-ordered structures of columnar
morphologies, with a preferred packing direction along the x-axis. The algorithm runs
keeping the specific surface area, the porosity and density of the structure within the intervals
indicated above. This way, the influence of the 1D order alone can be probed, without being
affected by other structural properties. The maximum order was achieved once the algorithm
was unable to find any new position for any sphere of the system that reduces the energy of
the system. This typically occurred for 100 Monte Carlo cycles. This way, different particulate
realistic nanostructures are built without changing no other structural parameter appart from
1D-order. Finally, following previous work,3233 we place “electron” traps on the surface of
the nanospheres (R? model). For each of the five replicas, 25 different set of traps were placed
and considered for the RW simulations described below.

The spatial location of the electron traps make it possible to measure the 1D order of
the system with respect to the direction perpendicular to the collecting substrate (x-axis). To
do so we choose as “order parameter” the standard deviation of the projected position of traps
on the yz-plane (perpendicular plane to the preferred columnar direction) with respect to a
grid of 10 x 10 cells. Hence, alarger columnar order implies awider distribution, with alarger
standard deviation, as traps tend to accumulate at specific positions in the grid. The standard
deviation of the spatial location was called “ columnarity”, in allusion to the measurement of
the quality of being “columnar” of the system. In Fig. (7.2), 2D projections on the yz-plane of
the completely disordered (left) and the columnar system (right) are shown. It has to be
remarked that, despite a maximum order is achieved with respect to the energy minimization
in the sinusoidal potential, this numerical procedure does not produce a crystaline
arrangement of particles, but a disordered arrangement where a preferential direction is
imposed in the system. As can be seen in Fig. (7.2), the distribution of traps in the yz-plane is
rougly homogeneous for the disordered system (left panel) whereas is completely
inhomogeneous for the columnar system (right panel). The standard deviation of the number
of traps that fall on each cell of the grid is used to measure the columnarity of the systems.
The typical standard deviation of 10 x 10 valuesis close to 67+5 for the disordered system and
101+3 for the columnar system. In Fig. (7.1), the correspondence between ordering cycles and
columnarity valuesis shown.
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Fig. (7.2). Grid and 2D projections of the trap positions on the perpendicular plane (yz).
Left: disordered system and right: columnar system. The standard deviation of set of
numbers of points that falls on each cell of the grid is used to measure the order degree as a
“columnarity” parameter.

Fig. (7.1) shows how the columnarity and the total energy vary with respect to the
number of iterations or cycles employed in the Monte Carlo energy minimization procedure.
To estimate the statistical uncertainty of the packing agorithm, results for the five replicas of
the packing of nanospheres are presented. (For each replica the ordering process of energy
minimization is applied). Note again that full minimization (meaning and equilibrated
situation) does not imply that perfect crystalline order is achieved. It is observed that thereisa
direct correspondence between relative columnarity parameter and the relaxation energy. The
main conclusion is that the extent of the minimization procedure (i. e. the number of MC
cycles) can be used to tune the degree of order in the system, hence allowing for a systematic
investigation of the effect on charge collection efficiency in the presence of a preferential
direction in the nanostructured electrode.

The placement of “electron” traps on the surface of the nanospheres, and the ordering
procedure described above provide a three-dimensional network of sites as input for a RWNS
calculationt’3283034  Considering that the problem addressed in this Chapter is a matter of
percolation, we chose the hopping model to carry out the simulation. Hence we use Miller-
Abrahams hopping rates®. This means that hopping times for carriers moving between
neighbouring traps are computed via EQ. (3.2). In addition, an exponential energy
distribution of localized states given by (2.2) is used in the calculations®. By means of Egs.
(3.2) and (2.2), spatial and energy disorder is adequately taken into account in the transport
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process. In this calculations we usedse Tp = 1100 K, 7'= 300 K, and tp = 102 s. A surface trap
density of 0.004 nm? (with respect to the nanosphere surface) has been considered?. This
corresponds to a volumetric trap density of 2.3 104 nm3 (meaning that traps are located at an
average distance of 16 nm in the film). In connection to this, three localization radius of
a; = 2.5, 10 and 20 nm have been studied. It is important to note that, since the traps are
located on the surface of the nanospheres, and these are in contact, the actual distance between
a particular trap and its neighbours is shorter, hence allowing for percolation of carriers
throughout the network.

In addition to transport, aso recombination should be considered to study charge
collection efficiency. As in Chapter 5, we introduced a constant probability (independent of
trap energy) for carrier removal. As shown there, this probability leads to an exponential
distribution of survival times for carriers, which defines a carrier lifetime. This lifetime
defines in turn the characteristic diffusion length of the system. This probability was adjusted
to give diffusion lengths of the order of microns, leading to the general result that in typical
DSCs the time scale for recombination is much longer that the time scale for transport. In this
Chapter we run also calculations analogous to that of Chapter 5 to determine the characteristic
diffusion lengths of the practical cases for which the charge collection efficiency is calcul ated.
Recombination probabilities ranged between Pr = 10° and 102 in arbitrary units. As
described below, thisis translated to a range of values for the diffusion length: the smaller is
Pg the longer isthe diffusion length.

As discussed in Chapter 3, the description of the solar cell at real working conditions
implies to use a considerable number of carriers and trap states, which leads to very high
numerica demands. To reduce the computational time, the one-electron approximation37,
that makes it possible to simulate transport at a given position of the Fermi level with the
movement of a single carrier, has been used. On the other hand, periodic boundary conditions
are considered in the three directions of spacest. Hence, the ssimulation box in Fig. (7.1) is
periodically replicated in such away that if a carrier crosses one of the box boundaries, it is
automatically re-injected through the opposite boundary. Nevertheless, we aim to calculate
charge collection efficiency in realistic systems and this requires to consider charge generation
in accordance to optical absorption lengths of the order of microns, typical of the dyes used in
dye-sensitized solar cells and related devices (for instance, the extinction coefficient of typical
ruthenium dyes® is 1.4 10* Micm?! a A ~ 520 nm. For common dye loadings of
2-3 107 mol/cm? one obtains absorption lengths of 2-4 um). However, the use of a simulation
box of the order of micronsis not computationally feasible for the trap densities used here. To
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deal with this situation the procedure explained in Chapter 3 is implemented so that real
coordinates can be utilized when both charge generation and collection (an illustration of this
strategy is presented in Fig. (3.2).

7.3. Results and discussion

The adequate implementation of the procedure explained in Chapter 3 regarding the
simulation of a macroscopic system is tested in Fig. (7.3). In the smulation, carriers are
injected along the z-axis according to a probability given by the Lambert-Beer law:
exp(—x/Lab), Where Lg is the characteristic optical absorption length. This depends on the
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Fig. (7.3). Charge collection efficiency as a function of Fermi level position for a random
packing of nanospheres (solid symbols, see top left panel in Fig. (7.1), and a fully relaxed
ordered structure (open symbols, see top right panel in Fig. (7.1)) at different values of the
absorption length L. In the inset the collection efficiency is plotted versus Lg for
E.—- Er=0.2 eV in a double logarithmic scale. Error bars are derived from results of
dtatistically independent morphological replicas. Simulations were carried out for the
following parameters: Ty = 1100 K, T'= 300 K, tp = 10"2 s, nanosphere radius = 20 nm,
surface trap density=0.004 nm 2, oy = 2.5 nm,. Pr = 10°¢ (arb. un.).
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optical features of the solar cell (concentration and absorption coefficient of the absorbing
material). Four cases have been considered for this parameter, ranging between L., = 300 and
3300 nm. In Fig. (7.3) the charge collection efficiency is plotted versus L., and the Fermi level
position. The simulation results demonstrate that collection increases when the absorption
length is shorter. Therefore, as expected, collection is more efficient for highly absorbing
materials, because carriers are generated, on average, closer to the collecting electrode. The
collection efficiency is found to depend on L, according to a power-law. This behaviour is
found to be aso predicted by the numerical solution of the continuity equation for electronsin
the photoanodes®-4t. The RW simulations give power law exponents of 0.7-0.8, whereas the
numerical solution yields 0.65 for the equivalent case (see Appendix B for more details).

On the other hand, the collection efficiency decreases as the Fermi level gets deeper
into the conduction band. This behaviour is only clearly observed for short absorption lengths.
For longer absorption lengths the effect of the Fermi level is marginal. This observation can be
interpreted in terms of the Fermi-level dependence of the diffusion coefficient3842. If Er is
raised, carriers diffuse more rapidly and the collection efficiency is increased. However, for
long optical lengths, carriers are generated at further distances and the probability of
recombining before being collected becomes more important. Therefore, the effect of a more
rapid transport in minimized.

The influence of morphological (1D) order on charge collection efficiency is reported
in Fig. (7.4) for different positions of the Fermi level and different recombination probabilities.
In Fig. (7.4) the collection efficiency for the structure with the maximum degree of ordering
(100 cyclesin Fig. (7.1)) is compared to that of the disordered structure using the ratio 7i00/7.
The results of the simulations demonstrate that the collection efficiency can be improved by a
factor close to two when a preferential direction isintroduced in the system. Thisimprovement
is found to be roughly independent of Fermi level (Fig. (7.4), upper panel), suggesting that
either illumination intensity or applied voltage would not modify this morphological effect.

Asit could be expected, the enhancement in collection efficiency is found to depend
strongly on the kinetics of carrier recombination, i.e., on carrier lifetime. In the lower panel of
Fig. (7.4) the improvement factor is plotted against the recombination probability Pr. For very
slow recombination, corresponding to very long diffusion lengths, the effect of the ordering is
absent, since the collection efficiency approaches a 100% in both cases. This means that there
is no benefit in providing a more direct percolation path to the external contact if the lifetime

of electronsislong enough. The opposite situation corresponds to very rapid recombination,
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Fig. (7.4). Charge collection efficiency improvement ratio for ordered structures
(100 cycles, see Fig. (7.1)) with respect to a random packing of nanospheres. Top panel:
Improvement ratio versus Fermi level at constant recombination probability. Bottom panel:
Improvement ratio versus recombination probability at fixed Fermi level. The results for
the diffusion length from simulations on an infinite fully disordered system2 are indicated.
Error bars are derived from results of statistically independent morphological replicas.
Simulations were carried out for the following parameters: Tp = 1100 K, T = 300 K,
to = 102 s, surface trap density = 0.004 nm2, o; = 10 nm, nanosphere radius = 20 nm and
Loy =33 um.

with short diffusion lengths. In that case, no benefit is observed either, because the average
distance travelled by the carriers is much smaller than the characteristic length scale of the
columnar order imposed in the system. As a rule of thumb, it could be stated that the
“ordering” effect is only observed when the diffusion length L,, is approximately of the same
order of magnitude as the optical absorption length L., and the characteristic length scale in
which the order is induced. As it can be seen in the lower panel of Fig. (7.4), maximum
efficiencies are obtained for recombination probabilities of Pr = 10> - 10° (arb. un.).
Simulations in an infinite system for a random-packing give an average® of L,, ~1.0- 0.2 um
for these probabilities, whereas the value used for the absorption length was L, = 3.3 um.

The possibility of tuning the degree of 1D order by a partia run of the energy
minimization algorithm, permits us to investigate whether an approximate functional
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relationship can be found between collection efficiency and the order parameter
(columnarity). Results for this are presented in Fig. (7.5), where we have chosen an
intermediate value of the recombination probability to better see the effect of the ordering. In
this figure, the collection efficiency extracted from the RWNS calculations is plotted against
the columnarity. The RWNS results confirm the progressive enhancement in collection
efficiency when the order of the structure is increased. However, it is noteworthy that this
enhancement does not occur linearly. The numerical data show that the improvement is
significant even for a weak ordering of the system, with a sudden increase at intermediate
values of the columnarity (~ 86, 9-10 cycles). Thus, the collection efficiency reaches rapidly a
saturation value, resembling a ssigmoidal function. It must be recalled that even for the
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Fig. (7.5). Carrier collection efficiency as a function of the columnarity as extracted from
RWNS calculations for different localization radius for an intermediate value of the
recombination probability Pr = 10° (arb. un.), corresponding to L, = 1.24 um. Error bars
are derived from results of datistically independent morphological replicas. Simulations
were carried out for the following parameters: Ty = 1100 K, T'= 300 K, t¢ = 102 5, surface
trap density = 0.004 nm2, nanosphere radius = 20 nm. Note that longer localization radius
lead to better efficiencies, as carrierstravel longer distances between recombination events.
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situation with maximum columnarity (full energy minimization, 100 cycles), the system does
not have perfect crystalline order. In fact it is basically a disordered structure but with a
preferential alignment along the z-direction induced by the externa potential. The present
results suggest that the introduction of a very dight degree of order in the nanostructure can
lead to a huge and abrupt increase in collection efficiency.

The reason of the abrupt jump in the collection efficiency at intermediate order seems
to be related to the existence of a percolation “threshold” in the plane perpendicular to the
columnar direction. The relevance of the connectivity of the transport sites in the adequate
direction has been stressed out by several authorsisio4s, In this case we have an effect of
improved connectivity, but only in one direction. This acts in the following manner: when a
columnar order isinduced, gaps with very low trap density are created between the columns.
This hinders the perpendicular jumping of the carriers and favours their harvesting in the
collecting substrate. This hypothesis can be inferred from the “softening” of the jump when
longer localization radius (meaning longer diffusion lengths) are utilized in the simulation.
Hence, when electrons travel shorter distances, they find more difficult to percolate in
directions parallél to the collecting surface when the systems are “more columnar”. However,
further work is required to elucidate the precise origin of this behaviour, and the actual
relationship between morphological order and transport properties in disordered
semiconductors.

Effect of the shape of the absor ption profile on the collection efficiency

How the charge charge collection efficiency is affected by the generation profile in
nanostructured solar cells is investigated in this section. As a first approximation, this can be
assumed to be exponential, as predicted by the Lambert-Beer law. This is the generation
profile used so far. However, alternative charge generation profiles can be envisioned in solar
cells as a consequence of inhomogeneities in the distribution of the absorbing material
(arising, for instance, from a non-uniform adsorption of dye moleculesin dye-sensitized solar
cells) or the presence of agents that enhance light absorption at certain points like plasmonic
nanoparticles* or scattering layerss.

We have modelled the effect of inhomegeneities on the absorption by considering a
Gaussian shape for the charge generation profile within the active conducting layer. Two
parameters are here relevant to establish the effect on the efficiency, namey the mean
position, or “centre” of the Gaussian (xcentre), and the dispersion (width) of the Gaussian (o).
The influence of these two parametersis studied in Fig. (7.6)
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Fig. (7.6) Top panel: Charge collection efficiency results for a Gaussian generation profile
(6 = 250 nm) as obtained by RWNS calculations for a fully disorder electrode (left panel of
Fig. (7.1)). The efficiency is plotted as a function of the centre of the Gaussian with respect
to the carrier collection boundary. Bottom panel: Same as top panel but for the efficiency
plotted as a function of the width of the Gaussian generation profile and two different

positions of the centre. Simulations

were carried out for the following parameters:

To = 1100 K, T = 300 K, tp =102 s, surface trap density = 0.004 nm2, o; = 10 nm,

Pr=10%arb. un.

In the upper panel of Fig. (7.6) the position of zc.nire iN the Gaussian absorption profile

is moved with respect to the collecting electrode. As expected, smaller distances to the
collecting €electrode correlate to larger charge collection efficiencies. Interestingly, an
exponential law is found between the charge collection efficiency and the distance to the
collecting electrode, so that small displacements |ead to large increases of the efficiency. These
results indicate that it is very important to produce local enhancements of the absorption of
light close to the collecting electrode. In the calculations presented in the lower panel of Fig.
(7.6) the position of the Gaussian is fixed, but o is varied. An interesting observation arises
here, namely that the charge collection efficiency is roughly independent of the Gaussian
width, at least for o < zcenire. This result can be understood as a consequence of the
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symmetry of the absorption profile and the absence of a bias field on the x-direction. Hence,
as hopping moves are equally likely in both positive and negative directions, the collection of
“forward” charge carriers gets compensated by the recombination losses of the “backward”
carriers. Obvioudly this conclusion would not hold for solar cells where, for instance, an
electric field is acting on the x-direction. In that case a dispersion of a localized absorption
would produce different effect depending on whether the device is at forward of reversed bias.
On the other hand, a non-linear recombination kinetics, recently discussed in the literature2s46
and studied in Chapter 6 would also affect this simple result.

In Fig. (7.7) the effect of superposing a local absorption, modelled by a Gaussian, on
top of a Lamber-Beer profile, is anaysed. In these calculations, a Gaussian profile with

Moot (%)= 44.64 %

n,,, (%) = 41.96 %

n,, %)

Normalized generation
profile (arb. un.)

|
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Fig. (7.7) Three different combinations of Gaussian (o = 250 NM, xcentre = 1400 NM) and
exponentia (Lab = ~ 1000 nm) carrier generation profiles utitlized in RWNS cal culations
with fully disordered electrodes. Simulations were carried out for the following parameters:
To = 1100 K, T' = 300 K, ty =10%2 s, surface trap density = 0.004 nm?, «; = 10 nm,
nanosphere radius = 20 nm and Pr = 10° arb. un. For each combination the charge
collection efficiency obtained in the simulation is indicated.
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o =250 nm, Zcentre = 1400 Nm is introduced. The Gaussian “bump” is added to a background
exponentia profile of L, = ~ 1000 nm. This pure exponential profile yields n ~ 37% for
Pr = 10°% arb. un. and «; = 10 nm. This is the same case studied in Fig. (7.4) (lower panel)
where adiffusion length of carriers of L,, = 1240 nm was obtained. These reference values are
important to understand the results discussed in the following.

