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RESUMEN

Esta tesis se centra en el estudio teórico de semiconductores desordenados utilizados 
en celdas solares de nueva generación. Se presentan y discuten resultados obtenidos mediante 
Simulación  Numérica  de  Marcha  Aleatoria  (RWNS,  del  inglés  Random Walk  Numerical 
Simulation). Este método proporciona una eficiente herramienta con la cual estudiar, a partir 
de postulados básicos, mecanismos de transporte y recombinación de carga en sistemas donde 
el desorden (tanto energético como espacial) presenta un papel clave. Más aún, esto se ha 
conseguido en escalas de espacio y tiempo no abordables por métodos ab initio.

Principalmente, esta tesis tiene como objetivo discernir los mecanismos de transporte 
y recombinación que tienen lugar en una Celda Solar Sensibilizada con Colorante (DSC, del 
inglés Dye-sensitized Solar Cell). En primer lugar, en el Capítulo 4 se lleva a cabo un análisis 
del comportamiento del coeficiente de difusión electrónico en función del nivel de Fermi y de 
la  temperatura  suponiendo  una  probabilidad  de  transferencia  electrónica  entre  estados 
localizados dada por la fórmula de Miller-Abrahams. Asimismo, se hace uso del concepto de 
energía de transporte para la interpretación de resultados. Por otro lado, en el Capítulo 5, se 
utiliza el modelo de Multiple-Trapping como marco para el cálculo de la vida media y la 
longitud  de  difusión  electrónica  en  presencia  de  una  probabilidad  de  recombinación 
independiente de la energía. En el Capítulo 6 se realiza un estudio más amplio del origen de la 
recombinación no lineal observada en una celda DSC. Así, se consigue explicar de manera 
satisfactoria  este  fenómeno  mediante  un  proceso  de  transferencia  de  carga  entre  una 
distribución exponencial de estados localizados en el óxido y una distribución de estados 
aceptores en el electrolito gobernada por el modelo de Marcus-Gerisher.

El  papel  que desempeña la  morfología del  electrodo fotoactivo de  una celda solar 
nanoestructurada  es  también  analizado  en  el  Capítulo  7. Así,  se  lleva  a  cabo un  estudio 
completo de la dependencia de la eficiencia de recolección con el grado de orden inducido 
externamente  en  la  dirección  perpendicular  al  electrodo.  De  esta  manera,  se  obtienen 
resultados para varios grados de iluminación y diversas probabilidades de recombinación, lo 
cual se utiliza luego para discutir en qué circunstancias es beneficioso trabajar con electrodos 
ordenados y en qué casos no.

Finalmente,  el  Capítulo 8 de la  tesis  presenta un modelo para heterouniones entre 
semiconductores desordenados. En primer lugar, se estudia el proceso de separación de carga 
en términos del Fotovoltaje  Superficial  (SPV), estudiando su dependencia con respecto al 
alineamiento de las bandas, la distribución de estados localizados y la densidad electrónica. 
Estos resultados se discuten luego en función de las evidencias experimentales encontradas en 
celdas  inorgánicas  ETA.  Por  otro  lado,  se  incluye  luego  en  los  cálculos  un  término  de 
generación continua de carga para estudiar el comportamiento en estado estacionario de una 
heterounión desordenada. Así, se hacen cálculos tanto del voltaje a circuito abierto como de la 
corriente  de  recombinación  y  estos  resultados  se  analizan,  bajo  ciertas  suposiciones,  en 
relación al funcionamiento de una celda orgánica BHJ.



ABSTRACT

This thesis is focused on the use of computational tools for the study of disordered 

semiconductors with applications in new generation solar cells. Theoretical results as obtained 

by Random Walk Numerical  Simulation (RWNS),  a type of  Monte Carlo calculation,  are 

shown and discussed. It is proved that RWNS provides an efficient method to study from first 

principles microscopic mechanisms of charge transport and recombination where both spatial 

and energy disorder are taken into account. Importantly, this has been accomplished in the 

long time and spatial scales, non accessible to quantum-mechanical methods.

This thesis mainly focuses on discerning actual electron dynamics involved in Dye-

Sensitized Solar Cells (DSC). On the one hand, a thorough study of the electron diffusion in 

the nanostructured oxide as a function of the Fermi level is carried out. For this purpose the 

two most widely accepted models of transport in disordered semiconductors are taken into 

account:  Hopping and Multiple-Trapping. In Chapter 4, the electron diffusion coefficient is 

measured  with  respect  to  the  Fermi  level  and the  temperature  from the  Miller-Abrahams 

hopping rates in the context of the hopping model. In addition, the concept of the transport  

energy  level  is  utilized  and analysed  to  interpret  the  results.  In  Chapter  5,  the  multiple-

trapping model is used as a framework in which both the electron diffusion length and lifetime 

are determined from RW calculations using a constant recombination rate. Finally, the origin 

of non-linear recombination mechanism in a DSC is further studied in Chapter 6 by checking 

the interplay between an exponential energy distribution of intra-band localized states in the 

nanostructured oxide and the Marcus-Gerischer model with regard to the energy distribution 

of acceptor states in the electrolyte.

The role of morphology of a photoactive electrode in the context of nanostructured 

solar cells applications is investigated in Chapter 7. Thus, a complete study of the dependence 

of  the  electron collecting  efficiency on an externally  induced order  in  one direction of  a 

disordered electrode is carried out. Results of efficiencies with respect to various degrees of 

illumination  and  recombination  rates  are  shown.  This  is  utilized  to  discuss  in  which 

circumstances working with an ordered electrode is beneficial and in which others it is not.

Finally, a disordered semiconductor heterojunction model is developed in Chapter 8. 

First of all, charge separation is studied in terms of the Surface Photovoltage (SPV) and its 

dependence on different band-offsets, energy distributions of traps in each semiconductor and 

initial  densities  in  the  absorber  are  analysed.  The  results  are  interpreted  in  terms  of 

experimental evidence collected in Extremely Thin Absorber Solar Cells (ETA). Secondly, a 

charge generation term is included in the calculations so that the steady-state behaviour of a 

disordered  semiconductor  heterojunction  can  be  studied.  This  is  then  applied  to  the 

functioning of a Bulk Heterojunction (BHJ) Organic Solar Cell under certain assumptions and 

both the open-circuit voltage and the recombination current are determined and analysed.
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CHAPTER 1

Photovoltaic Solar Cells

This Chapter provides an overview of photovoltaic solar energy. First of all, a brief 
summary  of  the  origin  and  historical  development  of  photovoltaic  devices  is 
presented. In this context, the three generations of solar cells are introduced and 
discussed. Afterwards, the basic functioning of a solar cell is detailed. The main 
aspects of a solar cell that determine the photovoltaic effect are discussed. Thus, 
the requirements for efficient processes of photon absorption, charge separation 
and charge collection are considered. The p-n junction is taken into account in this 
discussion  as  the  classic  charge-selective  contact  system.  However,  in  a  last 
section, we pay attention to other charge selective contact structures, based on the 
heterojunction of disordered semiconductors, which constitute the newest field of 
research on photovoltaics. 



Chapter 1     Photovoltaic solar cells

1. Photovoltaic Solar Cells

1.1. Solar energy

Nowadays,  there  is  a  recognized  challenge to  achieve  a  compromise  between  two 

different aspects of energy consumption.  First  of all,  it  is  expected that  the world energy 

demand  will double  by  the  year  20501 mainly  due  to  the  increase  in  global  population. 

Therefore,  a  long-term  energy  supply  is  essential  for  political  and  economic  stability. 

Secondly, global warming is a well-known environmental problem which countries need to 

address. Indeed, although in recent years more reserves of fossil energy have been found, and 

the exhaustion of energy reserves does not seem to be the main problem at the moment, the  

contamination of the atmosphere remains a major environmental problem.

An energy  revolution  involving  the  development  of  carbon-free  sources  would  be 

highly desirable2.  Among others, nuclear energy in the form of uranium isotope  U235 and 

others does not seem to be a long-term alternative, due to undesirable effects of pollution 

from radioactive nuclear waste by-products. Fortunately, there are other ways of energy supply 

from natural processes.  Renewable sources make use of an energy coming from naturally 

replenished  resources.  One  of  the  most  promising  options  is  the  conversion  of  sunlight 

directly into electric energy using photovoltaic devices. The idea of such a clean and direct 

process of energy conversion has motivated scientist to investigate in photovoltaic technology 

since the 19th century. However, solar cells are still unable to compete with fossil fuels or 

nuclear energy, mainly due to the high price of PV modules.

Photovoltaic devices are commonly separated in three generations, depending on the 

strategy followed to achieve competitive energy conversion. The first generation of solar cells 

is defined by the use of crystalline silicon as photovoltaic material. Currently, the photovoltaic 

technology marketplace is dominated by crystalline and polycrystalline silicon-based solar 

cells with achieved efficiencies of 25% and 20.4%  respectively3. However, in contrast, the 

need of a large amount of material (the slice of p-type silicon must be a few hundred microns 

thick) as well as the high temperatures required during the process of fabrication result in high 

costs for the fabrication of silicon modules. 

Other materials, concretely some II{VI and III{V compounds, like gallium arsenide 

(GaAs), have been used in photovoltaic devices as alternatives to crystalline silicon.  A second 

generation of solar cells comprises the so-called  thin-film solar cells. These solar cells are

7



Photovoltaic solar cells            Chapter 1

based on semiconductors with higher absorption coefficients as compared to crystalline Si, 

thereby allowing for a light absorption in a layer of 1 m in thickness or even less. Thin-filmμ  

solar cells have cost advantages as they can be fabricated with fewer processing steps as well 

as with a simpler manufacturing technology. Currently, amorphous silicon (a-Si), cadmium 

telluride  (CdTe),   copper  indium  selenide  (CIS)  and  copper  indium gallium (di)selenide 

(CIGS) are the main materials for second generation solar cells production.

It  is  only  recently  that  materials  are  developed  mainly  for  their  application  in 

photovoltaics.  In  this  sense,  new types of  photovoltaic  solar  cells  based on new concepts 

(different from the traditional p-n junction used in previous solar cells) and materials (mostly 

disordered  inorganic  and  organic  materials)  are  currently  under  intense  investigation  and 

constitute the Third Generation of solar cells. Dye-sensitized solar cells (DSC), organic solar 

cells or extremely thin absorber solar cells (ETA) are some examples of this new generation of 

solar devices. They are very promising as low-cost photovoltaic solar cells but still in a phase 

of investigation as the actual mechanisms of charge separation, transport or recombination are 

not  fully  understood  yet.  This  new  generation  solar  cells  are  made  of  disordered 

semiconductors, which brings about important consequences in these mechanisms. The main 

objective of this thesis is to study these consequences from the theoretical point of view, 

taking into account the effect of the disorder in their functioning.

1.2. Fundamentals of solar cells

Solar cells are devices that convert directly solar energy into electric energy. The basic 

physical  principle  underlying  the  photovoltaic  effect  is  the  absorption  of  photons  by  an 

appropriate material and the generation of electron-hole pairs. Besides, solar cells have some 

kind of  internal  mechanism to  locally  separate  the  photogenerated charge carriers  and to 

transport  them  independently  to  the  corresponding  contacts  before  they  disappear  by 

recombination.

Charge separation is a crucial process in every photovoltaic device. In standard devices 

(for example, in classical silicon-based solar cells) it is achieved by the use of an appropriate 

junction  between  two  electronically  different  materials,  generally  a  p-  and  an  n-type 

semiconductor. Under dark conditions both materials are in equilibrium and their chemical 

potentials are equal. When the p-n junction is illuminated electrons pass across the interface 

and move towards the n-side whereas and that of holes toward the p-side. As a consequence, a 

photocurrent  is  produced  due  to  the  excess  of  carriers.  At  open-circuit  conditions,  the

8
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separation of photogenerated charge carriers sets up a potential difference between the edges 

of the material which is known as the open-circuit voltage, Voc. At the same time, if the two 

contacts  are short-circuited the  flow of  photocarriers into the  circuit  constitutes  a  current 

density equal to the photocurrent (if the series resistance is zero) which is known as the short-

circuit current density Jsc.

When a load is present, a potential difference is developed between the terminals of 

the cell generating a current which opposes to the photocurrent, reducing the  short-circuit  

current value. This reverse current is called the dark current because it is in general equal to 

the current which flows across the solar cell under a forward bias in the dark4. In most of the 

cases, the behaviour of a solar cell in the dark resembles that of a rectifying diode and the  

current-voltage  characteristics  of  the  solar  cell  under  illumination  can  be  seen  as  the 

superposition of the dark current  and the photocurrent  (superposition principle).  The I{V 

characteristic of a solar cell can be described by Eq. (1.1) (diode equation)

 (1.1)

where kB is the Boltzmann constant, T is the absolute temperature, q is the elementary charge, 

J0 is called the saturation current, V is the voltage at the terminals of the cell and m is the so-

called ideality factor. Eq. (1.1) sets up in fact the same as the characteristic curve of a current

Fig. (1.1) I-V characteristics of a solar cell and equivalent circuit of an ideal solar cell. The 
sign convention for current and voltage in photovoltaics is such that the photocurrent is  
positive.

9
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generator in parallel with a diode (see Fig. (1.1). 

If the total current under illumination is zero (open-circuit condition), then solution of 

Eq. (1.1) gives

                            (1.2)

As  the  short-circuit  photocurrent  is  proportional  to  illumination,  the  open-circuit 

voltage  increases  logarithmically  with  light  intensity.  The  regime  in  which  a  solar  cell 

operates coincides with the range of bias from zero to  Voc. Likewise, the maximum electric 

power density (P=J·V) that a solar cell can generate occurs at an intermediate voltage Vm with 

a corresponding intermediate  current density Jm. This situation corresponds to the so-called 

maximum power point. Finally, the fill factor (FF) can be defined according to Eq. (1.3)

  (1.3)

This parameter is  useful for describing the square shape of the  I{V curve and the 

ideality of the solar cell. The higher FF is the more it corresponds to an ideal behaviour of the 

solar cell (m = 1).

The efficiency of the cell (´) is defined by the power density supplied at the maximum 

power point divided by the incident light power density (I). According to this definition, an 

expression containing the main photovoltaic parameters can be obtained

                                                                  (1.4)

From Eq. (1.4), it is immediate that in order to improve the efficiency of a solar cell it  

is necessary to maximize the three photovoltaic parameters (Jsc, Voc, FF). Following on from 

this, we move to a description of the most significant aspects of the performance of a solar  

cell and their implications for achieving high conversion efficiencies.

10
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Absorption of the incident light

To excite an electron by the absorption of a photon it is needed that the photon energy 

equals or exceeds the band gap energy of the semiconductor  Eg. The band gap energy thus 

defines  the  fundamental  absorption  edge  of  the  material.  In  general,  only  photons  with 

energies higher than  Eg lead to band-to-band transitions, with the subsequent production of 

excitons  and  free  charge  carriers.  However,  in  disordered  materials,  with  a  considerable 

density of intra-band localized states, other absorption processes are also possible, like band-

to-localized-states, that can also lead to free electrons and holes.

The absorption coefficient ®ab(¸), defined as the probability of absorption of a photon 

with  a  wavelength  ¸,  is  a  key parameter,  characteristic  of  each material.  The  absorption 

coefficient is strongly dependent on whether the transition process involves a change at the 

momentum of the electron-hole or not, that is, whether the material has a direct or non-direct 

band gap.  Thus,  “direct”  materials,  like GaAs,  show values of  ®ab up to  104 cm-1,  while 

“indirect”  materials,  like  Si,  show smaller  absorption  coefficients,  due  to  the  fact  that  a

Fig. (1.2) Absorption coefficient ®ab of the “direct” semiconductor gallium arsenide and the 
“indirect” semiconductor Silicon. Adapted from figure 3.17. of reference 2. 

11
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phonon  is  required  for  each  electron-hole  creation  event  to  satisfy  the  conservation  of 

momentum. The penetration depth or absorption length, Lab = 1/®ab, defined as the distance 

from the surface at which the illumination intensity is attenuated by a factor of  e, is also a 

property of the material and likewise dependent on the type of transition. Thus, while solar  

cells made of direct materials do not have a thickness larger than a few m, solar cells basedμ  

on indirect materials must typically have a thickness of more than 100 m. μ

In the absence of reflection, interferences or scattering processes, the light intensity 

I(¸ ,x) at a point x of the solar cell is given by the Lambert-Beer law.