The introduction of the Gaussian produces, as expected, an improvement of the
efficiency of the device. However thisimprovement is very much dependent on the position of
the Gaussian. Thus, enhancing local absorption close to the collecting electrode
(zcentre ~ 200 Nm) increases the efficiency from 37% (pure exponential) to 44.6% (exponentia
plus Gaussian). In contrast, if the Gaussian is placed far from the collecting electrode
(zcentre ~ 1900 Nnm) the charge collection efficiency is 38.4%, which means that no real
improvement is produced with respect to the pure exponential. This can be easily understood
bearing in mind that carriers travel in average 1240 nm before disappearing by recombination.
Enhancing light absorption locally at distances larger than this value results in no net
improvement of the efficiency of the solar cell. This is a very important result, because
demonstrates that it is not sufficient to enhance light absorption to improve the efficiency of
real devices, but this enhancement should be implemented in accordance to the charge
transport properties of the conducting film.

7.4. Conclusions to Chapter 7

In this Chapter, a numerical procedure that permits to obtain the collection efficiency
of photogenerated charges in nanostructured electrodes with different degrees of 1-
dimensional order has been developed. The simulated system resembles a real nanostructure
where charges are generated according to a Lambert-Beer with a optical length of the order of
microns, and where transport and recombination are taken into account via a hopping model
coupled with a constant recombination probability. The results show that collection efficiency
would be almost doubled by a partial ordering of the system. The maximum efficiency
enhancement only takes place if the recombination probability (which determines the
characteristic diffusion length of the system) is not too rapid or too low, with a diffusion
length of the same order of magnitude as the optical absorption length. Furthermore, the
collection efficiency can be calculated as a function of the degree of order via a normalized
order parameter. The results show that a very dlight degree of 1-dimensional order can lead to
asignificant increase of the collection efficiency. The predictions contained in this theoretical
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work might be interesting to develop strategies where a preferential direction isinduced in an
originaly disordered structure, such as in the use of hierarchica structures studied in the
recent literature. Furthermore, it is shown that the alleged benefit of using 1-D nanostructures
should be taken with reserve, as only if the recombination rate has intermediate values, a
clear improvement is observed.

A theoretical study of the influence of shape of the charge generation profile on the
charge collection efficiency of a nanostructured solar cell has also been carried out. The
numerical results show that there is a power law dependence of the collection efficiency with
respect to the optical depth of the film if the charge generation profile is Lambert-Beer-like
(i.e., exponential). If the profile is Gaussian, the efficiency is found to increase exponentially
as the centre of the Gaussian approaches the collecting electrode. Furthermore, the collection
efficiency is roughly independent of the Gaussian width for devices where there is no bias
field. Simulations where a Gaussian absorption is superposed on top of an exponential profile
showed that the corresponding improvement in efficiency is very much dependent on the
position of the Gaussian with respect to (1) the collecting electrode and (2) the diffusion
length. These results show that in practical devices it is not sufficient to enhance the
absorption of light to improve the efficiency but aso that this should be applied at an
adequate location of the active film.
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CHAPTER 8

DISORDERED SEMICONDUCTOR
HETEROJUNCTIONS

A disordered semiconductor heterojunction is modelled by means of RWNS. The
numerical modelling is performed by using ssimultaneoudy electrons and holes
moving according to Miller-Abrahams hopping rates. In addition a tunnelling
mechanism is implemented to account for electron-hole recombination. Energy
disorder is taken into account via exponential distributions of trap energies for
both electrons and holes and for the two semiconductors in the heterojunction.
Using this numerical method, we are able to simulate charge separation through a
disordered heterojunction and observe the effects on the surface photovoltage
(SPV) of different parameters like the thickness of the heterostructure, the carrier
concentration and the band-offset. The relationship between the simulated results
and recent experimental data of ETA solar cells are thoroughly discussed. A bulk
heterojunction solar cell in steady-state has been modelled by including explicitly
a continuous generation of electron-hole pairs. Thus, open-circuit voltage
measurements have been reproduced from splitting of Fermi levels for electrons
and holes. Vdues of the recombination current have also been obtained by means
of RWNS, in good agreement with experimental results.
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8. DISORDERED SEMICONDUCTOR HETEROJUNCTIONS

8.1. Introduction

Localized states or traps in disordered materials are mostly located on the surface of
grains and interfaces (as reported, for example, in amorphous silicont2). Moreover, when two
disordered semiconductors with different work functions are put in contact to create an
heterojunction it is known that the process of charge separation is limited by the existence of
surface defects contributing to an enhancement of recombination3. On the other hand, as
described in Chapter 1, it is known that photovoltaic effect of both ETA and BHJ solar cells
are extremely dependent on an efficient separation process of photogenerated carriers. Hence,
characterization of disordered semiconductor interfaces is required in order to achieve better
performing devices.

Charge separation in disordered heterojunctions can be studied experimentally by
surface photovoltage transients (SPV)47. The main advantage of this experimental technique
is that allows to observe both diffusion and recombination mechanisms#5&-10 as well as spatial
charge separation processest! in very short distances (of the order of nm's). The SPV signal
depends on the amount of charge separated in space, on the distance of center of negative and
positive charges and on the dielectric constant of the semiconductor (eep, where € is the
relative dielectric constant and ¢p = 8.85-10** F/cm)é. In the general case in which there is
spatial distribution of both positive and negative charge carriers in the bulk, it can be shown
that SPV adopts the following form

SPV(t) = -LN(t) (< zp > (t)— < zn > (2) (8.1)

€€Q

where N(t) is the total amount of electron-hole pairs per unit areaat timet and < z,,(,) > (%)
is the mean position of holes (electrons), i.e. their “gravity” centre of charge.

However, direct interpretation of the time evolution of SPV in terms of the electronic
processes taking place in thin-film heterostructures is not straightforward. In this sense,
RWNS can serve as an appropriate model as it allows to establish relationships between SPV
measurements and microscopic parameters of specific electronic mechanisms'2:3. Thus, we
present in this Chapter an improved RW method that can describe adequately the main
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features involved in general disordered semiconductor thin-film heterostructures. Thanks to its
flexibility and potentiality, this model permits interpretation of charge separation processes
occurring at interfaces of many types of ETA solar cells, such as In;S;-In,S;:Cu films or
TiO,/CdS layers as well as BHJ (organic) solar cells.

Indeed, it has recently been put into question the actua mechanism of charge
separation and charge transport taking place in BHJs. Specifically, it has been claimed that it
is kinetics and diffusion, instead of a built-in electric field, what provides the photocurrent
and the photovoltage in this type of systems. To check the validity of these assumptions the
present model has been adapted to simulate a typical bulk heterojunction solar cell. As no
electric fields are taken into account, this model can help to clarify this controversy. In Fig.
(8.1) an scheme of the system is shown. We assume that the open-circuit voltage can be
calculated from splitting of Fermi levels for electrons and holes in accordance with the
following expression
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- — — f E.,=-390 eV
E, =185eV o
o /
= Surface
% _ recombination
c _ E;,2= 1.7eV
@ — O
r - — — —
E” =-510eV .
polymer _
— YV E =560V

Fig. (8.1). lllustration of typical polymer-fullerene bulk heterojunction solar cell.
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Voo = = (B37 ~ B (82

where E%°¢ and E;fij” are the electron Fermi level in the acceptor semiconductor and the hole

Fermi level in the donor semiconductor respectively. As a matter of fact, the experimenta V.
Is found to depend linearly on the band offset between the acceptor and the donor, although it
is aways smaller’s. In fact, and empirical shift of 0.3 €V is normally found. Hence, it is very
interesting to ascertain if our hopping and recombination models, without using electric
fields, are capable of reproducing this experimental phenomenology.

The configuration of the system is implemented by means of an adequate combination
of spatial disorder and energy disorder. As regards the former, we run the random walk
simulation on a network of traps distributed randomly in space. As for the latter, we assume
again that localized states are distributed according to an exponential distribution7, In this
Chapter, holes and electrons are considered simultaneoudy as charge carriers. Hence, we will
use astrap energy distributions

9u(E) = 1 exp[(E — o) [buTol
(8.3)
99(E) = 2 exp[(E, — E) /knTby)

- kpTop

where IV, is the total trap density, ksTo.(y) IS the width of the distribution:, E is the trap
energy (negative), E. is the electron mobility edge and F, is the hole mobility edge. We have
assumed for smplicity that the width of the distribution is the same for both e ectrons and
holes. However, this numerical model alows also to use different distributions for both types
of carriers. This possibility might be required for certain systems.

8.2. Methodology

The construction of the heterojunction is accomplished by introducing two simulation
boxes, each of them acting as a different semiconductor with its specific el ectron and hole trap
energy distributions. Thus, four different energy trap distributions are used in the system, each
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of them with its own value of the band (mobility) edge. With these considerations, it is clear
that an specific band-offset can arbitrarily be prescribed by choosing different conduction and
vaence band edges on both sides of the heterojunction. On the other hand, the thickness of
both semiconductors can aso be varied arbitrarily.

Periodic boundary conditions along y-z direction are applied. Thus, a carrier crossing a
y-z boundary is automatically reinjected through the opposite side of the box. In addition, to
simulate an ultra-thin film, we impose reflecting boundary conditions in the x-dimension so
that carriers arriving an = boundary are bounced back and continue moving across the
network of sites. An scheme of the ssimulation procedure is presented in Fig. (8.2).

The numerical procedure runs as follows. Firstly, electrons are initially placed at
random on the network of traps for the second semiconductor (acting as an absorber) with
holes introduced in neighbouring traps. However, in the case of the BHJ calculations, holes
are generated directly in the polymer and electrons in the fullerene. This way the stationary
state is more rapidly reached and the statistics is improved.
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Fig. (8.2). lllustration of the system studied. A disordered heterojunction is modelled by
means of band-offset of energy distributions of localized states for both electrons and holes.
Hopping transport model is used for detrapping times (or rates). See text for more details.
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Each carrier is then given a certain detrapping time that determines the jumping rate or
probability for a carrier to jump to another site. If we assume a hopping mechanism?61°2 of
transport, the detrapping or release time for a carrier jumping from a trap ¢ to atrap j is
derived according to Eq. (3.2).

In the same way, to account for electron-hole annihilation, a distance dependent
recombination probability is introduced in the computation.12 Here we assume that there is a
tunneling mechanism in such away that charge carriers sitting in different traps are allowed to
recombine with each other due an overlap of the wave functions of separated electrons and
holes. Hence, we use the inverse of Eqg. (2.40) to account for recombination times:

t, = —In(R)t,qo exp (QRnp> (8.9
aj

where t,9 is the inverse of a recombination frequency, «; is the localization radius and R, is
the distance between electrons and holes. Note that there is no energy-dependent factor in Eq.
(8.4). We have assumed that the recombination process is analogous to the hopping process
and electron-hole recombination is always a process where energy is emitted (either
radiatively or non-radiatively). However, energy factors might also be taken into account,
especially for non-radiative recombination.

Once charge carriers have been injected, hopping and recombination times are
computed for both electrons and holes via Egs. (3.2) and (8.4) respectively. Both types of
times are then stored in the same list of waiting times in such a way that if the minimum is a
detrapping time then the corresponding carrier is moved into its target site, whereas if it isa
recombination time the corresponding electron-hole pair is removed from the sample. Thisis
an analogous procedure to that used in Chapter 6 for "Model 2". Once performed the move or
the recombination event, the hopping and recombination times of the rest of the carriers are
reduced by t,.:n. Finaly, the same procedure is repeated in each simulation step so that the
jump or electron-hole recombination event with the minimum waiting time can be executed.

A second section of this chapter will focus on steady-state properties of disordered
semiconductor heterojunctions instead of transient dynamics. For this reason, a second type of
simulations have been carried out where a continuous injection of electron-hole pairs is
explicitly considered in the system, in accordance with the photon absorption frequency of
solar radiation in a solar cell. In these simulations an steady-state situation is reached,
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consequence of a balance between recombination and injection. This can be verified by the
fact that the occupation probability fits to a Fermi-Dirac function (see Chapter 4) and that the
the number of "alive" electron-hole pair is kept constant. Thus, well defined Fermi levels for
holes and electronsin both semiconductors (E'%,, and E,,)) are obtained in equilibrium.

8.3. Results and discussion

SPV measurements. Application to ETA solar cells

Using the mean positions of electrons and holes, a SPV histogram can be computed
from the RW calculations (see Eqg. (8.1)). To use redlistic values of SPV in experiments, the
following parameters have been used:1322 7'= 300 K, to, = top =102 s,y =1 nm, ar =1 nm
and ¢, = 10. Having fixed these, we will focus on the role that recombination mechanism (by
means of t,o), absorber thickness (W) and initial densities (pon, pop) play in the charge
separation process taking place in the heterojunction upon photoexcitation.

p,=8 10" cm'3, W,=10nm, T,= 1161 K, AE_=-0.1eV
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Fig. (8.3). SPV transients from RWNS calculations for different values of the thickness of
the absorber and the recombination frequency (1/¢.0). Parameters used in the simulations
areindicated in the Figure.
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SPV transients obtained from RW calculations for different values of ¢, and W> are
shown in Fig. (8.3). It can be observed that, for fixed absorber thickness, the higher the
recombination time prefactor in Eq. (8.4) is, the later appears the decay. This is explained by
the fact that as t,o increases, the probability of recombination decreases with respect to
transport, so that fewer recombination events will occur. For t,0 = 1 s, very few carriers are
recombined and the SPV signal is mainly controlled by diffusion and charge separation. Thus,
in this case a saturation effect related to the total thickness of the heterostructure seems to
appear after charge separation process has been taken place. We can also see that variation of
recombination frequencies affects the SPV maxima, making it higher as it decreases. On the
other hand, comparison of the three panels indicates that for a given value of the
recombination frequency the SPV maxima appears at longer times as the absorber thickness
(W) is augmented. This is a consequence of the fact that for thicker absorbers the process of
diffusion with respect to electron-hole recombination is favoured.
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Fig. (8.4). Maximum surface photovoltage of the transient versus total width of the film for
several values of the carrier concentration as obtained from RW calculations with Miller-
Abrahams hopping rates and a tunnelling recombination mechanism. The dashed lines
stand for linear fittings of the simulation data. The inset includes the electron density
dependence.
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Results of SPV maxima versus semiconductor thicknesses for various initial electron-
hole densities are presented in Fig. (8.4). As it can be observed, the maximum value of the
SPV transients increases with respect to the width of the heterostructure according to a power
law. It is interesting to note that the exponents also increase dlightly with the illumination,
from adope of 1.2, for the minimum density (po = 6.25-10'cm-) to a value of 1.6 for the case
of pp = 1.875-10%® cm3. Likewise, it is shown that the maximum value of the SPV transients
increases linearly with respect to the charge density for a given value of the total thicknessin
the log-log scale. The exponent is close to the unity in all cases, in accordance to experimental
observationss®. However, a saturation effect cannot be reproduced for larger values of
illumination intensities (or initial charge densities), an observation also reported in
experiments. This may be a consequence of the fact that for high charge densities the
recombination mechanism changes and energy factors have to be taken into account.

The charge concentration dependence of the halftime (defined as the time required for
the SPV to reach half of its maximum value) is shown in Fig. (8.5). As reported in recent

» . . .
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Fig. (8.5). Halftime of the transient versus carrier concentration for several values of the
total width of the film as obtained from RW calculations with Miller-Abrahams hopping
rates and a tunnelling recombination mechanism. The solid lines stand for linear fitting of
the simulation data.
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Fig. (8.6). Maximum surface photovoltage of the transients versus band-offset in a
disordered heterojunction as obtained from RW calculations with Miller-Abrahams hopping
rates and Tunnelling recombination mechanism.

workss23, a decrease of the halftime with respect to the illumination intensity is observed. This
behaviour is attributed to trap-filling effects?22425 and can be understood in the following way:
a higher trap-density induces an increase of the Fermi level and the occupancy of the deep
traps. According to Eq. (3.2) carriers move more rapidly on average between shallow traps,
hence favouring a more rapid dynamics and a faster decay. Note the analogy with the
transport-limited recombination model (dynamic view) of Chapter 5. The density dependence
Is found to follow a power law as shown in Fig. (8.5), with power exponents 1.30, 1.46 and
1.44 for W = 20, 40 and 60 nm, respectively. This power exponent can be related to the trap
average energyz.

SPV maximawith respect to the band-offset are presented in Fig. (8.6). The smulation
shows that the SPV peak starts to be negative and becomes larger as the band-offset is
augmented. Negative values of SPV are expected if we take into account that these cases
correspond to vaues of AE. and AFE, that permit holes to move to the first semiconductor
while force electrons to stay in the absorber. When SPV > 0 the charge separation goes on the
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inverse direction (see Fig. (8.2)) while no significant charge separation takes place when A E.
and AFE, are similar. In summary, in the two first cases we have a Type-1l heterojunction
while intermediate values of AFE. in Fig. (8.6) correspond to a Type-l heterojunction.
Schemes of the corresponding band-offsets are presented in the inset of Fig. (8.6). The fact
that the SPV maxima increase for larger band-offsets is a common experimental observation
reported severa times in the literature?’. A saturation effect appears at a certain value of the
band relative positions. This is an interesting result since this effect can be related to a
maximum value of the open-circuit voltage (V,.) that can be achieved in a solar cell based on
aparticular disordered heterojunction.