 (1.5)

where  I0(¸) is the light intensity at  x = 0. However, the wave properties of light are also 

important as reflection can take place at the interfaces of the device as well as interference 

and  scattering  effects  within  the  cell.  In  addition,  processes  of  light  trapping inside  the 

material through a series of scattering processes can also occur, which reduces the optical 

thickness of the semiconductor5.

Absorber materials can be organic or inorganic semiconductors. In third generation 

solar cells, light absorption is also accomplished by  dye molecules or  quantum dots. In all 

cases, absorbers with transition energies appropriate to maximize the different photovoltaic 

parameters (like the open-circuit voltage, the photocurrent and the solar spectrum) have to be 

used.  In this  respect,  although the optimum energy is  situated around 1.5 eV4,  band gaps 

between 1 eV and 2 eV are commonly utilized in order to achieve relatively high efficiency.

Transport and charge separation

In  addition  to  good  absorption  properties,  materials  that  can  provide  high  charge 

carrier mobilities are necessary. This is one of the reasons for the use of semiconductors as  

photovoltaic materials. The absorption of photons is accomplished through the excitation of 

charges into states of higher energies. After that, this extra energy is lost by generation of 

phonons. In metals, due to the continuous band structure, the latter process is very fast and 

takes place on a time scale of 10-12 s. In semiconductors, however, thanks to the particular 

structure of two bands separated by a band gap, once electrons have reached the lower edge of 

the conduction band further energy dissipation requires the loss of Eg in a single step, which 

is  much less  probable  that  deexcitation  through  a  continuous distribution  of  states.  As  a

12
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consequence, electrons can remain in the conduction band much more time without suffering 

a recombination process2.

In a semiconductor, photogenerated charge carriers can move as a consequence of two 

driving forces: an electric field and/or a concentration gradient. Thus, the electron and hole 

current density, Jn and Jp, can be calculated as the sum of both components.

 (1.6)

where n  (p),  ¹n  (p) and  Dn  (p) are the photogenerated electron (hole) density, mobility and 

diffusion  coefficient  respectively  and  E is  the  electric  field.  The  total  current  density  is 

J = Jn + Jp.

It has already been mentioned that an essential aspect of the working principle of a 

photovoltaic device is the definition of an specific structure, generally asymmetric, in which 

illumination takes place in a situation where there is a preference for the electron to move in 

one direction while holes move in the opposite, thereby producing their separation. In this 

sense, although the classical structure is the  p-n junction, there are many more possibilities 

that lead to a photovoltaic functioning. In connection with transport mechanisms, there are 

two ways of achieving charge separation: by a built-in electric field that drifts the carriers in 

different directions or by a  built-in effective force field (for instance different electron and 

hole chemical potentials) that leads electrons and holes to diffuse in opposite directions.

 Recombination losses

Electron  and  hole  generation  is  a  process  that  can  be  reverted  by  means  of  a 

recombination process in which electrons and holes are annihilated. There are several types of 

recombination mechanisms in a solar cell. 

Radiative recombination is a mechanism in which an electron reacts with a hole and a 

photon is produced. It is the inverse process of direct absorption and cannot be avoided due to 

the  principle of detailed  balance6. This process increases its rate  Urad with the density of 

electrons and holes and has the following form7

13



Photovoltaic solar cells            Chapter 1

       (1.7)

where  B is a constant that depends on the semiconductor,  n and  p are the photogenerated 

electron  and  hole  densities  respectively  and  ni is  the  intrinsic  carrier  density.  In  a  pure 

semiconductor in thermal equilibrium the density of electrons in the conduction band, n0, is 

equal to the intrinsic density. Moreover, as electrons are originated from the valence band, the 

density of holes in the valence band p0 is also equal to ni.

Non-radiative recombination includes carrier-loss processes in which phonons and/or 

other electrons and holes are involved. Auger recombination is the process in which the energy 

released by recombination is absorbed by a free carrier. This energy is subsequently dissipated 

by generating phonons in collision with the lattice.  In the case in which the third carrier 

involved is an electron the rate has the form

            (1.8)

where C is a proportionality constant that depends on the temperature. Auger recombination 

becomes more important when carrier densities are high (low band gap materials or doped

Fig. (1.3). Illustration of the main types of recombination presented in a solar cell.
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materials), and it is another unavoidable process as it depends on the intrinsic properties of 

the material.

Non-radiative  recombination  via  defects  or  impurities  in  the  crystal  is  known  as 

Shockley-Read-Hall mechanism. It is a process in which charge carriers give up their energy 

in a process of trapping and this energy is released as phonons or photons or both. From this  

time, if the trap captures a carrier of the opposite sign before the first carrier is detrapped a 

recombination event is then produced. The following expression gives the rate corresponding 

to recombination via a single trap with energy Et.8

 (1.9)

where  and  are defined as the lifetimes for the electron and hole trapping by 

the single state, and nt and pt are the electron and hole densities when the electron and hole 

Fermi levels are equal to the trap level. Fig. (1.3) shows an illustration of the different types of 

recombination mechanisms here described.

Recombination is  often  studied experimentally  via  the  measurement  of  the  carrier 

lifetime,  a  characteristic  time  constant  that  reflects  the  kinetics  of  the  recombination  of 

minority carriers. This magnitude is defined by the time for the system to recover equilibrium 

under a small perturbation of the steady state. It is defined in its more general form by9,10.

(1.10)

where Urec is the recombination rate and n is the total electron density (or the carrier density, 

in a more general situation). Determination of the lifetime as well as the diffusion length, the 

average  distance  that  electrons  travel  between  recombination  events,  are  key  for  the 

characterization of a solar cell and the understanding of its recombination kinetics. As a part  

of this thesis,  both quantities have been determined by computational tools and related to 

microscopic parameters describing an specific recombination mechanism.

In connection with the electric model described in Fig. (1.1) there is also a source of 

voltage losses from series and parallel resistances that prevent the fill factor from being
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Fig. (1.4) Equivalent circuit of a real solar cell. Adapted from 4.

maximized4. On the one hand, series resistances, Rs, are commonly related to resistance of the 

contacts and interconnections. On the other hand, current leakages are often responsible for 

parallel  or shunt  resistances,  Rsh.  Both resistances must be considered in real solar cells, 

requiring the use of a modified electric model (equivalent circuit) as presented in Fig. (1.4).

 In a real solar cell absorption, transport and recombination determine the conversion 

efficiency. In accordance with the  Shockley-Queisser limit6,  which establishes a maximum 

theoretical  efficiency  of  a  single-junction  solar  cell  in  terms  of  the  principle  of  detailed 

balance,  the  maximum  efficiency  of  a  single-junction  solar  cell  operating  at  1  sun  is 

calculated  to  be  32.9  %.  Similarly,  the  same  solar  cell  operating  under  maximum 

concentration  can  theoretically  reach  an  efficiency  above  40%11.  The  aim  of  the  third 

generation of solar cells is to design devices that can reach conversion efficiencies beyond the 

Shockley–Queisser limit. The new strategy consists of defining alternative concepts for charge 

separation that do not need the  p-n junction of traditional photovoltaic structures. A brief 

description of three of these alternatives is presented in the coming section.
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1.3. New generation solar cells

1.3.1. Dye-sensitized solar cells

One of  the  most  promising  solar  cell  technologies  nowadays is  the  so-called  dye-

sensitized solar cell (DSC). This is based on the heterojunction between a nanostructured 

porous  wide  band  gap  semiconducting  oxide  (typically  TiO2)  and  a  hole  conducting 

electrolyte  solution  containing  a  redox  couple  (usually  I3
-/I-)  whereas  light  absorption  is 

achieved by dye molecules  adsorbed to  the  semiconductor12,13. The nanostructured  film is 

deposited  onto  a  transparent  conductive  oxide  (TCO)  electrode,  through  which  the  light 

incides14 and is permeated by the electrolyte solution. The cell is completed by another glass 

plate coated with a platinum catalyst15.