Steady-state RWNS. Application to BHJ solar cells.
The following parameters have been used in the computations: 7'= 300 K, a; = 2 nm

and az = 2 nm. Likewise, we have used values for both the trap density and the average trap
energy that are commonly reported in literature in order to reproduce realistic open-circuit
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Fig. (8.7). Occupation probability of energy levels. It is observed that when an stationary
state is reached then electron and hole occupancies are given by Fermi-Dirac statistics. The
open-circuit photovoltage is obtained from splitting of the Fermi levels (V. ~ 0.55 eV).
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photovoltages and photocurrentsi41528-30, First of al, energy histograms of electron and hole
occupancies in the fullerene and the polymer respectively are shown in Fig. (8.7). It was
observed that when an stationary state is reached, signalled by constant electron and hole
densities (see inset of Fig. (8.7), carrier occupancies are given by Fermi-Dirac statistics. In
this way, from these energy histogramsit is possible to estimate the Fermi levels and therefore
the open-circuit photovoltage from Eq. (8.2). The recombination frequency prefactor 0 was
adjusted to reproduce the experimental V,. at 1-sun illumination. Proceeding this way,
tro = 8-10° to has been found for the case presented in Fig. (8.7).

The open-circuit voltage V. for different degrees of illumination was aso calculated.
Results can be seen in the upper panel of Fig. (8.8). First of al, it is found that values of the
open-circuit voltage are always smaller than Eruaio(Ful) — Eromo(Pol), what is a common
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Fig. (8.8). Upper panel. Open-circuit voltage as afunction of the illumination intensity from
electron Fermi level in the fullerene and hole Fermi level in the polymer as obtained by RW
simulations (circles). The dashed line was obtained by fitting to Eq. (8.6). Lower panel.
Recombination current as a function of the open-circuit voltage. The inset includes the
dependence of the recombination resistance R, defined by Eqg. (8.10), with respect to the
open-circuit voltage as obtained by RWNS.
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experimental observation. On the other hand, an exponential dependence of V. with respect
to thelight intensity I is observed, as described in the following equation.

Voe kg—T In’l (8.5)

q

Hence, from Eq. (8.5) we obtain ¢ = 0.31 fora characteristic temperature of 7p = 1160 K. On
the other hand, the recombination current Jr as obtained by RW simulation is shown in the
lower panel of Fig. (8.8) as afunction of the open-circuit voltage. Realistic values of Jr were
obtained as well as the same dependence than that observed experimentally®. The inset of the
lower panel shows the dependence of the recombination resistance R,.. with the open-circuit
voltage. The same behaviour than described by Eq. (2.48) is observed, with G = 0.23.

However, commonly reported values of 3 are of the order of 0.7-0.814. Therefore, new
calculations were carried out with the average energy width of the distributions varied down
to Tp = 500 K*. Results of this new simulations can be seen in the upper panel of Fig. (8.9). It
can be observed that in this case the slope of the curve becomes more redistic (5 = 0.62),
what indicate that 5 depends “empirically” on the trap parameter kgTo.

It is interesting to note that, according to Eq. (8.2) and applying the zero-temperature
limit of the Fermi-Dirac distribution for both electrons and holes, the following expression can
be derived for the open-circuit photovoltage

Vie = — |EJM o — EPL . —2kgTyln (M” (8.6)

1
q N

where nyq- 1S the steady-state electron-hole density. Hence, it is possible to obtain V,. from
the steady-state electron-hole densities, once equilibrium has been reached. The result of this
calculation is also observed in the upper panel of Fig. (8.9), where the same dependence than
Eqg. (8.5) is observed even more accurately than from direct measurements of the Fermi levels.

The recombination current, Jr, has also been measured as a function of light intensity
for Tp = 500 K. The results can be observed in the lower panel of Fig. (8.9). An exponential
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Fig. (8.9). Upper panel. Open-circuit voltage as afunction of the illumination intensity from
electron Fermi level in the fullerene and hole Fermi level in the polymer as obtained by RW
simulations (circles) and from the steady-state electron-hole density as obtained by RW
calculations (diamonds). The dashed line was obtained by fitting to Eq. (8.6). Lower panel.
Recombination current as a function of the open-circuit voltage. Fitting procedure was
made by adjusting Eq. (8.7).

dependence of the recombination current with respect to the open-circuit voltage was
observed, according to the following equation (see Eq. (6.2))

BqV

erec(V) = Jo exp (]{jB—T> (87)

with 3 = 0.58, avalue close to that obtained from Eq. (8.5).

8.4. Conclusions to Chapter 8

In summary, a numerical method based on random walk simulation is devised to
model charge separation in disordered heterojunctions. Charge transport is described via the
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Miller-Abrahams hopping model whereas electron-hole recombination is taken into account
via a tunnelling mechanism. On the one hand, we have obtained theoretical results for surface
photovoltage transients in a disordered semiconductor heterojunction that adequately
reproduce the experimental behaviour well known in this type of systems. We have analysed
the dependence of the SPV signal on the band-offset, the width of the heterostructure and the
carrier concentration. We find that the surface photovoltage increases with respect to the
band-offset until a saturation effect appears at a certain value of the band positions.

On the other hand, a typical bulk heterojunction solar cell has been modelled under the
assumption that charge separation is achieved by a chemical potential field, consequence of
different affinities and work functions, instead of a built-in eectric field. The open-circuit
voltage has been determined as a function of the light intensity and the resulting dependence
coincide with that obtained from experimental observations. Likewise, the recombination
current has been studied at different open-circuit voltages and it has been observed that it
increases exponentially with increasing voltages. The results demonstrate that the random
wak method is an useful tool to study disordered heterojunctions starting from basic
assumptions about electronic mechanisms in the nanoscale. Further work is however required
to clarify the effects of the different parameters (for instance, the band-offset) on the open-
circuit voltage and the recombination current of practical devices.
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CONCLUSIONS

The decisive role that randomly distributed localized states dispersed in energies play
for the understanding of the electron dynamics in disordered semiconductors has been
anaysed in thisthesis. For this purpose, RWNS provides an easy-to-use tool with encouraging
results. It permits to describe charge transfer processes in terms of microscopic mechanisms
without the requirement of high computational times characteristic of ab initio calculations.
Thus, specific transport and recombination processes that take place with the involvement of
localized states can be modelled and related to macroscopic properties of the materials.

First of al, the RWNS method with Miller-Abrahams hopping rates and exponential
distribution of energies on a random network of traps has been utilized to describe transport
properties in random media and to obtain the jump diffusion coefficient versus Fermi level
and temperature. An approximate exponentia dependence is found for the former and
Arrhenius behaviour for the latter. The ssimulation helps to distinguish between the energy of
the most probable jump and an estimation of the effective transport energy that determines the
transport properties of the system. Comparison of the present results with the conditions of
interest in the functioning of photovoltaic devices based on nanocrystalline TiO, reveal that in
this case the effective transport energy is approximately independent of the Fermi level. Hence
the observed behaviour is similar to that found with the multiple-trapping model, making both
models "indistinguishable" from the experimental point of view.

On the other hand, in order to check the influence of the exponentia distribution of
localized states in the processes of recombination that take place in a DSC, RW calculations
have been carried out including direct computation of the electron diffusion length and the
electron lifetime. On the one hand, using an energy-independent recombination rate, we have
been able to reproduce experimental observations on account with trap-filling effects, such as
the voltage dependence of the electron lifetime, as well as open-circuit voltage decay
experiments. On the other hand, a more sophisticated charge transfer mechanism, including an
energy-dependent recombination rate, has been studied. The behaviour of the electron
diffusion length with respect to the Fermi level has been explained in terms of the interplay
between the energy distribution of the traps in the oxide and the acceptor states in the
electrolyte.

The role of different spatial configurations and morphologies in disordered materials
has also been analysed. The results lead to the conclusion that a relevant collection efficiency
enhancement is only achieved at intermediate values of the recombination probability. On the
other hand, the results show that when this condition is accomplished just a slight partial
ordering of the system is sufficient to a meaningful increase of the collection efficiency.
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Finally, a disordered semiconductor heterojunction has been studied by means of
RWNS. Both transient and steady-state simulations have been carried out, with applicationsin
Extremelly Thin Absorber solar cells and Bulk Heterojunction solar cells. It has been found
that charge separation and transport can be achieved without the presence of a built-in electric
field. In contrast, the appearance of a built-in chemical potential explains that one type of
charge can pass across the interface while the other remains in the absorber. On account of
recombination, a tunnelling recombination mechanism has been implemented. From this
model, the open-circuit voltage has been obtained as a function of the illumination intensity
and results in agreement with experimental observations have been achieved. The surface
photovoltage, another measure of charge separation, has also been obtained, and their
dependence on film thickness and band offset extracted.

In summary, it has been demonstrated that these calculations can be applied to awide
variety of new generation solar cells, such as dye sensitized solar cells, extremely thin
absorber solar cells or bulk heterojunction solar cells. Hence, the current intense research on
photovoltaic devices based on disordered materials provides a promising field in which to
apply the Random Wak Numerical Simulation method.
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CONCLUSIONES

En esta tess se ha hecho un estudio tedrico de la dinamica electronica en
semiconductores desordenados mediante el método de smulacién numérica de marcha
electronica (RWNS). Para ello se ha tenido en cuenta explicitamente €l decisivo papel que
presenta la existencia de una distribucion energética cuasi-continua de estados localizados en
la banda prohibida de estos materiales. Se concluye que € méodo RWNS proporciona una
eficiente herramienta de estudio, ya que permite describir procesos de transferencia de carga
en base a mecanismos microscopicos sin e requerimiento de largos tiempos de computacion,
caracteristicos de célculos ab initio. De esta manera, se puede llevar a cabo un proceso de
modelizacion de mecanismos especificos de transporte y recombinacion en presencia de una
distribucion dada de estados localizados que permitan relacionarlos luego con propiedades
macroscopicas.

En primer lugar, se ha hecho uso del método RWNS para un andlisis de la difusion
electronica en medios desordenados teniendo en cuenta una red aleatoria de trampas con una
distribucién en energias exponencia y una probabilidad de salto entre estados localizados
dada por la formula de Miller-Abrahams. Se han obtenido resultados del coeficiente de
difusion eectronico en funcion del nivel de Fermi, obteniéndose una dependencia
exponencial. Asimismo, se ha observado un comportamiento tipo Arrhenius del coeficiente de
difusién con respecto a latemperatura. Este tipo de célculos ayuda a distinguir entre laenergia
de sato mas probable y la energia de transporte efectiva, que determina las propiedades
dindmicas del sistema. Por ultimo se ha hecho llevado a cabo un andisis de los resultados en
el contexto de una celda DSC basada en TiO.. Se concluye que en condiciones de
funcionamiento de este tipo de celdas |a energia de transporte efectiva es aproximadamente
independiente del nivel de Fermi. De esta manera, e comportamiento observado es similar al
modelo multiple-trapping, dando lugar a que ambos modelos sean indistinguibles desde un
punto de vista experimental.

Por otro lado, se han llevado a cabo cdlculos RWNS con € objetivo de estudiar la
influencia de una distribucién exponencial de estados localizados en e proceso de
recombinacion que tiene lugar en una celda DSC. Se han realizado célculos directos tanto de
la longitud de difusion como de la vida media electronicas. Usando una probabilidad de
recombinacion independiente de la energia se han podido reproducir observaciones
experimentales, tales como la dependencia de la vida media electrénica con respecto a nivel
de Fermi o & decaimiento del voltgje a circuito abierto, en términos de un efecto de llenado de
trampas. También se ha estudiado un mecanismo de transferencia de carga mas sofisticado,
incluyendo una probabilidad de recombinacién dependiente de la energia. Mediante este
procedimiento se ha podido describir el comportamiento de la longitud de difusién con
respecto a nivel de Fermi mediante la interrelacion entre una distribucion quasi-continua de
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estados localizados en el Oxido y una distribucion de estados aceptores en el electrolito dada
por el modelo de Marcus-Gerischer.

El papel que desempefian diferentes configuraciones espaciales de trampas en la
dindmica electronica se ha analizado también como parte de esta tesis. Los resultados
muestran que un aumento relevante de la eficiencia de recoleccion con el grado de orden solo
puede alcanzarse para valores intermedios de |a probabilidad de recombinacion. Por otro lado,
cuando se cumple esta condicion, un leve aumento del grado de orden es suficiente para
conseguir un incremento significativo en la eficiencia de recoleccién de la celda.

Finalmente, se ha desarrollado un modelo para heterouniones de semiconductores
desordenados. Se han realizado simulaciones de fenébmenos tanto transitorios como en estado
estacionario, con aplicaciones a celdas solares de absorbedor ultrafino y celdas solares
organicas tipo "bulk heterojunction”. Asi, se ha observado que los procesos de separacion y
transporte de carga se pueden explicar en términos solamente de alineamiento entre bandas,
sin necesidad de tener en cuenta un campo €eléctrico interno. En cuanto a la recombinacion, se
ha tenido en cuenta un mecanismo de efecto tinel. Mediante el presente modelo se han
obtenido voltgjes a circuito abierto en funcion del grado de iluminacion andlogos a los
medidos experimentalmente asi como potenciales superficiales en funcion del alineamiento de
banday el grosor del semiconductor.

En resumen, esta tesis demuestra que el méodo RWNS se puede aplicar a una gran
variedad de celdas solares de nueva generacién, tales como DSC, ETA o BHJ, con muy
buenos resultados. Por esto mismo, la intensa actividad investigadora que se esta llevando a
cabo actualmente en e campo de la fotovoltaica proporciona un campo muy prometedor en el
gue llevar a cabo cal culos de marcha aleatoria.
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List of Symbols

Q ratio of absolute temperature T' to the characteristic temperature Ty
Qlab absorption coefficient

o localization radius

ar Size of the smulation box

reaction order of the recombination rate with respect to the conduction band
electron density

D, electron diffusion coefficient

D, hole diffusion coefficient

D, conduction band electron diffusion coefficient

D; jump diffusion coefficient

D" tracer diffusion coefficient

€ relative dielectric constant

€0 vacuum permittivity or dielectric constant

n conversion efficiency

Neol charge collection efficiency

E energy

E. electron mobility edge

E, hole mobility edge

E, band gap of a material

Er Fermi level

Er, electron Fermi level

Ep hole Fermi level

Eredox redox pOtent|a|

Ey standard reduction potential

Ean electron demarcation level

Eqp hole demarcation level

Eyy transport energy

Eraz maximum of the energy histograms

E nax maximum of the corrected energy histograms

f(E-EF) Fermi-Dirac occupation function for state at energy £

FF fill factor

vy reaction order of the recombination rate with respect to the total electron
density

9(E) density of localized states per unit energy per unit crystal volume

1 incident light power density

J total current density

In electron current density

JIp hole current density

Je conduction band current density

Jo saturation current

Jse short-circuit current density

kg Boltzmann constant

A reorganization energy

L thickness of the film
Lab absorption length

Ly, electron diffusion length



Vrec

Vro

Tcut
<r(t)? >

R,,
Rrec
Ry
R
Rsh

Te
Tf
Tn
Trec
Ttr

to
tro

To
Umd
Uay g

Usru
U’V’GC

Voe

chemical potential

electron mobility

hole mobility

ideality factor

jump rate between localized states i and j
attemp-to-jump frequency

recombination rate

tunnelling recombination frequency
photogenerated electron density

intrinsic carrier density

equilibrium electron density (chapter 1)
conduction band electron density

electron density in localized states
effective conduction band density of states
density of localized states

total amount of electron-hole pairs per unit area at time¢
number of carriers occupying an energy between FE and E+dE
photogenerated hole density

equilibrium hole density

porosity

probability of recombination

elementary charge

electron-hole pairs density

cut-off radius

mean-squared displacement

random number

electron-hole pair separation
recombination resistance

recombination resistance in the absence of illumination
series resistance

parallel or shunt resistance

width of a gaussian absorption profile
specific surface area

conduction band electron lifetime in the absence of traps
effective conduction band electron lifetime
electron lifetime

lifetime of charge carriers

transport time of charge carriers

time

attempt-to-jump time

tunnelling recombination time

absolute temperature

characteristic temperature

radiative recombination rate

Auger recombination rate
Shockley-Read-Hall recombination rate
recombination rate

voltage

open-circuit voltage

thickness of the film



Xn
< Zp(n) > (t)

Tmean

Acronyms

AM
BHJ
CdTe
CIS
CIGS
CuSCN
CTRW
DSC
DOLS
ETA
GaAs
HOMO
ILSs
LUMO
MG
MC
OSsC
RwW
RWNS
SRH
SPV
TCO
TiO,
Zn0O

thermodynamic factor
mean position of holes (electrons)

centre of a gaussian absorption profile

air mass

bulk heterojunction solar cell
cadmium telluride

copper indium selenide

copper indium gallium diselenide
copper thiocyanate

continuous time random walk
dye-sensitized solar cell
distribution of localized states
extremely thin absorber solar cell
galium arsenide

highest occupied molecular orbital
Indium sulfide

lowest unoccupied molecular orbital
Marcus-Gerischer

Monte Carlo

organic solar cell

random walk

random wak numerical simulation
Shockley-Read-Hall

surface photovoltage

transparent conductive oxide electrode
titanium dioxide

zinc oxide



Appendix A: Invariance of the electron diffusion length behaviour
with respect to recombination prefactor

Hybrid model

= T | T | T | T 1
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Fig. (Al). Electron diffusion length calculated by steady-state RWNS cal culations using the
hybrid model for different values of the recombination prefactors (Egs. (6.4) and (6.5)).
The simulations correspond to systems defined by A = 0.6 eV, Ty = 700 K and 7' = 300 K.
Two values of the conduction-band position are considered: E. — Ejyedor = 0.95 €V (solid
lines) and E. — Eredor = 0.70 €V (dashed lines). Results are obtained from the Marcus-
Gerischer formula (Egs. (6.4) and (6.5)) and a density of electronic states in the
semiconductor given by Eq. (2.2).
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Fig. (A2). Electron diffusion length calculated by steady-state RWNS calculations using
Model 1 for different values of the recombination prefactor (Eqg. (6.4)). The smulations
correspond to a system defined by A = 0.25 eV, Tp = 700 K, T'= 300 K. Two values of the
conduction-band position are considered: E. — Eredor = 0.95 eV (solid lines) and
E: — Eredox = 0.70 €V (dashed lines). Results are obtained from the Marcus-Gerischer
formula (Eq. (6.4)) and density of electronic states in the semiconductor (Eq. (2.2), trap
energy distribution).
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Fig. (A3). Electron diffusion length calculated by steady-state RWNS calculations using
Model 2 for different values of the recombination prefactor (Eq. (6.5)). The smulations
correspond to systems defined by A = 2.0 eV, Tp = 700 K, T'= 300 K. Two values of the
conduction-band position are considered: E. — FEredor = 0.95 eV (solid lines) and
E:— Ereqor = 0.70 eV (dashed lines). Results are obtained from the based on times Marcus-
Gerischer formula (Eq. (6.5)) and density of electronic states in the semiconductor (Eq.
(2.2), trap energy distribution).



Appendix B: Theoretical dependence of collection efficiency on absor ption
length

The collection efficiency of DSC at short-circuit conditions was obtained by solving
numerically the continuity equation for the total density of electrons n(x,t) in the photoanode:

on(z,t) :2 Dn(n(w,t))agf)

+ G(z) — kn(n(z,t)) [n(x,t) — no] (B1)

where k,, is a pseudo-first order kinetic recombination constant which can be related to the
inverse of an electron lifetime:* k, = 1/7,. Note that the complex density dependence of the
kinetics congtants (D,, and k) isimplicitly indicated, meaning that these magnitudes can vary
with space and time. Details on this computation can be found in Refs. 57

In the numerical solution of Eg. (S1), the generation term G(x) is derived from
Lambert-Beer law:

Amax
G(x) = /}\ Ginjlo(N)ecen(A) (1 — exp [—€cerr(N)d]) exp [—€cen(A)x]dA (B2)

min

where ¢;,; is the quantum injection yield, Io()) is the solar spectrum (here taken from the
standard AM1.5G) and e..ii(A) is the wave-length dependent absorption coefficient of the dye
in the solar cell.

The collection efficiency of the DSC is calculated from the ratio between the short-
circuit photocurrent and the total number of electrons generated in the film. The short-circuit
photocurrent isin turn estimated from the gradient of the density at contact x=0

|z=0 (B3)

In Figure S2 the collection efficiency is calculated for different concentrations of the
dye in the photoanode, meaning different values of the absorption length L, (obtained by
fitting the generation term S2 to a single exponential function). The results reproduce a power
law with a similar exponent to that found in the RW simulations shown in the main text.
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Fig. (B1). Charge collection efficiency as a function of absorption length as obtained from
the numerical solution of the continuity equation with diffusion, recombination and
generation terms. The recombination rate is adjusted to fit the collection efficiency obtained
in the RW simulations shown in Fig. (7.3). The dashed line stands for a power-law fitting of
the data, with an exponent of ~ 0.65 as shown.



Program hjunc

—_——

Random Walk in a heterojunction of disordered semiconductors <----

This is an...

IMPLICIT

ACTIVATED HOPPING CONTINUOUS TIME RANDOM WALK method
AIM: SURFACE PHOTOVOLTAGES (2010)

Original N Quirke september 1998

Modified by J.A.
Modified by J.A.
Modified by J.A.
Modified by J.A.
Modified by J.P. Gonzalez,
Modified by J.P. Gonzalez,
Modified by J.P.

NONE

fixed parameters:

REAL*8, PARAMETER ::

REAL*8, PARAMETER

REAL*8, m2nm = 1d9 !
REAL*8,

REAL*8, ebin =
REAL*8,

echarge = 1.60217733d-19 !

Anta, May-August 1999
Anta, September 2006 (diff coef.)
Anta, November 2006 (spatial disorder)

Anta, May 2007 (spatial disorder: improved)

November 2008 (hopping model)
September 2009 (second charge carrier)

Gonzalez, May 2010 (disordered semiconductor heterojunction)

elementary charge

melec = 9.1093897d-31 ! electron mass

nanometers to meter

epsilon0 = 8.8547d-12 !

temp2kt = 8.613278d-05 ! kelvins to eV (KT)

0.005 ! energy grid in nofe and gofe histograms

in C/(V.nm)

trap attempt frequency and time unit

REAL*8 :: nu0 ! = h/(8*melec*aa**2) or 1/tunit

input parameters (file="hjunc.in")

electrons in sem.l
electrons in sem.2
holes in sem.1
holes in sem.2

INTEGER ! number of particles

INTEGER ! number of holes

REAL*8 ! size length of simulation box in nm (d --> x-coordinate)
REAL*8 ! size length of sem.1l

REAL*8 ! cut-off for hopping between neighbouring traps

REAL*8 ! number of samples

REAL*8 ! temperature in K

REAL*8 maxmoves ! maximum number of moves

REAL*8 maxtime ! maximum time of simulation in units of tunit or tunith
REAL*8 tbin ! bin size for time histograms in units of tunit

REAL*8 tunit ! time unit for electrons(t0)

REAL*8 tunith ! time unit for holes (tOh)

REAL*8 ecl ! energy of conduction band edge (0 by default) for sem.l (eV)
REAL*8 ! energy of conduction band edge (0 by default) for sem.2 (eV)
REAL*8 ! energy of valence band edge (0 by default) for sem.1l (eV)
REAL*8 ! energy of valence band edge (0 by default) for sem.2 (eV)
REAL*8 ecutl ! energy cutoff for exponential DOS used for electrons (eV)
REAL*8 ecut2 ! energy cutoff for exponential DOS used for electrons (eV)
REAL*8 ecuthl ! energy cutoff for exponential DOS used for holes (eV)

REAL*8 ecuth2 ! energy cutoff for exponential DOS used for holes (eV)

REAL*8 temp01 ! characteristic temperature in K for exponential DOS used for
REAL*8 temp02 ! characteristic temperature in K for exponential DOS used for
REAL*8 tempOhl ! characteristic temperature in K for exponential DOS used for
REAL*8 tempOh2 ! characteristic temperature in K for exponential DOS used for
REAL*8 alfa ! electron localization radius (nm)

REAL*8 alfah ! hole localization radius (nm)

REAL*8 alat ! average distance between traps

REAL*8 effmfac ! rate between effective masses

REAL*8 ro ! electron Bohrs radius in angstroms (for tunneling recombination)
REAL*8 tto ! recombination life time in units of tunit

REAL*8 epsilonr ! relative dielectric constant

REAL*8 :: dtl ! time length between different pulses in s

INTEGER :: ndist ! number of grid points in distribution of trap energies

REAL*8, DIMENSION(:), ALLOCATABLE :: epiege,pcum

main variables

INTEGER :: ntrap ! number of traps

REAL*8, DIMENSION(:), ALLOCATABLE :: X,Y,2 coordinates of electrons

REAL*8, DIMENSION(:), ALLOCATABLE initial coordinates of electrons
REAL*8, DIMENSION(:), ALLOCATABLE real coordinates of electrons
REAL*8, DIMENSION(:), ALLOCATABLE coordinates of holes

REAL*8, DIMENSION(:), ALLOCATABLE x0h,y0h,z0h initial coordinates of holes
REAL*8, DIMENSION(:), ALLOCATABLE xrh,yrh,zrh real coordinates of holes
REAL*8, DIMENSION(:), ALLOCATABLE e energy of electrons

REAL*8,
REAL*8,
REAL*8,
REAL*8,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
LOGICAL,
LOGICAL,
LOGICAL,
LOGICAL,
REAL*8,
REAL*8,
REAL*8,
REAL*8,
REAL*8,
REAL*8,
INTEGER,
INTEGER,
REAL*8 :
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
INTEGER
REAL*8
REAL*8 :
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,

DIMENSION(:), ALLOCATABLE :
DIMENSION(:), ALLOCATABLE
DIMENSION(:), ALLOCATABLE :: wth
DIMENSION(:,:), ALLOCATABLE

energy of holes

hopping time of electrons
hopping time of holes
recombination times

DIMENSION(:),
DIMENSION(:),
DIMENSION(:),
DIMENSION(:),
DIMENSION(:),
DIMENSION(:),
DIMENSION(:),

ALLOCATABLE
ALLOCATABLE
ALLOCATABLE
ALLOCATABLE
ALLOCATABLE
ALLOCATABLE
ALLOCATABLE

:: otrape

hopping-to trap of holes

trap number of holes

hopping-to trap of electrons

trap number of electrons

if .true. trap is occupied by an electron
if .true. trap is occupied by a hole

if .true. electron "exists"

DIMENSION(:), ALLOCATABLE oexisth if .true. hole "exists"

DIMENSION(:), ALLOCATABLE etrape trap energy (for electron ditribution)
DIMENSION(:), ALLOCATABLE etraph trap energy (for hole ditribution)
DIMENSION(:), ALLOCATABLE xtrap trap x-coordinate

DIMENSION(:), ALLOCATABLE ytrap trap y-coordinate

DIMENSION(:), ALLOCATABLE ztrap trap z-coordinate

DIMENSION(:), ALLOCATABLE :: svoltage surface photovoltage (in Vm-2)
DIMENSION(:,:), ALLOCATABLE :: ivec neighbour list

DIMENSION(:), ALLOCATABLE :: iv number of neighbours

: tev

kT (temperature) in eV

!
tev0l ! kTO0 (characteristic temperature) in eV for electrons for sem.l
tev02 ! kTO0 (characteristic temperature) in eV for electrons for sem.2
tevOhl ! kTO0 (characteristic temperature) in eV for holes for sem.l
tev0Oh2 ! kTO0 (characteristic temperature) in eV for holes for sem.2
time ! elapsed time
emean ! centre of gaussian DOS

nbins ! number of time bins in total simulation time per sample

ener ! compute total energy of electrons

: dist ! square displacement

DIMENSION(:), ALLOCATABLE nalive

DIMENSION(:), ALLOCATABLE halive

DIMENSION(:), ALLOCATABLE nalivel

DIMENSION(:), ALLOCATABLE nalive2

DIMENSION(:), ALLOCATABLE :: halivel

DIMENSION(:), ALLOCATABLE :: halive2

output parameters

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL*8,
REAL*8,
REAL*8,
REAL*8,
REAL*8,
REAL*8,
REAL*8,
REAL*8,

others

INTEGER
REAL*8

INTEGER
INTEGER
REAL*8

REAL*8 :
REAL*8 :
REAL*8 :
REAL*8 :
REAL*8 :
INTEGER
REAL*8

REAL*8

INTEGER
LOGICAL

OPEN(14,
OPEN(15,

initbinl ! initial point in "nofe" and "gofe" histograms

initbin2 ! initial point in "nofe" and "gofe" histograms

initbinhl ! initial point in "nofe" and "gofe" histograms

initbinh2 ! initial point in "nofe" and "gofe" histograms

ehistbinl ! number of points in "nofe" and "gofe" histograms

ehistbin2 ! number of points in "nofe" and "gofe" histograms

ehistbinhl ! number of points in "nofe" and "gofe" histograms
:: ehistbinh2 ! number of points in "nofe" and "gofe" histograms
DIMENSION(:), ALLOCATABLE :: nofel ! energy level population (for electrons)
DIMENSION(:), ALLOCATABLE nofe2 ! energy level population (for electrons)
DIMENSION(:), ALLOCATABLE nofehl ! energy level population (for holes)
DIMENSION(:), ALLOCATABLE nofeh2 ! energy level population (for holes)
DIMENSION(:), ALLOCATABLE gofel ! density of states (for electrons)
DIMENSION(:), ALLOCATABLE gofe2 ! density of states (for electrons)
DIMENSION(:), ALLOCATABLE gofehl ! density of states (for holes)
DIMENSION(:), ALLOCATABLE :: gofeh2 ! density of states (for holes)

i,j,k,isx,isy,isz,i1,i2,nn,nyz,p,1,m
r,tr,tl,t2,rtl,re,rh,delta,ti,rdist,rdisth,xtr,itl
ixsr,isxl,isyr,isyl,iszr,iszl,idir,idirl
ik,it,is,iis,index,index0,npulse
isample
: imoves, imovess
: ekkl,ekk2,ekkhl,ekkh2,ngofe,nnofe, sumae,sumah
: xtrapi,ytrapi,ztrapi,xtrapih,ytrapih,ztrapih
: djx,djy,djz,jump2,rcut2,rcut2x
: xmean, xmeanh, sep
:: ive,ike
: dxq,dyq,dzq,qdist,dxr,dyr,dzr,recd
: renorm
:: ap,ah,apl,ap2,ahl,ah2
:: einjected,hinjected

file="hjunc.in")
file="hjunc.out")

OPEN(20,file="recomb.dat")

read input parameters

READ(14,
READ(14,

*) np
*) nh



READ(14,
READ (14,
READ (14,
READ (14,
READ(14,
READ(14,
READ(14,
READ (14,
READ(14,
READ (14,
READ(14,
READ(14,
READ(14,
READ(14,
READ (14,
READ(14,
READ (14,
READ (14,
READ (14,
READ (14,
READ (14,
READ(14,
READ (14,
READ(14,
READ(14,
READ (14,
READ(14,
READ(14,
READ(14,
READ(14,

convert

*) d,dyz
*) dl

*) rcut

*) maxmoves
*) nsample
*) temp

*) maxtime
*) tbin

*) tunit
*) tunith
*) ecl

*) ec2

*) evl

*) ev2

*) ecutl
*) ecut2
*) ecuthl
*) ecuth2
*) tempO01l
*) temp02
*) tempOhl
*) tempOh2
*) alfa

*) alfah
*) alat

*) effmfac
*) r0

*) tt0

*) epsilonr
*) dtl

to internal units

tev = temp*temp2kt

tev0l =
tev02 =
tevOhl
tev0h2
nbins =
renorm =

ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
ALLOCATE
initbinl
initbin2
initbinh
initbinh
ehistbin
ehistbin:
ehistbinl
ehistbin]
ALLOCATE
inh2))
ALLOCATE
inh2))
ALLOCATE
ALLOCATE
ALLOCATE

nud = 1.