The reason to use a nanoporous film is the fact that it favours light harvesting as the 

roughness of the surface allows for a larger number of dye molecules to adsorb directly to the

Fig.  (1.5) Charge  transfer  processes  at  the  oxide/dye/electrolyte  interfaces  of  a  Dye-
sensitized solar cell. Adapted from figure 1.3. of reference 16.
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surface while being simultaneously in direct contact to the redox electrolyte17. Besides, high 

charge injection efficiencies close to one are normally measured, due to injection rates orders 

of magnitude faster than dye-electron recombination rates in those cases where a  favourable 

kinetic balance exists18. Another important feature of DSC is the long lifetimes and diffusion 

lengths that are obtained for separated species in these systems, which are of the order of 

microns, in spite of the proximity of positive and negative charge carriers.

Fig. (1.5) shows a scheme of charge transport and interfacial transfer processes in a 

typical DSC. Under light irradiation, excited electrons in the adsorbed dyes are injected into 

the  conduction  band of  TiO2 and  the  injected  electrons  diffuse  in  the  TiO2  to  TiO2/TCO 

interface,  where  electrons  are  extracted  to  the  external  circuit.  Resulting  dye cations  are 

reduced by I-. The I3
- ions formed during the regeneration step diffuse to the glass plate coated 

with the platinum catalyst and the passage of electrons through the external circuit  to the 

cathode completes the cycle19.

Due to the complex morphology and heterogeneous character, the system is in general 

more  complicated  than  other  solar  cells.  Thus,  despite  the  nature  of  transport  and 

recombination is not well-known yet, it is seems that the nanostructured nature of the n-type 

TiO2 is determinant to clear up the actual dependences of the main dynamic magnitudes. With 

respect to transport, electron trapping and detrapping from localized states within the band 

gap  is  expected  to  occur.  On  the  other  hand,  electrons  can  suffer  recombination  by two 

different ways, either by reaction with the dye cations or with electron acceptors in the hole 

conductor (electrolyte) and neither of them are expected to be linear with electron density20.

However, although the system is complex in general, some simplifications can be made 

for  dye-sensitized  systems20.  For  example,  at  least  in  the  case  of  liquid  junctions,  the 

electrolyte is concentrated enough and the ions mobile enough within the porous structure that 

electric fields are not expected to exist within the electrolyte over more than a few nm. The 

small size of the nanocrystals and the doping density of TiO2 add to the restriction that the 

porous film cannot sustain electric fields. This leads to the conclusion that transport should 

occur by diffusion only21–23 (second term in Eq. (1.6)).

Furthermore, due to the fact that the density and mobility of charged species in the 

electrolyte is high, transport of ionic species is presumed to be facile for common solvents and 

only electron transport needs to be considered to explain transient phenomena. The electron 

diffusion coefficient Dn depends on the nanoparticulate film preparation method and the size
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Fig. (1.6) Illustration of a energy distribution of intra-band gap localized states in a DSC.  
Adapted from reference 16.

of nanoparticles by means of percolation effects. In addition, it is known that there is a power-

law dependence of  Dn on  the  electron density.  This  behaviour  is  interpreted  in  terms  of 

charge-filling effects in the presence of an exponential energy distribution of localized states 

within the band gap of the TiO2 film15,24,25 (see Fig. (1.6)).

The open-circuit voltage is most likely related with the difference between the Fermi 

level of semiconductor electrode and the redox potential of the electrolyte. This is given by the 

Nernst equation26

 (1.11)

where  E0 is the standard reduction potential of the  redox couple and  ne is the number of 

transferred electrons. The maximum theoretical potential difference is limited by the energy 

level of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular 

orbital (LUMO) of the sensitizer dyes. At the same time, the Fermi level of TiO2 is related 

with the density of injected electrons and the density of charge traps in the band gap of TiO 2 

(in situations of nonequilibrium the Fermi level should be replaced by the “quasi-Fermi level”. 

However, for the sake of brevity, this distinction will be omitted in this thesis) 
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Assuming fill factors around 75%, the maximum conversion efficiency is expected to 

be around 14-15% at 1 sun for the standard solar spectrum. DSCs continue to attract attention 

as  potential  low-cost  alternatives  to  traditional  photovoltaic  devices27.  However,  far  from 

leading  to  important  improvements  in  the  efficiency,  this  interest  does  not  result  in  real 

progress. The latest in the series of solar cell efficiency tables collated by Green et al. lists the  

record validated AM 1.5 DSC efficiency as (11.4 ± 0.3) % for approximately 1 cm2 cell3. 

Recently, a new record of 12.3% has been reported using a modified porphyrin as dye and 

cobalt  complexes  as  redox couples28.  Nevertheless,  the  good behaviour  of  a  DSC at  low 

illumination levels and moderate temperatures, and the possibility of designing flexible and 

transparent devices, make this technology interesting for other applications in the photovoltaic 

market, for example, as building integrated photovoltaic (BIPV) systems. 

1.3.2. Organic solar cells

Organic solar cells (OSC) are based on the use of conjugated polymers,  including 

crystalline  or  polycrystalline  films  of  conjugated  molecules  or  amorphous  films  of  small 

molecules.  A key property  of  these  cells  is  that  they  can  be  processed  from solution  at 

ambient temperature by application of spin coating or conventional printing techniques. These 

materials also have high absorption coefficients (of the order of 105 cm-1) so  polymer films 

can be very thin (100 nm). In addition, as in DSC solar cells, they allow for the possibility of 

manufacturing flexible devices29–32.

Photon absorption is controlled by optical excitation of partly delocalised  ¼{bands. 

Under illumination electrons are excited from the ¼{ orbital to ¼*{band, which corresponds to 

the  optical  excitation from the  highest  occupied  molecular  orbital  (HOMO) to the  lowest 

unoccupied molecular orbital (LUMO). Most of organic semiconductors have a band gap of 

2 eV and therefore limitations in light harvesting. Due to the low dielectric constant of organic 

materials,  the  absorption  of  photons  leads  to  the  creation  of  bound electron-hole  pairs – 

excitons – which diffuse within the material in which they are created33. Thus, excitons only 

become free electrons and holes provided that some type of dissociation phenomenon takes 

place supplying an input of energy between 0.1 and 1 eV. Normally, this last is accomplished 

by the existence of a band offset between the two polymers. If both electron affinity and 

ionisation potential are greater in one material (the electron acceptor, generally fullerene) than 

in the other (the electron donor) then the interfacial electric field can drive charge separation. 

An illustration of the charge separation process can be seen in Fig. (1.7). 
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Fig. (1.7). Scheme of the energy band diagram of a donor-acceptor heterojunction. Adapted 

from figure 2 of reference 32.

Exciton  generation  occurs  generally  in  the  light  absorbing  donor.  The  separation 

process is then accomplished when the electron transfers to the LUMO of the acceptor while 

the hole remains on the donor. This photoinduced charge transfer takes place very rapidly 

within  less  than  100 femtoseconds  so  the  charge  separated  state  is  quite  stable34.  Recent 

reports  have pointed out  that  photon absorption may result  in a primary excitation where 

electrons and holes  are more delocalized than the  relaxed exciton.  Thus,  diffusion  of  the 

unrelaxed  electron-hole  pair  to  the  interface  can  occur  before  relaxation  (i.e.  exciton 

formation) is taking place. In this manner, the apparent contradiction between the mentioned 

ultrafast  charge  separation  process  and  the  limited  distance  than  an  exciton  can  actually 

diffuse in such short scale of time can be explained35.

Once the  charge carriers  have been separated,  they need to  be  conducted  to  their  

respective  electrodes.  This  is  achieved  by  the  fact  that  the  donor  material  sustains  hole 

transport  whereas  the  acceptor  material  serves  as  electron  conductor.  In  addition,  charge 

selective  contacts  are  placed  in  both  the  anode  and  the  cathode,  hence  favouring  the 

separation of charges and the creation of a measurable photovoltage in the external circuit36. 