WRITE(*,
WRITE(*,
WRITE(*,
WRITE(*,
WRITE(*,
WRITE(*,
WRITE(*,
WRITE(*,
WRITE(*,
WRITE (*
WRITE(*,
WRITE(*,
WRITE (*,
WRITE(*,
WRITE(*,
WRITE(*,
WRITE(*,

-tempOl*temp2kt

-temp02*temp2kt

-tempOhl*temp2kt

-tempOh2*temp2kt

nint(maxtime/tbin)
1d9*((dyz*1d-9)**2)*epsilonO*epsilonr/echarge ! for SPV in V

(x(400),y(400),2(400),e(400),wte(400),itrape(400),ijumpe(400),0exist(400))

(x0(400),y0(400),2z0(400))

(Xr(400),yr(400),2zr(400))

(xh(400),yh(400),2h(400),eh(400),wth(400),itraph(400),ijumph(400),0existh(400))

(x0h(400),y0h(400),z0h(400))

(xrh(400),yrh(400),zrh(400))

(svoltage(nbins))

= int(ecl/ebin)-1

= int(ec2/ebin)-1

int(evl/ebin)

2 int(ev2/ebin)

1 = int((-ecutl+ecl)/ebin)

2 int((-ecut2+ec2)/ebin)

hl = int((ecuthl+evl)/ebin)-1

h2 = int((ecuth2+ev2)/ebin)-1
(nofel(ehistbinl:initbinl),nofe2(ehistbin2:initbin2),nofehl(initbinhl:ehistbinhl),nofeh2(initbinh2:ehistb

1

(gofel(ehistbinl:initbinl),gofe2(ehistbin2:initbin2),gofehl(initbinhl:ehistbinhl),gofeh2(initbinh2:ehistb

(rt(400,400))

(nalive(nbins),nalivel(nbins),nalive2(nbins))
(halive(nbins),halivel(nbins),halive2(nbins))

/tunit

'(/10x," program HJUNC "/)')

'(" sample size (x, and yz) = ",f10.5,1x,£f10.5" nm")') d,dyz

'(" semiconductor 1 size (x, and yz) = ",£f10.5,1x,£10.5" nm")') dl,dyz
'(" semiconductor 2 size (x, and yz) = ",£f10.5,1x,£10.5" nm")') d-dl,dyz
'(" Trap attempt frequency = ",esl5.5," secs-1")') nu0

'(" Time unit = ",esl5.5," secs")') tunit

'(" number of electrons = ",i4)') np

' (" number of holes = ",i4)') nh

'(" Maximum time of simulation = ",esl5.5," tunit(s)")') 10**maxtime

;' (" Maximum time of simulation = ",esl5.5," tunit(s)")') maxtime

'(" Temperature = ",f7.2," K")') temp

'(" Semiconductor 1 conduction band = ",£f7.2," eV")') ecl

' (" Semiconductor 2 conduction band ,£7.2," ev')') ec2

'(" Semiconductor 1 valence band = ",£f7.2," eV")') evl

'(" Semiconductor 2 valence band = ",£f7.2," eV")') ev2

'(" Band gap of sem.1 = ",£f7.2," eV")') abs(evl-ecl)

'(" Band gap of sem.2 = ",f7.2," eV")') abs(ev2-ec2)

WRITE(*,' (" Ecutl = ",£7.2," ev")') ecutl

WRITE(*,'(" Ecut2 = ",£7.2," eV")') ecut2
WRITE(*,'(" Ecuthl = ",£7.2," eV")') ecuthl
WRITE(*,' (" Ecuth2 = ",£7.2," eV")') ecuth2
WRITE(*,' (" Rate between effective masses = ",£7.2," eV")') effmfac
WRITE(*,' (" alphal = ",£7.4)') -tev/tev0l
WRITE(*,' (" alpha2 = ",£7.4)') -tev/tev02
WRITE(*,' (" alphahl = ",£7.4)') -tev/tev0Ohl
WRITE(*,' (" alphah2 = ",£7.4)') -tev/tev0h2
WRITE(*,'(/2x,"( kT = ",£10.7,", E (= -dv/dx) = ",£10.7, " eV )"/)') &
tev
WRITE(15,'(/10x," program HJUNC "/)')
WRITE(15,' (" sample size (x, and yz) = ",£10.5,1x,£f10.5" nm")"') d,dyz
WRITE(15,' (" semiconductor 1 size (x, and yz) v,£10.5,1x,£10.5" nm")') dl,dyz
WRITE(15,' (" semiconductor 2 size (x, and yz) = ",f10.5,1x%,£f10.5" nm")"') d-dl,dyz
WRITE(15,' (" Trap attempt frequency = ",esl5.5," secs-1")') nul
WRITE(15,'(" Time unit = ",esl5.5," secs")') tunit
WRITE(15,' (" number of electrons = ",i4)') np
WRITE(15,' (" number of holes = ",i4)') nh
WRITE(15,' (" Maximum time of simulation = ",esl5.5," tunit(s)")') l0**maxtime
! WRITE(15,'(" Maximum time of simulation = ",esl5.5," tunit(s)")') maxtime
WRITE(15,' (" Temperature = ",f7.2," K")') temp
WRITE(15,' (" Semiconductor 1 conduction band = ",£f7.2," eV")') ecl
WRITE(15,' (" Semiconductor 2 conduction band = ",£f7.2," eV")') ec2
WRITE(15,' (" Semiconductor 1 valence band = ",£f7.2," eV")') evl
WRITE(15,' (" Semiconductor 2 valence band = ",£7.2," eV")') ev2
WRITE(15,' (" Band gap of sem.1 = ",f7.2," eV")') abs(evl-ecl)
WRITE(15,' (" Band gap of sem.2 = ",f7.2," eV")') abs(ev2-ec2)
WRITE(15,'(" Ecutl = ",£7.2," eV")') ecutl
WRITE(15,'(" Ecut2 = ",£7.2," eV")') ecut2
WRITE(15,' (" Ecuthl = ",£7.2," ev")') ecuthl
WRITE(15,' (" Ecuth2 = ",£7.2," eV")') ecuth2
WRITE(15,' (" Rate between effective masses = ",£7.2," eV")') effmfac
WRITE(15,'(" alphal = ",£f7.4)"') -tev/tev0l
WRITE(15,' (" alpha2 = ",£f7.4)"') -tev/tev02
WRITE(15,' (" alphahl = ",£f7.4)') -tev/tevOhl
WRITE(15,' (" alphah2 = ",£f7.4)') -tev/tev0Oh2
WRITE(15,'(/2x,"( kT = ",£10.7,", E (= -dv/dx) = ",£10.7, " eV )"/)') &
tev

I owkkx BUuild UD Lrap NEtWOTK %%k ki kok & kokok ko ko 4k 4k AKXk

nn = nint(d/alat)
nyz = nint(dyz/alat)
ntrap = nn*nyz**2

ALLOCATE (otrape(ntrap),otraph(ntrap),etrape(ntrap),etraph(ntrap),xtrap(ntrap),ytrap(ntrap),ztrap(ntrap))
ALLOCATE (ivec(ntrap,700),iv(ntrap))

! CREATE random lattice

call random_seed
DO ik=1,ntrap
call random_number(r)
xtrap(ik) = r*d
call random number(r)
ytrap(ik) = r*dyz
call random_ number(r)
ztrap(ik) = r*dyz
ENDDO
!
! computing neighbour list
!
WRITE(*,' (" Computing neighbour list... ")')
ivec 0
iv =10
rcut2 = rcut*rcut
DO ik=1,ntrap
rcut2x = rcut2
111 DO it = ik+l,ntrap
djx = xtrap(ik)-xtrap(it)
djy = ytrap(ik)-ytrap(it)
djz = ztrap(ik)-ztrap(it)
! P.B.C here: (Not for x-coordinate...)
! djx = djx - d*nint(djx/d)
djy = djy - dyz*nint(djy/dyz)
djz = djz - dyz*nint(djz/dyz)

jump2 = djx**2 + djy**2 + djz**2
IF (jump2.lt.rcut2x) THEN
iv(ik) = iv(ik) + 1
iv(it) = iv(it) + 1
ivec(ik,iv(ik)) = it



ivec(it,iv(it)) = ik
ENDIF
ENDDO

IF (iv(ik).le.l) THEN
rcut2x = rcut2x + 1
WRITE(*,' ("changing cut-off -->",f10.5," nm")') sqgrt(rcut2x)

WRITE(15,'("changing cut-off -->",f10.5," nm")') sqrt(rcut2x)
GOTO 111

ENDIF

IF (mod(ik,1000).eq.0) print *, 'ik = ',ik

WRITE(56,%*) ik,iv(ik)

ENDDO
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**%x%xx Joop over different trap energy realizations **¥kkkkxkkkkkkkx
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nofel = 0
nofe2 = 0
nofehl =
nofeh2 =
gofel =
gofe2 =
gofehl =
gofeh2 =
svoltage
imoves =
nalive =
halive =
nalivel =
nalive2 =
halivel =
halive2 =

cooll oo
oo

cooo

DO isample=1,nsample

WRITE(*,' (/" --> Simulation for sample = ",esl15.4/40("*"))') isample
WRITE(15,' (/" --> Simulation for sample = ",esl5.4/40("*"))"') isample

0N OX
I
cooo

otrape = .false.
otraph = .false.
oexist .false.
oexisth = .false.
ener = 0
dist = 0.
imovess = 0.0
sep = 0
index0 = 0
index = 0
npulse = 0
DO j=1,np

oexist(j) = .true.
ENDDO
DO j=1,nh

oexisth(j) = .true.
ENDDO

.0
0

allocate energies to trap sites (for electron distribution)

DO ik = 1,ntrap
IF (xtrap(ik).lt.dl) THEN
ekkl = edistl()

etrape(ik) = -ekkl+ecl

gofel(int((-ekkl+ecl)/ebin)-1) = gofel(int((-ekkl+ecl)/ebin)-1) + 1
ELSE

ekk2 = edist2()

etrape(ik) = -ekk2+ec2

gofe2(int((-ekk2+ec2)/ebin)-1) = gofe2(int((-ekk2+ec2)/ebin)-1) + 1
ENDIF

ENDDO
allocate energies to trap sites (for hole distribution)

DO ik = 1,ntrap

IF (xtrap(ik).lt.dl) THEN
ekkhl = edisthl()
etraph(ik) = ekkhl+evl

gofehl(int((ekkhl+evl)/ebin)-1) = gofehl(int((ekkhl+evl)/ebin)-1) + 1

ELSE
ekkh2 = edisth2()
etraph(ik) = ekkh2+ev2

gofeh2(int((ekkh2+ev2)/ebin)-1) = gofeh2(int((ekkh2+ev2)/ebin)-1) + 1

ENDIF
ENDDO

OPEN(31,file='enerhistl.dat', status='unknown')
DO i=int(ecl/ebin)-1,ehistbinl, -1
ngofe = gofel(i)/sum(gofel)/ebin
IF (ngofe.ne.0) THEN
WRITE(31,'(4(el2.5,1x))"') real(i)*ebin,ngofe
ENDIF
ENDDO
CLOSE(31)

OPEN(33,file='enerhist2.dat',status='unknown')
DO i=int(ec2/ebin)-1,ehistbin2,-1
ngofe = gofe2(i)/sum(gofe2)/ebin
IF (ngofe.ne.0) THEN
WRITE(33,'(4(el2.5,1x))"') real(i)*ebin,ngofe
ENDIF
ENDDO
CLOSE(33)

OPEN(35,file='enerhisthl.dat',status='unknown')
DO i=int(evl/ebin),ehistbinhl
ngofe = gofehl(i)/sum(gofehl)/ebin
IF (ngofe.ne.0) THEN
WRITE(35,'(4(el2.5,1x))"') real(i)*ebin,ngofe
ENDIF
ENDDO
CLOSE (35)

OPEN(37,file='enerhisth2.dat',status="'unknown')
DO i=int(ev2/ebin),ehistbinh2
ngofe = gofeh2(i)/sum(gofeh2)/ebin
IF (ngofe.ne.0) THEN
WRITE(37,'(4(el2.5,1x))"') real(i)*ebin,ngofe
ENDIF
ENDDO
CLOSE(37)

Total simulation time

WRITE(*,' (" Total simulation time = ",el5.5," secs")') l0**maxtime
WRITE(*,'(" Total simulation time = ",el5.5," secs")') maxtime
WRITE(*,' (" Time window = ",el5.5," secs")') tbin

WRITE(15,' (" Total simulation time = ",el5.5," secs")') 1l0**maxtime
WRITE(15,'(" Total simulation time = ",el5.5," secs")') maxtime
WRITE(15,' (" Time window = ",el5.5," secs")') tbin

WRITE(*,*)'total number of traps', ntrap
WRITE(15,*) 'total number of traps', ntrap

WRITE(*,*) 'distribute electrons throughout sample...
WRITE(15,%) 'distribute electrons throughout sample...

distribute electrons throughout sample
DO j=1,np ! loop over number of particles
random distribution of electrons...
CONTINUE

call random_ number(r)
ik=int (r*ntrap+1l)

IF (otrape(ik)) GOTO 21 ! trap already occupied

IF (xtrap(ik).lt.dl) GOTO 21

e(j) = etrape(ik)

x(j) = xtrap(ik)

y(3) = ytrap(ik)

z(j) = ztrap(ik)

itrape(j) = ik

otrape(ik) = .true. ! trap occupied
ENDDO

WRITE(*,*) 'compute waiting times and jumps for each electron...
WRITE(15,*) 'compute waiting times and jumps for each electron...'



DO j=1,np ! compute waiting times and jumps for each electron using hopping model
call settime(j) ! this sets up wte(j) and ijumpe(j) using hopping model
Note: along the simulation, every electron should have a waiting time
and a most probable jump (specified by the trap number of the trap
it jumps to)

ENDDO

WRITE(*,*) 'distribute holes throughout sample...'
WRITE(15,*) 'distribute holes throughout sample...'

distribute holes throughout sample
DO j=1,nh ! loop over number of particles
ive = iv(itrape(j))

CONTINUE

call random number(r)

ike = int(r*ive+1.0)

ik = ivec(itrape(j),ike) ! choose randomly an electron neighbour

IF (otraph(ik)) GOTO 22 ! trap already occupied by a hole
IF (xtrap(ik).lt.dl) GOTO 22
eh(j) = etraph(ik)
xh(j) = xtrap(ik)
yh(Jj) = ytrap(ik)
zh(j) = ztrap(ik)
itraph(j) = ik
otraph(ik) = .true. ! trap occupied
ENDDO

WRITE(*,*) 'compute waiting times and jumps for each hole...'
WRITE(15,*) 'compute waiting times and jumps for each hole...'

DO j=1,nh ! compute waiting times and jumps for each hole
call settimeh(j) ! this sets up wth(j) and ijumph(j) using hopping model
Note: along the simulation, every hole should have a waiting time
and a most probable jump (specified by the trap number of the trap
it jumps to)
ENDDO
DO i=1,np ! compute recombination times
call recombt(i)

ENDDO

initial positions

x0 = x
y0 =y
20 = z
Xr = x
yr =y
zr = z
x0h = xh
yOh = yh
z0h = zh
xrh = xh
yrh vh
zrh = zh

begin simulation run

einjected = 0

hinjected = 0

time = 0

itl1 =0

WRITE(*,*) 'begin simulation run...'

WRITE(15,*) 'begin simulation run...'
WRITE(20,*) 'begin simulation run...'

DO WHILE(.true.)

23

24

IF (imoves.ge.maxmoves) THEN
WRITE(*,*) 'maximum number of moves about to be exceed', maxmoves
WRITE(15,*) 'maximum number of moves about to be exceed', maxmoves
STOP

ENDIF

Electron injection after an arbitrary amount of time...

IF (int(time/dtl).gt.npulse) THEN
npulse = npulse + 1
einjected = .false.
hinjected = .false.
WRITE (*,*) 'new injection of an electron hole pair'

CONTINUE
call random number(r)
1 = int(r*ntrap)+1
IF (otrape(l)) GOTO 23
IF (xtrap(l).lt.dl) GOTO 23
DO j = 1,np
IF (l.eq.ijumpe(j)) GOTO 23
ENDDO
otrape(l) = .true.

CONTINUE
call random_number(r)
m = int(r*ntrap)+1
IF (otraph(m)) GOTO 24
IF (xtrap(m).lt.dl) GOTO 24
DO j = 1,nh
IF (m.eq.ijumph(j)) GOTO 24
ENDDO
otraph(m) = .true.

DO j=1,np
IF (.NOT.oexist(j)) THEN
oexist(j)=.true.
itrape(j) =1
e(j) = etrape(l)
x(J) = xtrap(l)
y(J) = ytrap(l)
z(j) = ztrap(l)
call settime(j) ! this sets up wte and ijumpe
call recombt(j)
einjected = .true.
WRITE(*,*) 'an old electron reborns',j
EXIT
ENDIF
ENDDO
IF (.NOT.einjected) THEN
np = np + 1
oexist(np)=.true.
itrape(np) =1
e(np) = etrape(l)
X(np) = xtrap(l)
y(np) = ytrap(l)
z(np) = ztrap(l)
call settime(np) ! this sets up wte and ijumpe
call recombt(np)
WRITE(*,*) 'a new electron is injected',j

einjected = .true.
ENDIF
DO j=1,nh
IF (.NOT.oexisth(j)) THEN
oexisth(j)=.true.
itraph(j) = m
eh(j) = etraph(m)
xh(j) = xtrap(m)
yh(j) = ytrap(m)
zh(j) = ztrap(m)
call settimeh(j) ! this sets up wth and ijumph

call recombth(j)
hinjected = .true.
WRITE(*,*) 'an old hole reborns',j

ENDDO

IF (.NOT.hinjected) THEN
nh = nh + 1
oexisth(nh)=.true.
itraph(nh) = m
eh(nh) = etraph(m)



xh(nh) = xtrap(m)

yh(nh) = ytrap(m)

zh(nh) = ztrap(m)

call settimeh(nh) ! this sets up wth and ijumph
call recombth(nh)

WRITE(*,*) 'a new hole is injected',j
hinjected = .true.

ENDIF

ENDIF

search for minimum electron hopping time (tl)
tl = 1480

DO i=1,np

IF (wte(i).lt.tl) THEN
IF (oexist(i)) THEN

IF (.not.otrape(ijumpe(i))) THEN ! ... to a non-occupied trap

tl = wte(i)
i1 =i
ENDIF
ENDIF
ENDIF

ENDDO
search for minimum hole hopping time (t2)

t2 = 1480
DO i=1,nh
IF (wth(i).lt.t2) THEN
IF (oexisth(i)) THEN

IF (.not.otraph(ijumph(i))) THEN ! ... to a non-occupied trap
t2 = wth(i)
i2 = i
ENDIF
ENDIF
ENDIF

ENDDO
minimum recombination time is selected

rtl = 1480
DO i=1,np
IF (.not.oexist(i)) CYCLE
DO j=1,nh
IF (.not.oexisth(j)) CYCLE
IF (rt(i,j).lt.rtl) THEN
rtl = rt(i,Jj)

re = i
rh = j
ENDIF
ENDDO
ENDDO

move particle with the minimum time or tunneling recombination event occurs

IF ((rtl.lt.tl).AND.(rtl.lt.t2)) THEN

oexist(re)=.false. ! remove electron
otrape(itrape(re)) = .false.
oexisth(rh)=.false. ! remove hole
otraph(itraph(rh)) = .false.

dxr = xtrap(itrape(re))-xtrap(itraph(rh))
dyr = ytrap(itrape(re))-ytrap(itraph(rh))
dzr = ztrap(itrape(re))-ztrap(itraph(rh))

dxr = dxr - d*nint(dxr/d)
dyr = dyr - dyz*nint(dyr/dyz)
dzr = dzr - dyz*nint(dzr/dyz)

recd = sqgrt((dxr**2) + (dyr*=*2) + (dzr**2))

WRITE(20,*) recd
IF (xtrap(itrape(re)).ge.dl) THEN
IF (xtrap(itraph(rh)).gt.dl) THEN
WRITE(*,*) 'recombination event occurs at the absorber...

WRITE(20,*) 'recombination event occurs at the absorber...'

ELSE IF (xtrap(itraph(rh)).le.dl) THEN
WRITE(*,*) 'recombination event occurs at the interface..
WRITE(20,*) 'recombination event occurs at the interface.
ENDIF
ELSE

IF (xtrap(itraph(rh)).le.dl) THEN

WRITE(*,*) 'recombination event occurs at the first semiconductor...'

WRITE(20,*) 'recombination event occurs at the fist semiconductor...'
ELSE IF (xtrap(itraph(rh)).gt.dl) THEN

WRITE(*,*) 'recombination event occurs at the interface...'

WRITE(20,*) 'recombination event occurs at the interface...'

ENDIF
ENDIF

ELSE

IF (tl.le.t2) THEN

IF (oexist(il)) call move(il)
ELSE

IF (oexisth(i2)) call moveh(i2)
ENDIF

ENDIF
set new hopping time
IF ((rtl.gt.tl).OR.(rtl.gt.t2)) THEN

IF (tl.le.t2) THEN

IF (oexist(il)) call settime(il)

IF (oexist(il)) call recombt(il)
ELSE

IF (oexisth(i2)) call settimeh(i2)
F (oexisth(i2)) call recombth(i2)
ENDIF

=l

ENDIF

record move

imoves = imoves + 1
imovess = imovess + 1

! move an electron

! move a hole

this sets up wte(il) and ijumpe(il) using hopping model
new recombination times

this sets up wth(i2) and ijumph(i2) using hopping model
new recombination times

reduce hopping times by "tl", "rt" or "t2" and advance time

IF ((rtl.lt.tl).AND.(rtl.lt.t2)) THEN

DO i=1,np
IF (.not.oexist(i)) CYCLE
wte(i) = wte(i) - rtl
ENDDO
DO i=1,nh

IF (.not.oexisth(i)) CYCLE
wth(i) = wth(i) - rtl
ENDDO
time = time + rtl ! advance time
ELSE

IF (tl.le.t2) THEN

DO i=1,np
IF (.not.oexist(i)) CYCLE

IF (i.ne.il) wte(i) = wte(i) - tl

ENDDO

DO i=1,nh
IF (.not.oexisth(i)) CYCLE
wth(i) = wth(i) - tl1

ENDDO
DO i=1,np
IF (.not.oexist(i)) CYCLE
DO j=1,nh
IF (.not.oexisth(j)) CYCLE
rt(i,j) = re(di,j) - €l
ENDDO
ENDDO
time = time + tl ! advance time
ELSE
DO i=1,np

IF (.not.oexist(i)) CYCLE
wte(i) = wte(i) - t2



ENDDO
DO i=1,nh
IF (.not.oexisth(i)) CYCLE
IF (i.ne.i2) wth(i) = wth(i) - t2
ENDDO
DO i=1,np
IF (.not.oexist(i)) CYCLE
DO j=1,nh
IF (.not.oexisth(j)) CYCLE
rt(i,j) = rt(i,j) - t2
ENDDO
ENDDO
time = time + t2 ! advance time
ENDIF

ENDIF

If maximum time exceeded finish calculation

IF (loglO(time).gt.maxtime) THEN ! Maximum time about to be exceed: Finish simulation
svoltage(index0+1:nbins) = svoltage(index0+1:nbins) + sep
WRITE(*,*) 'finish simulation---> maxtime about to be exceed = ', logl0(time),maxtime
WRITE(15,*) 'finish simulation---> maxtime about to be exceed = ', loglO(time),maxtime
WRITE(20,*) 'finish simulation---> maxtime about to be exceed = ', logl0O(time),maxtime
EXIT
ENDIF

If electrons run out finish calculation

IF (count(oexist).eq.0) THEN
index = int(loglO(time)/tbin)+1
svoltage(index0+1:index) = svoltage(index0+1l:index) + sep
WRITE(*,*) 'finish simulation---> number of "alive" electrons = ',count(oexist)

WRITE(15,*) 'finish simulation---> number of "alive" electrons = ',count(oexist)
WRITE(20,*) 'finish simulation---> number of "alive" electrons = ', count(oexist)
EXIT

ENDIF

compute mean position of electrons and holes

xmean 0
xmeanh = 0
DO j=1,np

IF (oexist(j)) xmean = xmean + x(Jj)

IF (oexisth(j)) xmeanh = xmeanh + xh(j)
ENDDO
xmean = xmean/count(oexist)
xmeanh = xmeanh/count(oexisth)

compute mean separation between surviving electrons and holes

sep = (xmeanh-xmean)*count(oexist)/renorm
IF (int(loglO(time)/tbin)+1.gt.index0) THEN
WRITE(*,*) 'isample = ', isample,index,time !,x,y,z
WRITE(15,*) 'isample = ',isample,index,time !,x,y,z
ENDIF

compute surface photovoltage (logarithmic computation)

IF (int(loglO(time)/tbin)+1l.gt.0) THEN
index = int(loglO(time)/tbin)+1
svoltage(index0+1:index) = svoltage(index0+l:index) + sep

ap=0
ah=0

1,np
IF (oexist(j)) THEN
ap = ap + 1
IF (x(np).lt.dl) THEN
apl = apl + 1
ELSE
ap2 = ap2 + 1
ENDIF
ENDIF
ENDDO

DO j=1,nh
IF (oexisth(j)) THEN
ah = ah + 1
IF (xh(nh).lt.dl) THEN
ahl = ahl + 1

ELSE
ah2 = ah2 + 1
ENDIF
ENDIF

ENDDO
nalive(index0+1:index) = nalive(index0+1:index) + ap
halive(index0+1:index) = halive(index0+1:index) + ah
nalivel(index0+1:index) = nalivel(index0+1l:index) +
nalive2(index0+1l:index) = nalive2(index0O+1l:index) +
halivel(index0+1:index) = halivel(index0O+l:index) +
halive2(index0+1:index) = halive2(index0+1:index) +

index0 = index
ENDIF

compute occupancy histograms
DO i=1,np

IF (oexist(i)) THEN
IF (xtrap(itrape(i)).lt.dl) THEN

nofel(int(e(i)/ebin)-1) = nofel(int(e(i)/ebin)
ELSE
nofe2(int(e(i)/ebin)-1) = nofe2(int(e(i)/ebin)
ENDIF
ENDIF
ENDDO
DO i=1,nh

IF (oexisth(i)) THEN
IF (xtrap(itraph(i)).lt.dl) THEN

nofehl(int(eh(i)/ebin)-1) = nofehl(int(eh(i)/el
ELSE
nofeh2(int(eh(i)/ebin)-1) = nofeh2(int(eh(i)/ebin)-1) + 1
ENDIF
ENDIF
ENDDO
ENDDO

simulation ends

apl
ap2
ahl
ah2

-1) + 1

1) + 1

bin)-1) + 1

WRITE(15,'(5%x," number of moves ",esl15.5)"') imovess
WRITE(*,'(5%," number of moves ",es15.5)") imovess
WRITE(15,'(5%," total number of moves = ",esl5.5)') imoves
WRITE(*,'(5%," total number of moves = ",esl5.5)') imoves

Compute number of samples to average

OPEN(17,file="isamples.dat")
WRITE(17,*) isample
CLOSE(17)

Compute surface photovoltage

OPEN(27,file='spv.dat’',status='unknown')
OPEN(29,file='spv2.dat',status="unknown')
DO i=1,nbins

WRITE(27,*) real(i)*tbin,svoltage(i)/real(isample)

WRITE(27,*) (real(i)*tbin)+loglO(tunit),svoltage(i)/real(isample)

WRITE(29,%) (10**(i*tbin))*tunit,svoltage(i)/real(isample)

ENDDO
CLOSE(27)
CLOSE(29)

OPEN(47,file='nalive.dat',statu
OPEN(49,file='halive.dat', statu
DO i=1,nbins

'unknown ')
unknown')

WRITE(47,%) real(i)*tbin,nalive(i)/real(isample),nalivel(i)/real(isample),nalive2(i)/real(isample)
WRITE(49,%) real(i)*tbin,halive(i)/real(isample),halivel(i)/real(isample),halive2(i)/real(isample)

ENDDO
CLOSE(47)
CLOSE (49)

compute energy distribution of particles

OPEN(39,file='distrl.dat',status='unknown')



DO i=int(ecl/ebin)-1,ehistbinl,-1
ngofe = gofel(i)/sum(gofel)/ebin
nnofe = nofel(i)/sum(nofel)*apl/(ntrap*(dl/d))/ebin
IF (ngofe.ne.0) THEN
WRITE(39,'(4(el2.5,1x))') real(i)*ebin,nnofe/ngofe
ENDIF
ENDDO
CLOSE(39)

OPEN(41,file='distr2.dat',status='unknown')
DO i=int(ec2/ebin)-1,ehistbin2,-1
ngofe = gofe2(i)/sum(gofe2)/ebin
nnofe = nofe2(i)/sum(nofe2)*ap2/(ntrap*((d-dl)/d))/ebin
IF (ngofe.ne.0) THEN
WRITE(41,'(4(el2.5,1x))') real(i)*ebin,nnofe/ngofe
ENDIF
ENDDO
CLOSE(41)

OPEN(43,file='distrhl.dat',status='unknown')
DO i=int(evl/ebin),ehistbinhl
ngofe = gofehl(i)/sum(gofehl)/ebin
nnofe = nofehl(i)/sum(nofehl)*ahl/(ntrap*(dl/d))/ebin
IF (ngofe.ne.0) THEN
WRITE(43,'(4(el2.5,1x))') real(i)*ebin,nnofe/ngofe
ENDIF
ENDDO
CLOSE (43)

OPEN(45,file="'distrh2.dat',status='unknown"')
DO i=int(ev2/ebin),ehistbinh2
ngofe = gofeh2(i)/sum(gofeh2)/ebin
nnofe = nofeh2(i)/sum(nofeh2)*ah2/(ntrap*((d-dl)/d))/ebin
IF (ngofe.ne.0) THEN
WRITE(45,'(4(el2.5,1x))') real(i)*ebin,nnofe/ngofe
ENDIF
ENDDO
CLOSE (45)

ENDDO
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WRITE(*,'(/"End of sample"/)')
WRITE(15,'(/"End of sample"/)')
WRITE(20,'(/"End of sample"/)')
CLOSE(14)
CLOSE(15)

CLOSE(20)

CONTAINS
SUBROUTINE settime(i)

this subroutine computes the minimum hopping time for electron "i"
and the neighbouring trap for which that time corresponds
using hopping transport model

IMPLICIT NONE

INTEGER, INTENT(IN) :: i

INTEGER :: ik,ivh,ikh,j,k

REAL*8 :: rdist,ti,dxe,dye,dze
REAL*8, DIMENSION(:), ALLOCATABLE
INTEGER, DIMENSION(:), ALLOCATABLE :: wi

ALLOCATE (wti(700),wi(700))
IF (.NOT.otrape(itrape(i))) STOP 'electron is not occuping its own trap!!’
ivh = iv(itrape(i))
DO ikh = 1,ivh
ik = ivec(itrape(i),ikh)
dxe = xtrap(ik)-x(i)
dye = ytrap(ik)-y(i)
dze = ztrap(ik)-z(i)

dxe = dxe - d*nint(dxe/d)
dye = dye - dyz*nint(dye/dyz)

dze = dze - dyz*nint(dze/dyz)
rdist = sqrt((dxe**2) + (dye**2) + (dze**2))

! hopping times for each neighbour are calculated using hopping model

IF ((ik.gt.ntrap).OR.(ik.eq.itrape(i))) THEN ! trap does not exist, trap occupied or same trap
wti(ikh) = 1d80

ELSE IF (otrape(ik)) THEN ! trap already occupied by an electron
wti(ikh) = 1d80

ELSE

call random_number(r)

wti(ikh) = -log(r)*exp((2*rdist)/alfa)*exp(((etrape(ik)-e(i))+abs(etrape(ik)-e(i)))/(2*tev))

ENDIF
wi(ikh) = ik
ENDDO
! The minimum hopping time for electron i is calculated

54 ti = 1d80
DO ikh = 1,ivh
IF (wti(ikh).lt.ti) THEN
wte(i) = wti(ikh)
ti = wti(ikh)
ijumpe(i) = wi(ikh)
k = ikh
ENDIF
ENDDO

DO j=1,np
IF (.not.oexist(j)) CYCLE

IF ((j.ne.i).AND.(ijumpe(i).eq.ijumpe(j))) THEN ! same "ijump" trap; problems in future!!

wti(k) = 1d80
GOTO 54
ENDIF
ENDDO

DEALLOCATE (wti,wi)
! controls:

IF (itrape(i).eq.ijumpe(i)) THEN
print *, i,itrape(i),ivh,ikh,ik,ijumpe(i),wte(i)
STOP 'SETTIME: jumping to the same trap!!!’
ENDIF
IF (otrape(ijumpe(i))) THEN
print *, i,itrape(i),ivh,ikh,ik,ijumpe(i),wte(i)
STOP 'SETTIME: jumping to an occupied trap!!!"’
ENDIF

END SUBROUTINE settime
SUBROUTINE settimeh(i)

this subroutine computes the minimum hopping time for hole "i"

IMPLICIT NONE
INTEGER, INTENT(IN) :: i

INTEGER :: ik,ivh,ikh,j,k
REAL*8 :: rdisth,ti,dxh,dyh,dzh
REAL*8, DIMENSION(:), ALLOCATABLE :: wti

INTEGER, DIMENSION(:), ALLOCATABLE :: wi

ALLOCATE (wti(700),wi(700))

IF (.NOT.otraph(itraph(i))) STOP 'electron is not occuping its own trap!!"'

ivh = iv(itraph(i))
DO ikh = 1,ivh
ik = ivec(itraph(i),ikh)

! dxh = xtrap(ik)-xh(i)

and the neighbouring trap for which that time corresponds using hopping transport model



dyh = ytrap(ik)-yh(i) ! dxq = dxq - d*nint(dxq/d)
dzh = ztrap(ik)-zh(i) dyq = dyq - dyz*nint(dyq/dyz)
dzq = dzq - dyz*nint(dzq/dyz)
dxh = dxh - d*nint(dxh/d) !
dyh = dyh - dyz*nint(dyh/dyz) qdist = sqrt((dxg**2) + (dyq**2) + (dzq**2))
dzh = dzh - dyz*nint(dzh/dyz)
call random_ number(r)

rdisth = sqrt((dxh**2) + (dyh**2) + (dzh**2)) ! rt(i,j) = -log(r)*ttO*exp(abs(gdist)/r0)*exp(abs(e(i)-eh(j))/tev)
rt(i,j) = -log(r)*tt0*exp(2*abs(qgdist)/r0)
hopping times for each neighbour are calculated using hopping model ENDDO
!
IF ((ik.gt.ntrap).OR.(ik.eq.itraph(i))) THEN ! trap does not exist, trap occupied or same trap END SUBROUTINE recombt
!
wti(ikh) = 1d80 SUBROUTINE recombth (j)
!
ELSE IF (otraph(ik)) THEN ! trap already occupied by a hole ! this subroutine computes the recombination time between particles
!
wti(ikh) = 1d80 IMPLICIT NONE
INTEGER, INTENT(IN) :: j
ELSE INTEGER ik
REAL*8 :: gdist,dxq,dyq,dzq
call random_ number(r) !
wti(ikh) = -log(r)*effmfac*exp((2*rdisth)/alfah)*exp(((eh(i)-etraph(ik))+abs(etraph(ik)-eh(i)))/(2*te ! tunneling recombination times are computed
v))
DO i=1,np
ENDIF IF (.not.oexist(i)) CYCLE
dxg = x(i)-xh(j)
wi(ikh) = ik dyq = y(i)-yh(J)

dzq = z(i)-zh(j)
ENDDO !
! dxq = dxq - d*nint(dxq/d)
The minimum hopping time for hole i is calculated dyqg = dyq - dyz*nint(dyq/dyz)
dzq = dzq - dyz*nint(dzq/dyz)

ti = 1ds8o !
DO ikh = 1,ivh qdist = sqrt((dxg**2) + (dyg**2) + (dzg**2))
IF (wti(ikh).lt.ti) THEN !
wth(i) = wti(ikh) call random_ number(r)
ti = wti(ikh) ! rt(i,j) = -log(r)*ttO*exp(abs(gdist)/r0)*exp(abs(e(i)-eh(j))/tev)
ijumph(i) = wi(ikh) rt(i,j) = -log(r)*ttO*exp(abs(gdist)/r0)
k = ikh ENDDO
ENDIF !
ENDDO END SUBROUTINE recombth
!
DO j=1,nh SUBROUTINE move (i)
IF (.not.oexisth(j)) CYCLE !
IF ((j.ne.i).AND.(ijumph(i).eq.ijumph(j))) THEN ! same "ijump" trap; problems in future!! ! this subroutine moves electron i to trap ijump(i)
wti(k) = 1d80 !
GOTO 55 IMPLICIT NONE
ENDIF INTEGER, INTENT(IN) :: i
ENDDO REAL*8 :: xtrapi,ytrapi,ztrapi,dx,dy,dz
!
DEALLOCATE (wti,wi) ! controls:
!
controls: IF (itrape(i).eq.ijumpe(i)) STOP 'MOVE: electron jumping to the same trap!!!