Charge transport seems to occur by hopping between localized states, rather than through a 

band37,38. Indeed, impurities are believed to act as deep traps that mainly act as recombination
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sites within the film resulting in lower mobilities as well  as stronger dependences on the 

temperature39.  Another  transport  feature  relies  on  the  fact  that  each  phase  has  to  be 

continuously connected for the transport of the respective charge carrier to separate electrodes 

so  percolation  effects  have to  be  taken  into  account  in  order  to  avoid  recombination  on 

isolated traps.

The processes of carrier generation and charge transport are intimately related. As a 

consequence of the low mobilities, photoexcitation will only lead to dissociation if the exciton 

is formed very close to the interface between the acceptor and the donor polymers. Therefore, 

both  charge  carrier  generation  and  transport  are  highly  dependent  on  the  internal  phase 

structure of the blend. This is an important limitation because only a portion of absorbed 

photons can effectively contribute to the photocurrent  .  A crucial  development in  organic 

photovoltaics came with the introduction of a dispersed heterojunction, where the electron 

acceptor and donor materials are intimately blended together forming a  bulk heterojunction 

(BHJ) solar cell40–42. The idea is that if the domain size of each phase is on the nanometer  

scale then charge carrier generation will occur close to the interface, thereby leading to a more 

probable charge separation process. Note here the analogy with the DSC described above, 

where the structuring in the nanoscale also leads to good light harvesting and subsequent  

photogeneration of carriers.

The enhanced charge dissociation achieved within a BHJ involves the disadvantage of 

longer charge collection paths and of increased bimolecular recombination due to the higher 

interfacial area between the two phases. In fact, organic solar cell technology is still new and 

the field is clearly wide open. Theoretical studies are needed to enhance charge separation and 

transport processes36. Therefore, further investigation on a fundamental understanding of  the 

interfacial  mechanisms  involved  in  this  type  solar  cell  is  necessary.  Organic  bulk 

heterojunction achieve a AM 1.5 efficiency of (10.0 ± 0.3) % for approximately 1 cm2 in area 

as reported by Green et al.3, thus yet competing with DSCs. Furthermore, the "learning curve" 

has a much larger "slope" than that of the DSC, showing the great potential and rapid progress 

made by this technology.
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1.3.3. Extremely thin absorber solar cells

Extremely thin absorber (ETA) solar cells are a type of solid-state device based on the 

use  of  an  inorganic  semiconductor,  acting  as  the  absorber,  that  is  placed  between  two 

transparent nanostructured semiconductors. These solar cells are characterized by the high 

interpenetration between its components as well as the strong confinement of the thin layer 

between the  semiconducting  layers.  As  in  DSC and  BHJ solar  cells,  rough materials  are 

required as extremely thin absorbers to enhance the surface by a factor of 100 in the best 

cases,  thereby  permitting  the  possibility  of  reducing  the  thickness  in  the  same  order  of 

magnitude.

ETA solar  cells  and  dye  solar  cells  have  in  common  that  both  consist  of 

interpenetrating electron and hole conductors between which an absorber is sandwiched. The 

main difference here is the concept of a photovoltaic device composed entirely of inorganic 

materials, including the absorber. In this case, the fact of using extremely thin absorbers leads 

to  lower purity  requirements  because  carriers  are  likely to  be  generated  in  the  proximity

Fig. (1.8).  Schematic diagram of  ETA solar cell showing a superstrate arrangement on a 
conducting glass substrate. Adapted from figure 1 of reference 43.
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Fig. (1.9). Band alignment of a ETA solar cell. Adapted from figure 7 of reference 44.

of  the  interfaces  so  high  diffusion  lengths  are  not  needed  to  reach  the  n-  and  p-type 

semiconductors.  Thus,  inexpensive inorganic materials  can be used,  most  of them not yet 

widely investigated by photovoltaic scientists.  In any case,  materials have to be chosen in 

order to guarantee efficient charge separation.

An energy diagram of this type of solar cell is shown in Fig. (1.9). It can be seen that 

the band alignment of the three semiconductors is such that electrons tend to move only to the 

n-contact while hole transfer occurs only to the  p-type layer. Thus, hole transfer to  n-type 

semiconductor and electron transport into p-type layer are blocked due to the high band offset 

between bands in both cases. Cell assembling techniques have to be aimed at achieving that 

both  absorber  and  p-type  conductor  are  deposited  throughout  the  nanostructured  n-type 

semiconductor  layer.  Therefore,  a  method  allowing  for  the  controlled  infiltration  of  the 

reactants into the pores of the electron conductor film is required. In general, annealing at 

high temperature is necessary45. Spray ion layer gas reaction46,47, chemical bath deposition48 or 

spray pyrolysis49 are some of these methods.

There are  several  types  of  ETA solar  cells  currently being researched.  The use of 

CuSCN as p-type conductor is widely extended and gives the highest conversion efficiencies 

until now. Concerning the  n-type the two most utilized materials are nanoporous layers of 

TiO2 or wet chemically prepared ZnO nanorod arrays. For each n-type materials, the working
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principles of solar cells based on many different absorbers have been demonstrated. TiO2 has 

been used in combination with CuInS2, In(OH)xSy/InxPbyS, or In2S3 as the absorber reaching 

energy conversion  efficiencies  of  up  to  4%,  2.9% and 2.3% respectively50.  Similarly,  the 

ZnO/In2S3/CuSCN solar cell is currently one of the most investigated ZnO-based ETA solar 

cell51 and has achieved an efficiency of  4.2%52. In so-called two-component  ETA solar cells 

the absorber also serves as  p-type semiconductor. In this  case the  p-component is usually 

CdTe or CuInS2 while the n-type is often TiO2.

In  summary,  conversion  efficiencies  of  the  order  of  2-5% have been obtained for 

different concepts of inorganic nanostructured solar cells. Recently, the development of ETA 

hybrid  solar  cells  with  conducting  polymers  replacing  the  inorganic  hole  conductor  has 

resulted in improved efficiencies, demonstrating the potential of the original concept of ETA 

solar cells. Thus, conversion efficiencies of 5.1% and 6.2% have been obtained for P3HT53 

and PCPDTBT54 respectively. This research field is actually very new and there does not exist 

a well-established theoretical background yet. To encourage development of this solar cells, a 

better fundamental knowledge of the nanostructured interface that is responsible for the charge 

separation  process  is  required.  In  this  sense,  time-resolved  surface  photovoltage  (SPV) 

measurements  constitute  a  useful  experimental  method  to  study  charge  separation  in 

nanostructured  semiconductors55–57.  This  thesis  dedicates  Chapter  8  to  a  detailed  study of 

different kinds of heterojunctions, including simulations of SPV measurements.
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CHAPTER 2

Disordered Semiconductors

A  general  description  of  the  main  features  of  disordered  semiconductors  is 
presented  in  this  Chapter.  The  existence  of  a  quasi-continuous  distribution  of 
intra-band localized states in these materials is highlighted as the main difference 
with  respect  to  crystalline  semiconductors.  We  then  relate  their  particular 
characteristics with dynamics properties. On the one hand, dispersive transport is 
presented and discussed in detail. The two main charge transport models, hopping 
and multiple-trapping, are also described. Moreover, an study of the main aspects 
of the electron diffusion process in disordered semiconductors is presented. On 
the other hand, on account of recombination, a trap-assisted mechanism is pointed 
out as the main annihilation process. Specifically, we describe the most relevant 
aspects of  the  recombination process in a  DSC. Finally, the electron diffusion 
length  concept,  a  key  magnitude  to  determine  transport  and  recombination 
mechanisms in disordered semiconductors, is introduced. 
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2. Disordered Semiconductors

2.1. Properties of disordered semiconductors

For approximately 30 last years many efforts have been conducted to use disordered 

semiconductors  for  multiple  applications  such  as  thin  film  transistors,  electrophotografic 

printers  and  copiers,  photovoltaic  solar  cells  and  many  other  optoelectronic  devices. 

Disordered materials are defined by the  absence of long-range order in the arrangement of 

atoms and translation symmetry1, what results in a number of unique effects that makes it 

possible to fabricate low cost devices based on new concepts. Polycrystalline or amorphous 

systems, chalcogenide glasses, organic materials or nanostructured semiconductors are some 

examples of this definition.