IF (otrape(ijumpe(i))) STOP 'MOVE: electron jumping to an occupied trap!!!
IF (itraph(i).eq.ijumph(i)) THEN !

print *, i,itraph(i),ivh,ikh,ik,ijumph(i),wth(i) ! occupancy policy
STOP 'SETTIMEH: jumping to the same trap!!!’ !
ENDIF otrape(itrape(i)) = .false. ! leave old trap free
IF (otraph(ijumph(i))) THEN otrape(ijumpe(i)) = .true. ! make new trap occupied
print *, i,itraph(i),ivh,ikh,ik,ijumph(i),wth(i) !
STOP 'SETTIMEH: jumping to an occupied trap!!!" xtrapi xtrap(ijumpe(i)

ENDIF ytrapi = ytrap(ijumpe(i))
ztrapi = ztrap(ijumpe(i))
END SUBROUTINE settimeh !
! real coordinates
SUBROUTINE recombt (i) !
dx = xtrapi-x(i)

this subroutine computes the recombination time between particles dy = ytrapi-y(i)
dz = ztrapi-z(i)
IMPLICIT NONE ! dx = dx - d*nint(dx/d)
INTEGER, INTENT(IN) :: i dy = dy - dyz*nint(dy/dyz)
INTEGER :: j,k dz = dz - dyz*nint(dz/dyz)
REAL*8 :: qdist,dxq,dyq,dzq xr(i) = xr(i) + dx
yr(i) = yr(i) + dy
tunneling recombination times are computed zr(i) = zr(i) + dz
|
DO j=1,nh ! electron jumps to trap "ijump(i)"
IF (.not.oexisth(j)) CYCLE ! ) ) . )
dxq = x(i)-xh(j) itrape(i) = ijumpe(i)
dyg = y(i)-yh(3j) e(i) = etrape(ijumpe(i))
dzq = z(i)-zh(j) x(1) = xtrapi

y(i) = ytrapi
z(i) = ztrapi



END SUBROUTINE move

SUBROUTINE moveh (i)

this subroutine moves hole i to trap ijump(i)

IMPLICIT NONE
INTEGER, INTENT(IN) :: i

REAL*8 :: xtrapih,ytrapih,ztrapih,dxh,dyh,dzh

controls:

IF (itraph(i).eq.ijumph(i)) STOP 'MOVEH: hole jumping to the same trap!!!’

IF (otraph(ijumph(i))) STOP

occupancy policy

otraph(itraph(i))
otraph(ijumph(i))

'MOVEH: hole jumping to an occupied trap!!!’

.false.

.true.

! leave old trap free
! make new trap occupied

xtrapih
ytrapih
ztrapih

xtrap(ijumph(i))
ytrap(ijumph(i))
= ztrap(ijumph(i))

real coordinates

dxh = xtrapih-xh(i)
dyh = ytrapih-yh(i)
dzh = ztrapih-zh(i)

dxh = dxh - d*nint(dxh/d)

dyh = dyh - dyz*nint(dyh/dyz)
dzh = dzh - dyz*nint(dzh/dyz)
xrh(i) = xrh(i) + dxh
yrh(i) = yrh(i) + dyh
zrh(i) = zrh(i) + dzh

hole jumps to trap "ijump(i)"

itraph(i) = ijumph(i)
eh(i) = etraph(ijumph(i))

xh(i) = xtrapih
yh(i) = ytrapih
zh(i) = ztrapih

END SUBROUTINE moveh

FUNCTION edistl()

uses DOS to set the energy of a site

IMPLICIT NONE
INTEGER :: j

REAL*8 :: edistl
REAL*8 :: r,delta
REAL*8 :: al,a2,a3

use exponential DOS :

DO WHILE(.true.)
call random number(r)
edistl = tevOl*log(l-r)
IF (edistl.1lt.0) CYCLE

IF (edistl.lt.ecutl) EXIT

ENDDO

END FUNCTION edistl

FUNCTION edist2()

uses DOS to set the energy of a site

IMPLICIT NONE
INTEGER :: j

REAL*8 :: edist2
REAL*8 :: r,delta
REAL*8 :: al,a2,a3

use exponential DOS :

DO WHILE(.true.)
call random_ number(r)
edist2 = tev02*log(l-r)

IF (edist2.1t.0) CYCLE
IF (edist2.lt.ecut2) EXIT
ENDDO
!
END FUNCTION edist2
!
FUNCTION edisthl()

! uses DOS to set the energy of a site

IMPLICIT NONE

INTEGER 3

REAL*8 :: edisthl
REAL*8 :: r,delta
REAL*8 :: al,a2,a3

! (2) use exponential DOS
DO WHILE(.true.)
call random number(r)
edisthl = tevOhl*log(l-r)
IF (edisthl.1t.0) CYCLE
IF (edisthl.lt.ecuthl) EXIT
ENDDO
!
END FUNCTION edisthl
!
FUNCTION edisth2()

uses DOS to set the energy of a site

IMPLICIT NONE

INTEGER j

REAL*8 edisth2
REAL*8 :: r,delta
REAL*8 :: al,a2,a3

! (2) use exponential DOS
DO WHILE(.true.)
call random_ number(r)
edisth2 = tevOh2*log(l-r)
IF (edisth2.1t.0) CYCLE
IF (edisth2.lt.ecuth2) EXIT
ENDDO
!

END FUNCTION edisth2

END PROGRAM hjunc



Program nanowalk

---> NANOWALK: Random Walk in media with Spacial and Energy Disorder <----

This is an...

ACTIVATED HOPPING CONTINUOUS TIME RANDOM WALK method
WITH PERIODIC BOUNDARY CONDITIONS

AIM: CURRENT-VOLTAGE CHARACTERISTICS+MOBILITIES

AIM: DIFFUSSION COEFFICIENTS (2006)

Original N Quirke september 1998

Modified by J.A. Anta, May-August 1999

Modified by J.A. Anta, September 2006 (diff coef.)

Modified by J.A. Anta, November 2006 (spatial disorder)
Modified by J.A. Anta, May 2007 (spatial disorder: improved)
Modified by J.P. Gonzalez, May 2010 (recombination features)

IMPLICIT NONE
fixed parameters:

REAL*8, PARAMETER :: pi = 3.1415926535898, half = 1./2., third = 1./3.
REAL*8, PARAMETER h = 6.6260755e-34

REAL*8, PARAMETER :: hbar = h/(2*pi)

REAL*8, PARAMETER :: echarge = 1.60217733d-19 ! elementary charge
IREAL*8, PARAMETER :: echarge = 1.0 ! elementary charge

REAL*8, PARAMETER :: melec = 9.1093897d-31 ! electron mass

REAL*8, PARAMETER
!REAL*8, PARAMETER
REAL*8, PARAMETER
INTEGER, PARAMETER
REAL*8, PARAMETER :

: m2nm = 1d9 ! nanometers to meter
:: m2nm = 1 ! angstroms to meters
: temp2kt = 8.617366d-05 ! kelvins to eV (kT)

: spr = 1 ! multiplies the number of sites on x-direc.
ebin = 0.005 ! energy grid in nofe and gofe histograms

trap attempt frequency and time unit

REAL*8 nu0 ! = h/(8*melec*aa**2) or 1/tunit
REAL*8 e0 ! h*nu0
REAL*8 const ! = sgrt(2*melec*echarge)/hbar

input parameters (file="nanowalk.in")

INTEGER :: np number of particles

!
REAL*8 d,dyz ! size length of simulation box in nm (d --> x-coordinate)
REAL*8 dsurf ! surface trap density (nm**-2)

REAL*8 rcut ! cut-off for hopping between neighbouring traps

INTEGER nsample ! number of samples

REAL*8 temp ! temperature in K

REAL*8 appfield ! applied field in Vm-1

REAL*8 maxmoves ! maximum number of moves

INTEGER nbins ! number of time bins in total simulation time per sample
REAL*8 tbin ! bin size for time histograms in units of tunit

INTEGER iebins ! number of initial time bins neglected on average

REAL*8 tunit ! time unit (t0)

REAL*8 ec ! energy of conduction band edge (0 by default) (eV)

REAL*8 ecut ! energy cutoff for exponential DOS (eV)

REAL*8 temp0 ! characteristic temperature in K for exponential DOLS

REAL*8 alfa ! localization radius (nm)

REAL*8 rprob ! recombination probability (number between 0 and 1)

REAL*8 lambda,eredox ! Marcus: reorg. energy (eV), redox pair eq. energy (eV)
REAL*8 kcb,tss ! Marcus: prefactors for probs and times

LOGICAL*2 :: multtrap ! if .true. waiting times are computed using multiple trapping model

LOGICAL*2 onelec ! if .true. single electron aproximation is used
REAL*8 ! Fermi energy when using single electron aproximation
REAL*8 ! distance between traps

input parameters (file="etraps.in","rtraps.in")

INTEGER :: ndist ! number of grid points in distribution of trap energies
REAL*8, DIMENSION(:), ALLOCATABLE :: epiege,pcum

INTEGER nspheres ! number of nanospheres in input sample

REAL*8 dsphere ! diameter of nanosphere in nm

main variables

INTEGER :: ntrap ! number of traps
REAL*8, DIMENSION(:), ALLOCATABLE :: X,Y,2 ! coordinates of electrons
REAL*8, DIMENSION(:), ALLOCATABLE :: x0,y0,z0
REAL*8, DIMENSION(:), ALLOCATABLE :: Xr,yr,zr

real coordinates of electrons
REAL*8, DIMENSION(:), ALLOCATABLE
REAL*8, DIMENSION(:), ALLOCATABLE

initial coordinates of electrons

x0e,y0e, z0e ! initial coordinates of electrons
xre,yre,zre ! real coordinates of electrons

REAL*8, DIMENSION(:), ALLOCATABLE :: e ! energy of electrons

REAL*8, DIMENSION(:), ALLOCATABLE wt ! hopping time of electrons
REAL*8, DIMENSION(:), ALLOCATABLE rt | recombination times

INTEGER, DIMENSION(:), ALLOCATABLE ijump ! hopping-to trap of electrons
INTEGER, DIMENSION(:), ALLOCATABLE itrap ! trap number of electrons
INTEGER, DIMENSION(:), ALLOCATABLE iback | "previous" trap of electrons
LOGICAL, DIMENSION(:), ALLOCATABLE otrap if .true. trap is occupied
LOGICAL, DIMENSION(:), ALLOCATABLE rtrap if .true. recombinable trap
REAL*8, DIMENSION(:), ALLOCATABLE

REAL*8, DIMENSION(:), ALLOCATABLE
REAL*8, DIMENSION(:), ALLOCATABLE
REAL*8, DIMENSION(:), ALLOCATABLE
REAL*8, DIMENSION(:), ALLOCATABLE
REAL*8, DIMENSION(:), ALLOCATABLE
REAL*8, DIMENSION(:), ALLOCATABLE
REAL*8, DIMENSION(:), ALLOCATABLE

xtrap trap x-coordinate
ytrap trap y-coordinate
ztrap trap z-coordinate
XSS sphere x-coordinate
yss sphere y-coordinate
zss sphere z-coordinate
ibytime current histogram

!
!

etrap ! trap energy
!
!
!

!
REAL*8, DIMENSION(:), ALLOCATABLE msd ! mean square displacement
REAL*8, DIMENSION(:), ALLOCATABLE aener ! average energy of electrons
REAL*8, DIMENSION(:), ALLOCATABLE nldiff diffusion length

REAL*8, DIMENSION(:), ALLOCATABLE ntlife lifetime

REAL*8, DIMENSION(:), ALLOCATABLE :: adist
INTEGER, DIMENSION(:,:), ALLOCATABLE :: ivec

average square displacemente

!
!
!
! neighbour list

INTEGER, DIMENSION(:), ALLOCATABLE :: iv ! number of neighbours
tev ! kT (temperature) in eV
tev0 ! kTO (characteristic temperature) in eV
!

delapp force in eV/AA (potential gradient)

time ! elapsed time

emean ! centre of gaussian DOS

facnorm ! normalization factor for intensities

rho ! carriers density

maxtime ! maximum time of simulation in units of tunit
ener compute total energy of electrons

1diff diffusion length of electrons

tlife half life of electrons

dist square displacement

nsurf number of traps per nanosphere
rsphere radius of nanosphere in nm
LOGICAL*2 :: esite ! if .true. upward jump
LOGICAL*2 :: forward ! if .true. "forward" jump

output parameters

REAL*8 :: jcurt
REAL*8 umob

current density
mobility

INTEGER :: ehistbin ! number of points in "nofe" and "gofe" histograms
REAL*8, DIMENSION(:), ALLOCATABLE :: nofe ! energy level population
REAL*8, DIMENSION(:), ALLOCATABLE gofe ! density of states

REAL*8, DIMENSION(:), ALLOCATABLE tgofe

REAL*8, DIMENSION(:), ALLOCATABLE sgofe ! density of surface states
REAL*8, DIMENSION(:), ALLOCATABLE emov ! target energies for upward jumps
REAL*8, DIMENSION(:), ALLOCATABLE aemov ! target energies for all the jumps
REAL*8, DIMENSION(:), ALLOCATABLE etrans ! "effective transport energy"
others

INTEGER i,j,k,1,isx,isy,isz,istep,il,ir,ioutput,nn,nyz

REAL*8 r,tr,tl,rtl,delta,sigma,xs,ys,zs,ti,rdist

INTEGER ixsr,isxl,isyr,isyl,iszr,iszl,idir,idirl

INTEGER ik,it,is,iis,nrem,ndatos,contt

INTEGER isample

REAL*8 nrecomb,nrecombl,nrecomb2

REAL*8 imoves, imovest

REAL*8 jeurtsum,mjcurt,ekk,ngofe,nsgofe,nnofe, suma, nemov, naemov,netrans
REAL*8 :: theta,phi

REAL*8 :: advance,xtrapi,ytrapi,ztrapi,rtrap2

REAL*8 :: djx,djy,djz,jump2,rcut2,rcut2x

REAL*8, DIMENSION(:), ALLOCATABLE :: idisp

REAL*8, DIMENSION(:), ALLOCATABLE :: te

const = sqgrt(2*melec*echarge)/hbar

OPEN(14,file="nanowalk.in")
OPEN(15,file="nanowalk.out")
IOPEN(16,file="etraps.in")

CALL system("rm -f msdata")

read input parameters

READ(14,%) np
READ(14,%) d,dyz
READ(14,*) dsurf
READ(14,%) rcut
READ(14,*) maxmoves



READ(14,*) nsample
READ(14,*) temp
READ(14,*) appfield
READ(14,*) nbins
READ(14,%*) tbin
READ(14,*) iebins
READ(14,%) tunit
READ(14,%) ec
READ(14,%) ecut
READ(14,%) temp0
READ(14,*) dsphere
READ(14,%) alfa
READ(14,*) lambda,eredox
READ(14,*) kcb,tss
READ(14,*) multtrap
READ(14,*) onelec
READ(14,%) ef
READ(14,%) alat

convert to internal units

tev = temp*temp2kt
tev0 = -tempO*temp2kt
delapp = appfield/m2nm

ALLOCATE (x(np),y(np),z(np),e(np),wt(np),itrap(np),ijump(np),iback(np))
ALLOCATE (x0(np),yO0(np),z0(np))

ALLOCATE (xr(np),yr(np),zr(np))

ALLOCATE (x0e(np),yOe(np),z0e(np))

ALLOCATE (xre(np),yre(np),zre(np))

ALLOCATE (ibytime(nbins))

ALLOCATE (msd(nbins),nldiff(nbins),ntlife(nbins),aener(nbins),adist(nbins))
ehistbin = int((ecut-ec)/ebin)+1

ALLOCATE (nofe(ehistbin),gofe(ehistbin),tgofe(ehistbin),sgofe(ehistbin),emov(ehistbin),aemov(ehistbin), etrans(ehis

tbin))

ALLOCATE (idisp(np),te(np))
ALLOCATE (rt(np))

nu0 = 1./tunit
maxtime = nbins*tbin

WRITE(*,'(/10x," program NANOWALK HOPPING "/)')

WRITE(*,' (" sample size (x, and yz) = ",£f10.5,1x,£f10.5" nm")"') d,dyz
WRITE(*,' (" Trap attempt frequency = ",el5.5," secs-1")') nu0
WRITE(*,' (" Time unit = ",el5.5," secs")') tunit

WRITE(*,' (" number of electrons = ",i4)') np

WRITE(*,' (" Maximum time of simulation = ",el5.5," tunit(s)")') maxtime
WRITE(*,' (" Temperature = ",£7.2," K")') temp

WRITE(*,' (" Ec = ",£7.2," eV")') ec

WRITE(*,' (" Ecut = ",£7.2," eV")') ecut

WRITE(*,' (" alpha = ",f7.4)') -tev/tev0

WRITE(*,' (" Applied field = ",d9.3," Vm-1")') appfield

WRITE(*,'(/2x,"( kT = ",£10.7,", E (= -dv/dx) = ",£10.7, " eV )"/)') &

tev,delapp

WRITE(15,'(/10x," program NANOWALK HOPPING "/)')

WRITE(15,' (" sample size (x, and yz) = ",f10.5,1x,£f10.5" nm")"') d,dyz
WRITE(15,' (" Trap attempt frequency = ",el5.5," secs-1")') nu0
WRITE(15,' (" Time unit = ",el5.5," secs")') tunit
WRITE(15,' (" number of electrons = ",i4)') np
WRITE(15,' (" Maximum time of simulation = ",el5.5," tunit(s)")') maxtime
WRITE(15,' (" Temperature = ",f7.2," K")') temp
WRITE(15,'(" Ec = ",£7.2," eV")') ec
WRITE(15,'(" Ecut = ",£7.2," eV")') ecut
WRITE(15,'(" alpha = ",£7.2)') -tev/tev0
WRITE(15,' (" Applied field = ",d9.3," Vm-1")') appfield
WRITE(15,'(/2x,"( kT = ",£10.7,", E (= -dv/dx) = ",£10.7, " eV )"/)') &

tev,delapp
nn = 18
alat = 1.0

nn = nint(d/alat)
nyz = nint(dyz/alat)
ntrap = nn*nyz**2

d = alat*nn

dyz = alat*nn

ALLOCATE (otrap(ntrap),rtrap(ntrap),etrap(ntrap),xtrap(ntrap),ytrap(ntrap),ztrap(ntrap))
ALLOCATE (ivec(ntrap,700),iv(ntrap))

JUST TO CHECK: simple cubic lattice

ik =0
DO isx=1,nn

! DO isy=1,nyz

1 DO isz=1,nyz

! ik = ik + 1

! xtrap(ik) = (isx-1)*alat
! ytrap(ik) = (isy-1)*alat
! ztrap(ik) = (isz-1)*alat
! ENDDO
! ENDDO
! ENDDO

!