However, characterization of disordered materials are often given in comparison with 

crystalline properties and this circumstance makes rather confusing to know for sure whether a 

certain material is disordered or not. In the one hand, real crystals does not have an infinite 

long-range order because of surface defects or doping effects. On the other hand, despite not 

having a translation symmetry, disordered semiconductors do have certain short-range order 

(nearest neighbours) as well as medium-range order of atomic arrangement. Hence, sometimes 

it  is  not  straightforward  to  characterize  an  specific  sample  as  a  crystalline  or  disordered 

material  because  the  length  of  ordering  corresponding  to  a  crystal  can  be  subject  to 

interpretation.

The electronic spectral structure determines all the classical properties of crystalline 

semiconductors.  It  is  well-known that  solid  state  classic  theory  establishes  that  there  is  a 

conduction and a valence band, separated by a band gap. In non-crystalline semiconductors, 

where there is no periodic lattice, disorder varies the energy spectrum of the system although 

it maintains the features of a band spectrum. Hence, regions of high density of states (the 

allowed bands of the crystal) still exist and are separated by regions with much lower density 

of states (the energy gaps of the crystalline semiconductor).  The former states are usually 

called extended states because, due to the high density, electrons are allowed to move through 

them under the influence of concentration gradient or electrical field.

A crucial aspect of disordered semiconductors electronic spectrum is the existence of a 

great number of localized states, that is, as defined by P. Anderson2, a state where an electron

30



Chapter 2            Disordered semiconductors

Fig. (2.1). Exponential decay of wave function in localization states. Adapted from figure 
2.2 of reference 3.

with energy E + ¢E, located in volume large enough to satisfy the uncertainty principle, does 

not diffuse from this volume. These states are produced from extended states in the presence 

of a high number of defects or bounds. Localization involves that the wave function decays 

exponentially from some point vector  

  (2.1)

where  ®l is  the  localization  radius.  For  a  sufficiently  strong disorder,  even all  states  can 

happen  to  be  localized  (as  for  instance  in  a  condensed  phase  of  small  molecules). 

Nevertheless, in most of disordered semiconductors, localized and extended states coexist in 

the system at different energies. Hence, it is defined an specific energy Ec called the mobility  

edge that separates electron extended states from those localized. Likewise, a mobility edge for 

holes  Ev can  be  introduced.  The  region between  Ec and  Ev,  where  all  of  the  states  are 

localized,  is  called  the  mobility  gap in  analogy  with  the  band  gap  of  a  crystalline 

semiconductor. The major difference with respect to crystalline materials, where intra-band 

gap localized states can also be found, is that whereas in crystals they exist as discrete energy 

levels, in disordered media they occur as a quasi-continuous energy density of localized states 

(DOLS).
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Fig. (2.2). Schematic representation of the energy spectrum of a disordered semiconductor.

The particular form of the DOLS is not well  known for most disordered materials. 

However, the experimental evidence leads to believe that in most inorganic non-crystalline 

materials, such as amorphous, polycrystalline or nanostructured semiconductors the localized 

states for electrons are distributed according to an exponential DOLS3

  (2.2)

where Nl is the total concentration of localized states in the band tail and kBT0 determines the 

mean energy of the distribution, which is believed to vary approximately between 0.025 and 

0.1 eV, corresponding to characteristic temperatures, T0, between 300 and 1100 K.

Analogously, there is  wide agreement in considering that  for organic materials  the 

density of localized states follows a Gaussian distribution of site energies in accordance with 

the Gaussian dipole model5,6

  (2.3)
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Fig. (2.3). Time dependence of photocurrent density I(t) (left panel) and time evolution of 
the distribution of carriers (right panel) for the case of normal dispersive transport. Adapted 
from reference 4.

where E1 is the centre of the distribution and ¾1 is the width.

The existence of an exponential distribution of localized states in the mobility gap of 

disordered inorganic materials  is supported by the  experimental  observation of anomalous 

dispersive characteristics as obtained from transient photodecay techniques, such as  time-of-

flight experiments3. This technique allows to study the time dependence of the photocurrent 

density  I(t) following carrier excitation by means of a short pulse of illumination and then 

extract the dispersion of transit times for charge carriers. Conventional dispersion of the form 

of the left panel of Fig (2.3) is related to carriers that move exclusively in extended states. This 

dispersive characteristics, associated with random variations in the transit time of individual 

charge  carriers,  result  from  a  Gaussian  profile  of  a  discrete  packet  of  carriers  that 

progressively becomes broader (Fig  (2.3) right panel). Hence, this transport regime is often 

called Gaussian transport.

The behaviour exhibited in non-crystalline solids differs considerably. In this case, as it 

can be seen in the left panel of Fig. (2.4), the photocurrent appears to decrease continuously 

with increasing time over the whole time range of the measurement. In addition, the spread of 

arrival times of individual carriers at the electrode, reflected in the behaviour at times greater  

than ttr is much greater than expected from conventional theory. Even at times greater than ttr 
the magnitude of the current  is such that  it  suggests that  a significant  number of carriers
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Fig.  (2.4).  Time  dependence  of  photocurrent  density  I(t) (left  panel)  on  a  double-
logarithmic scale and time evolution of the distribution of carriers (right panel) for the case  
of anomalous dispersive transport. Adapted from reference 4.

remain within the system. Representation of the curve on a double-logarithmic scale (Fig. 

(2.4), left panel) involves two approximately linear regimes where it is possible to determine a 

time related to the change in the slopes (ttr). Thus, one can describe both regimes of I(t) in 

the form

  (2.4)

where ®1 and ®2 are smaller that unity and often identical.

In  the  right  panel  of  Fig.  (2.4)  it  is  shown  that  the  broadening  is  much  more 

pronounced, and a significant number of carriers remain localized close to the top electrode 

even when  other  members  of  the  distribution  have  approached  or  reached  the  extraction 

electrode. The observed dispersion of transit times was first explained by Scher and Montroll7. 

They suggested that the continuous random walk of a charge carrier could arise in a regime in 

which carriers would move only between localized states and, thus, would undergo successive
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trapping  events  during  their  random  walk.  Afterwards,  Pollak8 showed  that  the  broad 

dispersion of transient times could only be explained if  there was in turn a broad energy 

dispersion of traps.

2.2. Charge transport in disordered semiconductors

In accordance with the energy bands model described in the previous section charge 

carrier transport in non-crystalline semiconductors can be possible either via extended states, 

via localized states states or a combination of both. The motion of charge carriers through one 

or  other  type  of  states  depends  on  the  temperature  of  the  system.  On  the  one  hand,  at  

sufficiently high temperatures (as compared with the characteristic temperature of the DOLS, 

T0), a large number of electrons are found in extended states and hence, they dominate charge 

transport. In this case charge transport is similar to that of crystalline semiconductors. On the  

other hand, at lower temperatures, the concentration of electrons in extended states decreases 

exponentially so its contribution to transport decreases. Instead of this, tunnelling transitions 

of electrons between localized states with the assistance of phonons become significative. This 

regime is called hopping transport and it is known to occur in many applications of interest at 

working conditions.

2.2.1. Hopping transport

Charge conduction via tunnelling transitions between traps is produced at a range of 

temperatures where carriers are excited to intra-band gap localized states.  At this  point,  a 

charge carrier jump from a localized state i to a lower in energy localized state j depends on 

the spatial separation rij between sites i and j as

                                          (2.5)

where we assume the localization radius, ®l, to be equal for sites i and j. The prefactor º0 is 

usually called the attempt-to-jump frequency.  It  is simply assumed to be of the order of  the 

phonon  frequency  ~1013 s-1, although  larger  values  of  º0 are  often  necessary  to  adjust 

experimental data. Hence, this factor is frequently considered as a fitting parameter.
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According to the hopping model when an electron performs a transition upward in 

energy from a localized state i to  a  localized state j higher  in  energy, the  transition rate 

depends on the energy difference between the states. This difference has to be compensated, 

for example, by absorption of a phonon with the adequate energy.

                                           (2.6)

Both formulas (2.5) and (2.6) can be condensed in one:

                         (2.7)

This is the well-known Miller-Abraham formula9 and was written for the case in which 

electron occupies site i whereas site j is empty. If the system is in thermal equilibrium, the 

occupation probabilities of sites with different energies are determined by the Fermi-Dirac 

statistics3. With the help of Eq. (2.7) the problem of the theoretical description of hopping 

conduction can be easily formulated and applied to a considerable amount of materials and 

devices,  like  new  generation  solar  cells.  The  key  issue  is  commonly  to  calculate  the 

conductivity or the diffusion coefficient produced by transition events described by Eq. (2.7) 

for a given distribution of localized states.

Two  limiting  cases  can  be  distinguished  in  hopping  systems:  nearest-neighbour 

hopping and variable-range hopping. 

1. Nearest-neighbour  hopping is  produced when  the  states  are  strongly localized  and the 

inequality    is fulfilled. In such case, hopping can be produced between nearest-

neighbours provided that the temperature of the system is high enough. This type of transport 

takes  place  in  many  real  systems.  When  nearest  neighbour  hopping  is  the  dominant 

mechanism, transport is mainly determined by the spatial terms in Eq. (2.7). Therefore charge 

transport is extremely influenced by the average number of neighbouring sites and percolation 

effects has to be taken into account in order to determine transport properties.

2. Variable-range hopping is produced at low temperatures with respect to the characteristic 

temperature of the DOLS. In such case, nearest-neighbour hopping decreases and jumps
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Fig.  (2.5).  Types of  hopping transport  between localized states.  Transitions (1)  and (2) 
correspond to nearest-neighbour hopping and variable-range hopping regimes respectively. 
Adapted from Figure (2.4) of reference 3.

between two sites with smaller energy differences become more probable. The most efficient 

transitions for transport in this regime are given between states with energies in the vicinity of  

the Fermi level, since only in this energy range filled and available states with close energies 

are found. The conductivity temperature dependence for this limiting case, given by Mott10, is 

characterized by a  behaviour.

The transport energy concept

We will  focus now on the exponential  DOLS (Eq. (2.2)).  In this  case the concept  of  the 

transport energy is commonly useful. This is defined as a particular energy level below the 

mobility edge that maximizes the probability of upward transitions independently of its initial 

energy.  Under  some  assumptions,  it  is  useful  to  discriminate  those  localized  states  that 

effectively contribute to the transport from those that not.

The important role of the transport energy in an exponential DOLS was first pointed 

out  by Grünewald  and Thomas11.  They came to the  conclusion  that  the  vicinity  of  some 

particular energy level dominates the hopping transport of electrons in the DOLS. In parallel, 

Monroe12 showed that an electron, starting a relaxation process from the mobility edge, after
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Fig. (2.6). Illustration of hopping conduction in the framework of an exponential DOLS. A 
hopping process via the transport energy (shown in blue) is produced.

making a series of hops downward in energy, changed its behaviour at some particular energy 

Etr,  which he called the  transport  energy and that  was finally recognized to be the same 

energy  level  than  that  discovered  by  Grünewald  and  Thomas  for  equilibrium  hopping 

transport.

The classic way of computing the transport energy can be obtained by considering the 

expression for upward hops in the presence of an exponential  DOLS and then finding  the 

energy difference  ± which provides  the  fastest  typical  hopping rate  for an electron placed 

initially at energy Ei. According to Eq. (2.6) the typical rate of an upward hop of a carrier with 

energy Ei can be expressed as

  (2.8)

where ± = Ej { Ei and r(E) is the average distance of traps for energies below E:
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  (2.9)

So, the energy difference ± that provides the fastest typical hopping rate for an electron placed 

initially at energy Ei can be determined by the condition . Using Eqs. (2.2) and 

(2.8) the maximum hopping rate is obtained as follows13.

                                                         (2.10) 

We see from Eq. (2.10) that the fastest hop occurs to a state with energy in the vicinity 

of the transport energy, independently of the initial Ei. The first term in the right-hand side of 

Eq. (2.10) determines the classical value of the transport energy Etr

                                                               (2.11)

An alternative derivation of the transport energy is due to Arkhipov and coworkers.14,15 

This  procedure,  which  has  been  put  into  question  by Baranoskii,  is  based  on  computing 

averages of the hopping frequencies expressed in Eq. (2.6) times the density of localized states 

over  the  whole  energy spectrum.  For  energies  well  below the  band tail,  the  averaging of 

Arkhipov proves to be independent of the starting site, and this leads to the definition of a 

transport energy that determines the behaviour of the mobility.

The concept of effective transport energy, in the definition of Arkhipov's theories, will 

be  specially  relevant  in  this  thesis.  The  necessity  of  introducing  this  concept  is  easily 

understood if we consider that after an energetically upward jump into a hopping site, which 

belongs to the transport level, a carrier will make several downward jumps to different states 

from the starting one. However, as the target site is still a localized state it has only a few 

hopping neighbours accessible for the next jump. Therefore, the starting site can inevitably be 

one of those states, and it is quite possible that, after an upward jump, a carrier could return to 

the  initially  occupied  deeper  site  contributing  to  neither  transport  nor  energy  relaxation. 

Therefore, Arkhipov and coworkers14,15 argued that one must distinguish between the energy 

level onto which occur the most probable jumps from deeper traps (Baranovskii's thesis) and
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the  effective  transport level, which is the one that will most probably draw the carrier away 

from the initially occupied state, avoiding backward jumps. We will show in Chapter 4 that 

this effective transport energy is the one that governs the behaviour of the mobility and the  

diffusion coefficient

2.2.2 Multiple-trapping model

When it is assumed that tunnelling transitions of carriers between localized states are 

less probable than transitions between localized and extended states then the carrier transport  

and energy relaxation can be easily described in the framework of the so-called  multiple-

trapping model.  In this model, it  is assumed that localized states do not contribute to the 

transport and carriers can move only via extended states above Ec. The role of localized states 

is then to slow down charge carriers by a succession of trapping-detrapping events.

One can express the release rate of an electron placed in a localized state with energy 

E as

Fig.  (2.7).  Multiple-trapping  mechanism  of  transport.  Charges  move  through  extended 
states but conduction is slowed down by successive trapping/detrapping events.
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           (2.12)

This  model  is  widely  used  for  interpretation  of  many  transport  properties  in  disordered 

semiconductors. In the context of the study of nanostructured materials used in novel devices, 

the question of whether multiple trapping approach can be applied is still  opened16,17. One 

reason is that the particular morphology of this type of materials may prevent for the existence 

of extended states and therefore favour carrier jumps via localized states, according to hopping 

model. Anyway, it appears as a good approach in the sense that can explain, without the need 

of a more complex model, the characteristic dispersive charge transport that many disordered 

semiconductors exhibit and that appear in nanostructured solar cells, as we discussed above.

2.2.3. Electron diffusion coefficient in disordered media

In  this  section  we describe  the  properties  of  the  electron  diffusion  coefficient  for 

activated transport in disordered materials. Experimental observations have demonstrated that 

values  of  the  chemical  diffusion  coefficient  in  non-crystalline  and  nanocrystalline 

semiconductors lie several orders of magnitude below bulk (single crystal) values18,19. On the 

other hand, it is found that diffusion is strongly dependent on the electron density, with larger 

values  found  when  the  electron  concentration  is  increased,  either  by  illumination  or  by 

application of an external  voltage20–23. This non-linear behaviour is caused by the fact that 

Fermi level moves in the band-gap as carriers density is increased so the cost of releasing a 

carrier to the transport level (either extended states or transport energy level) is significantly 

modified according to the occupation of the localized levels. This is the so-called trap-filling  

effect: as more electrons are added to the system, deep traps become filled and force electrons 

to move through shallower traps thereby enhancing charge transport.

In  crystalline  semiconductors,  where  electron  transport  only  takes  place  in  the 

conduction band, experimental information on the bulk diffusion is often derived by Fick's 

law, that relates the current density Jc to the gradient of the electron concentration.

 (2.13)

where  nc is  the conduction band electron density and Dc is  the conduction band electron
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Fig. (2.8). Electron diffusion coefficient with respect localized electron density. Adapted 
from Fig. 6 of reference 25.

diffusion coefficient in the bulk (note that if there is drift component, this should be added to 

compute  the  total  current  density,  as  explained  in  Chapter  1,  Eq.  (1.6)).  In  contrast,  in 

disordered  semiconductors,  where  either  hopping  or  multiple-trapping  transport  dominate 

diffusion, Eq. (2.13) is not valid, what makes more difficult to determine transport properties. 