!

!

CREATE random lattice

call random_ seed

ik =1

DO ik=1,ntrap
call random_number(r)
xtrap(ik) = r*d
call random_ number(r)
ytrap(ik) = r*dyz
call random_ number(r)
ztrap(ik) = r*dyz

ENDDO

DO ik=1,ntrap
WRITE (25,%) ik,xtrap(ik),ytrap(ik),ztrap(ik)
ENDDO

computing neighbour list

WRITE(*,' (" Computing neighbour list... ")')
ivec = 0
iv=0
rcut2 = rcut*rcut
DO ik=1,ntrap
rcut2x = rcut2
111 DO it = ik+1,ntrap
!

djx = xtrap(ik)-xtrap(it)
djy = ytrap(ik)-ytrap(it)

djz = ztrap(ik)-ztrap(it)
! P.B.C here:
djx = djx - d*nint(djx/d)

djy = djy - dyz*nint(djy/dyz)
djz = djz - dyz*nint(djz/dyz)

jump2 = djx**2 + djy**2 + djz**2
IF (jump2.lt.rcut2x) THEN

iv(ik) = iv(ik) + 1

iv(it) = iv(it) + 1

ivec(ik,iv(ik)) it
ivec(it,iv(it)) = ik
ENDIF
ENDDO
IF (iv(ik).le.l) THEN
rcut2x = rcut2x + 1
write(*,'("changing cut-off -->",£f10.5," nm")') sqrt(rcut2x)
write(15,' ("changing cut-off -->",£10.5," nm")') sqgrt(rcut2x)
GOTO 111
ENDIF
IF (mod(ik,1000).eq.0) print *, 'ik = ',ik
WRITE(56,%) ik,iv(ik)

ENDDO
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*x%x% Joop over different trap energy realizations *##x¥sxksxsxkssx
ek ko k ko ok ko ko ko ok ko ko ko kR ko Rk ko kK kR kR kR R kK

jeurtsum = 0

nofe = 0
gofe = 0
tgofe = 0

0

0

0

0.0

0.0
aener = 0.0
adist = 0.0
imovest = 0.0

DO isample=1,nsample



22

WRITE(*,' (/" --> Simulation for sample = ",i6/40("*"))') isample
WRITE(15,' (/" --> Simulation for sample = ",16/40("*"))') isample

coo

=0
ndatos = 0
1diff = 0
tlife = 0.0
idisp = 0
otrap = .false.
rtrap = .false.
ener = 0.0
dist = 0.0
nrecomb = 0.0
nrecombl = 0.
0

o N X

0
nrecomb2 = 0.0

allocate energies to trap sites

DO ik = 1,ntrap

ekk = edist()
etrap(ik) = ekk
IF ((onelec).AND.(ekk.ge.ef)) otrap(ik) = .true. ! if .true. one electron aprox.

IF (.NOT.otrap(ik)) THEN
gofe(int(ekk/ebin)+1) = gofe(int(ekk/ebin)+1) + 1

ENDIF

tgofe(int(ekk/ebin)+1) = tgofe(int(ekk/ebin)+1) + 1
ENDDO
WRITE(*,' (" Total simulation time = ",el5.5," secs")') maxtime
WRITE(*,' (" Time window = ",el5.5," secs")') tbin
WRITE(15,' (" Total simulation time = ",el5.5," secs")') maxtime
WRITE(15,' (" Time window = ",el5.5," secs")') tbin

WRITE(*,*)'total number of traps', ntrap
WRITE(15,*)'total number of traps', ntrap

distribute particles randomly throughout sample
DO j=1,np ! loop over number of particles

CONTINUE

call random_number(r)

ik=int (r*ntrap+l)

IF (otrap(ik)) GOTO 22 ! trap already occupied

e(j) = etrap(ik)

x(Jj) = xtrap(ik)

y(3) = ytrap(ik)

z(j) = ztrap(ik)

itrap(j) = ik

otrap(ik) = .true. ! trap occupied
iback(j) = ik

ENDDO
DO j=1,np ! compute waiting times and jumps for each electron
IF (multtrap) THEN
call settimel(j) ! this sets up wt(j) and ijump(j)
ELSE
call settime2(j) ! this sets up wt(j) and ijump(j)
ENDIF
ENDDO
DO i=1,np ! compute recombination times
call recombt(i)
ENDDO

initial positions

X0 = x
y0 =y
20 = z
Xr = X

is used.

x
H
o
I
NN KX

begin simulation run

time = 0

te = 0
ioutput = 0
imoves = 0.0

DO WHILE(.true.)
IF (imovest.ge.maxmoves) THEN

WRITE(*,*) 'maximum number of moves about to be exceed', maxmoves
WRITE(15,*) 'maximum number of moves about to be exceed', maxmoves

security: if two electrons in the same trap or tend to jump to the same trap, stop

DO i=1,np-1
DO j=i+1,np

IF (itrap(i).eq.itrap(j)) THEN ! TWO ELECTRONS SHARE THE SAME BED!
WRITE(*,*) 'TWO electrons share the same bed!',i,j,itrap(i)
WRITE(*,*) 'INMORAL --> FORBIDDEN'
STOP

ENDIF

IF (ijump(i).eq.ijump(j)) THEN ! TWO ELECTRONS WANT THE SAME BED!
WRITE(*,*) 'TWO electrons tend to jump to the same trap!',i,j,ijump(i)
WRITE(*,*) 'PROBLEMS IN FUTURE --> FORBIDDEN'

IF ((count(otrap).ne.np).AND.(.NOT.onelec)) THEN
WRITE(*,*) &
‘occupied traps does not coincide with total number of particles'
WRITE(*,*) 'count, np -->',count(otrap),np
STOP
ENDIF

search for minimum hopping time...

tl = 1d50
DO i=1,np
IF (wt(i).lt.tl) THEN
IF (.not.otrap(ijump(i))) THEN ! ... to a non-occupied trap

ENDDO

more controls

IF (tl.eq.1d50) stop 'problems on minimum hopping time searching --> possible problems on settime

IF (itrap(il).eq.ijump(il)) stop 'electron is moving to its own trap!!’
DO i=1,np

IF (wt(i).lt.0) stop 'negative hopping times!!’
ENDDO

minimum recombination time is selected

rtl = 1d50
DO i=1,np
IF (rt(i).lt.rtl) THEN
rtl rt(i)
ir = i
ENDIF
ENDDO

recombination or hops

subroutine’



IF (rtl.le.tl) THEN IF (j.eq.il) CYCLE
1 IF (l.eq.ijump(j)) GOTO 23

! compute diffusion length and lifetime ENDDO
1 itrap(il) =1
ndatos = ndatos + 1 ! otrap(itrap(il)) = .true.
1diff = 1diff + idisp(ir) otrap(l) = .true.
tlife = tlife + te(ir) e(il) = etrap(l)
x0e(ir) = xre(ir) x(il) = xtrap(l)
yOe(ir) = yre(ir) y(il) = ytrap(l)
z0e(ir) = zre(ir) z(il) = ztrap(l)
te(ir) = 0.0 ENDIF
otrap(itrap(ir)) = .false.
nrecomb = nrecomb + 1 IF (multtrap) THEN
nrecomb2 = nrecomb2 + 1 call settimel(il) ! this sets up wt(il) and ijump(il)
sgofe(int(e(ir)/ebin)+1) = sgofe(int(e(ir)/ebin)+1) + 1 ! distribution of surface states call recombt(il) ! it sets up a new recombination time
21 call random_number(r) ELSE
1 = int(r*ntrap)+1 call settime2(il) ! this sets up wt(il) and ijump(il)
IF (otrap(l)) GOTO 21 call recombt(il) ! it sets up a new recombination time
DO j = 1,np ENDIF
IF (j.eq.ir) CYCLE i
IF (l.eq.ijump(j)) GOTO 21 ENDIF
ENDDO !
itrap(ir) =1 ! If maximum time exceeded finish calculation
otrap(itrap(ir)) = .true. 1
e(ir) = etrap(l) IF (time.gt.maxtime) EXIT
x(ir) = xtrap(l) 1
y(ir) = ytrap(l) ! compute energy of electrons
z(ir) = ztrap(l) !

ener = ener + sum(e)
IF (multtrap) THEN

call settimel(ir) ! this sets up wt(il) and ijump(il)
ELSE

call settime2(ir) ! this sets up wt(il) and ijump(il)
ENDIF
call recombt(ir)

film maker...
write(33,'(el0.5,1x,£10.5,1x,£10.5,1x,£10.5)") time,x(1),y(1),z(1

output after ~tbin

DO i=1,np IF (nint(time/tbin).gt.ioutput) THEN
IF (i.ne.ir) THEN ioutput = ioutput + 1
wt(i) = wt(i) - rtl WRITE(*,*) 'isample = ',isample,ioutput,time !,x,y,z
rt(i) = rt(i) - rtl WRITE(*,*) maxval(e),minval(e),maxloc(e),minloc(e)
ENDIF !
te(i) = te(i) + rtl ! compute average square displacement
ENDDO !
adist(nint(time/tbin)) = adist(nint(time/tbin)) + dist/imoves
time = time + rtl ! advance time !
! compute diffusion length and lifetime
ELSE !
! IF (nrecomb.gt.0) THEN
! move electron "il" to trap ijump(il). nldiff(nint(time/tbin)) = nldiff(nint(time/tbin)) + ldiff/ndatos
! ntlife(nint(time/tbin)) = ntlife(nint(time/tbin)) + tlife/ndatos
call move(il) ENDIF
imoves = imoves + 1 ! record moves !
imovest = imovest + 1 ! compute occupancy histogram
! !
DO i=1,np DO i=1,np
IF (i.ne.il) THEN nofe(int(e(i)/ebin)+1) = nofe(int(e(i)/ebin)+1l) + 1
wt(i) = wt(i) - t1 ENDDO
rt(i) = rt(i) - t1 !
ENDIF ! compute average energy of electrons
te(i) = te(i) + tl !
ENDDO aener (nint(time/tbin)) = aener(nint(time/tbin))+ ener/imoves/np
!
time = time + tl1 ! advance time ! compute mean square displacement
) !
idisp(il) = sqrt((xre(il)-x0e(il))**2 + (yre(il)-yOe(il))**2 + (zre(il)-z0e(il))**2) suma = 0.0
call random_number(r) DO i=1,np
rprob = kcb*sqrt(tev/(4*pi*lambda))*exp(-(eredox-e(il)-lambda)**2/(4*lambda*tev)) suma = suma + (Xr(i)-x0(i))**2 + (yr(i)-y0(i))**2 + (zr(i)-z0(i))**2
IF (r.lt.rprob) THEN ENDDO
ndatos = ndatos + 1 suma = suma/real(np)
1diff = 1diff + idisp(il) msd(nint(time/tbin)) = msd(nint(time/tbin)) + suma
tlife = tlife + te(il) ENDIF
x0e(il) = xre(il) !
y0e(il) = yre(il) ENDDO
z0e(il) = zre(il) !
te(il) = 0.0 !
otrap(itrap(il)) = .false. ! simulation ends
nrecomb = nrecomb + 1 !
nrecombl = nrecombl + 1
sgofe(int(e(il)/ebin)+1) = sgofe(int(e(il)/ebin)+1) + 1 ! surface states distribution facnorm = (dyz/m2nm)**2*tbin*tunit/echarge*imoves
23 call random_number(r) !
1 = int(r*ntrap)+1 ! multiply current density histogram by number of particles

IF (otrap(l)) GOTO 23 !
DO j = 1,np facnorm = facnorm/real(np)



WRITE(15,'(5%," number of recombination events for low energy traps
WRITE(*,'(5x," number of recombination events for low energy traps

",esl15.5)"') nrecombl
",es15.5)"') nrecombl

WRITE(15,' (5%," number of recombination events for deep traps = ",esl5.5)') nrecomb2
WRITE(*,'(5x," number of recombination events for deep traps = ",esl5.5)') nrecomb2
WRITE(15,'(5%," number of total recombination events = ",esl5.5)') nrecomb
WRITE(*,'(5x," number of total recombination events = ",esl5.5)') nrecomb
WRITE(15,'(5%," number of moves = ",esl5.5)') imoves

WRITE(*,'(5%," number of moves = ",esl5.5)') imoves

WRITE(15,'(5%," total number of moves = ",esl5.5)') imovest

WRITE(*,'(5x," total number of moves = ",esl5.5)') imovest

Compute number of samples to average

OPEN(17,file="isamples.dat")
WRITE(17,*) isample
CLOSE(17)

OPEN(22,file='msdata',status='unknown',access='append')
WRITE(22,*) isample,umob,mjcurt/appfield
CLOSE(22)

OPEN(26,file="enerhist.dat',status='unknown')
OPEN(28,file='sdist.dat',status='unknown')
OPEN(30,file='efermi.dat',status='unknown')
DO i=1,ehistbin
DO i=int(ec/ebin)+1l,ehistbin
ngofe = gofe(i)/sum(tgofe)/ebin
ngofe = gofe(i)/ntrap/ebin
nsgofe = sgofe(i)/sum(tgofe)/ebin
nsgofe = sgofe(i)/ntrap/ebin
nnofe = nofe(i)/sum(nofe)*np/ntrap/ebin
nemov = emov(i)/sum(emov)*np/ebin
naemov = aemov(i)/sum(aemov)*np/ebin
netrans = etrans(i)/sum(etrans)*np/ebin
nnofe = nnofe/tev
IF (ngofe.ne.0) THEN
WRITE(26,'(4(el2.5,1x))') real(i)*ebin,ngofe
WRITE(28,'(4(el2.5,1x))') real(i)*ebin,nsgofe
WRITE(30,'(4(el2.5,1x))") real(i)*ebin,nnofe/ngofe
ENDIF
ENDDO
CLOSE (26)
CLOSE (28)
CLOSE (30)

msd = msd/real(isample)
OPEN(24,file='msd.dat',status='unknown')
DO i=1,nbins
WRITE(24,*) i*tbin*tunit,msd(i)*1d-14 ! Jump Diffusion (cm-3)
ENDDO
CLOSE(24)

OPEN(70,status='unknown',file='difflng.dat"')
OPEN(71,status='unknown',6file='lifetime.dat"')
OPEN(72,statu unknown', file='avgener.dat')
DO i=1,nbins
WRITE(70,*) i*tbin*tunit,nldiff(i)/real(isample)
WRITE(71,*) i*tbin*tunit,ntlife(i)*tunit/real(isample)
WRITE(72,*) i*tbin*tunit,aener(i)/real(isample),adist(i)/real(isample)
ENDDO
CLOSE(70)
CLOSE(71)
CLOSE(72)

ENDDO
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facnorm = (dyz/m2nm)**2*tbin*tunit/echarge*imoves

WRITE(*,'(/"Final results:"/)"')
WRITE(15,'(/"Final results:"/)")

CLOSE(14)
CLOSE(15)
CLOSE(16)

CONTAINS
subroutines and functions are the same as those of the previous code

END PROGRAM nanowalk
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