Nevertheless, an analytical expression for the chemical diffusion coefficient of electrons in the 

presence of a distribution of localized states can be derived on the framework of the multiple-

trapping model. Firstly, we state the equations of conservation for electron density in both 

extended and localized states assuming that are unmobile in localized states.

(2.14)

where rc and rr are the rates of capture and release of traps respectively. 

If  we  assume  that  free  and  trapped  electrons  maintain  always  a  thermal  quasi-
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equilibrium even though the system is externally perturbed by, for example, a change in the 

illumination intensity, it is then possible to apply a model due to Bisquert and Vikhrenko24. In 

this formulation, the diffusion coefficient can be expressed as a function of the Fermi level, 

EF. The model state a  quasi-static condition by which free and trapped electrons maintain 

always an internal equilibrium. They have a  common value of the Fermi level as long as a 

these particular evolution of the system is fulfilled

(2.15)

where   is a time-independent factor usually called  trapping factor  (±l). With these 

considerations, a complex problem of diffusion in the presence of trapping effects  can be 

reduced to an effective Fick's law diffusion of electrons in the conduction band. Indeed, if we 

take into account Eqs. (2.14) and (2.15) we obtain the following expression

  (2.16)

So, we can reformulate Eq. (2.13) using an effective current density Jn

                                                                               (2.17)

where the chemical diffusion coefficient Dn is defined as24,26

(2.18) 

If the approximation  is fulfilled (what is accomplished in most of the 

cases in which there exist trapping effects in the dynamics) we obtain

(2.19)

In a recent work27 this equation has been used to construct a continuity equation for 

electrons in a DSC. 

43



Disordered semiconductors            Chapter 2

In this  thesis  it  is  important  to  make a  distinction  between the chemical  diffusion 

coefficient, Dn, and the jump diffusion coefficient Dj. The former has already been defined as 

the diffusion of carriers as response to a change of the chemical potential in the disordered 

network. It  is a  collective quantity that depends on the overall carrier density (in fact it is 

commonly called the collective diffusion coefficient in Physical Chemistry textbooks). On the 

other  hand,  Dj is  an  individual  property  of  the  carrier,  although it  might  be  affected by 

interactions  with  other  carriers.  It  is  analogous  to  the  self-diffusion  coefficient  normally 

utilized in Physical Chemistry. The jump diffusion coefficient is determined by the random 

walk of charge carriers by calculating the mean-squared displacement

         (2.20)

where x, y and z represent the absolute coordinates of the carriers and N is the total number 

of carriers. The relationship between these magnitudes is linear in normal diffusion processes. 

In these cases, the  mean-squared displacement behaves as a linear function of time and the 

jump diffusion coefficient can be expressed as follows

                                                               (2.21)

In some cases,  nevertheless,  there is  at  first  a given time during which the mean-squared 

displacement  is  not  a  linear  function  of  time. When  this  occurs,  the  process  is  called 

anomalous diffusion28 and Eq. (2.21) should be modified by introducing a power exponent 

which is usually smaller than unity.

The jump diffusion coefficient  is  the magnitude that  actually can be computed by 

simulation and therefore it  is  essential  for the  results  presented  in  this  work.  Dj is  often 

expressed also as29–31

                                                                       (2.22)

in terms of a mean effective jump frequency , and the square of effective jump length 

.  This  equation  also  takes  a  numerical  prefactor  of  order  1 depending  on  the 

dimensionality. The relationship between chemical and jump diffusion coefficients is given by
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the following expression30,32

                                                                               (2.23)

where Ân is called the thermodynamic factor and it is found to be equal to26

           (2.24)

Actually, the definition of Ân is often given in terms of the chemical potential, ¹, so Eq. (2.24) 

is only valid if we assume that the conduction band position is not modified by a displacement 

of the Fermi level and therefore  . Note that in Eq. (2.24),  n is the total electron 

density (nc + nl) and can be determined by integration

            (2.25)

where f(E { EF) is the occupation probability and is given by the Fermi-Dirac distribution

           (2.26)

Diffusion coefficient in exponential DOLS

In the following an analytical expression for the chemical diffusion coefficient will be 

derived considering a system with an exponential DOLS given by Eq. (2.2). We will proceed 

by calculating the trapping factor  in Eq. (2.19). First of all, from Eqs. (2.25) and 

(2.26)  we can compute  the  total  electron  density  with  respect  to  the  Fermi  level  for this 

particular distribution
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where we have used the zero-temperature limit of the Fermi-Dirac distribution. This equation 

shows that the total density is an exponentially increasing function of the Fermi level. Now, we 

can state that in the context of the multiple-trapping model,  nl >> nc, and therefore n  ≃ nl. 

Hence we can use an expression for the density of localized states as a function of the Fermi 

level

(2.27)

where we have used ® = T/T0 for the second equality. On the other hand we can assume that 

the  density  of  free  electrons  can  be  well  described by Boltzmann statistics  provided that 

 (Fermi level well below the transport level)

           (2.28)

where Nc is the effective density of states of electrons in the conduction band.

We are interested in determining the trapping factor as a function of both the Fermi level and 

the density. For the latter, we continue by calculating the localized electron density derivative 

from Eq. (2.27).

           (2.29)

We obtain  the  DOLS  at  the  Fermi  level  (see  Eq.  (2.2)).  Similarly,  from Eq.  (2.28),  the 

conduction band electron density derivative with respect to the Fermi level takes the form

           (2.30)

And then, from Eqs. (2.29) and (2.30)
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            (2.31)

The inverse of last equation can be derived directly if we take into account the two expressions 

for the free and localized electron density. Thus, from Eqs. (2.27) and (2.28)

(2.32)

and then, one obtains by differentiatting Eq. (2.32)

(2.33)

With  these  considerations,  alternative  analytical  expressions  for  the  chemical  diffusion 

coefficient  Dn,  as  a  function  of  the  Fermi  level  and  the  electron  density  can  be  finally 

obtained.  On the  one hand,  taking  into  account  Eqs.  (2.19)  and (2.31),  we obtain  a  first 

expression in terms of the Fermi level, which takes the form33

                                  (2.34)

On the other hand,  considering again that  ,  the following expression for  Dn can be 

inferred from Eqs. (2.19) and (2.33)

                      (2.35)

This is an important relation,  as the total density is an experimentally accessible quantity. 

Anyway, from this equation, one can also obtain an expression for  Dn as a function of the 

density of electrons in the extended states nc. We just must take into account Eqs. (2.32) and 

(2.35) and use again that 

           (2.36)
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Now, It is convenient to obtain an analytical expression for the jump diffusion coefficient Dj, 

as it is the quantity that we will be determined numerically by simulation. For that purpose, we 

have to determine first the form of the thermodynamic factor for an exponential distribution. 

Thus, considering again that , we can conclude from Eqs. (2.24) and (2.29) that Ân is 

constant for an exponential DOLS and takes the form

(2.37)

Hence, according to Eqs (2.23), the jump diffusion coefficient Dj as a function of the Fermi 

is21

                      (2.38)

The concepts introduced for the multiple trapping model can be easily extended to any 

approach, like hopping transport. As we discussed before, the theory of diffusion often allows 

to separate the kinetic or jump diffusion coefficient in two factors, according to Eq.  (2.22). 

With the help of the transport energy concept, Eq. (2.22) provides a useful approach to obtain 

analytical expressions for hopping transport as a function of Fermi level. Thus, introducing the 

classical value for the transport energy and taking into account Eqs (2.2) and (2.22) the jump 

diffusion coefficient as a function of the Fermi level can be calculated using32,34

        (2.39)

We see that this theoretical expression predicts an exponential behaviour with respect 

to  the Fermi energy, in  analogy with the multiple-trapping result  as long as the transport 

energy can be considered constant. In the context of a DSC, the Fermi level dependence of the 

diffusion  coefficient  predicted  by both  Eq.  (2.38)  and  (2.39)  is  observed  experimentally. 

Therefore, further investigation is needed to establish which is the actual transport mechanism 

involved in these devices. In Chapter 4 this issue will be analysed in detail.
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2.3. Recombination in disordered semiconductors

Recombination  via  intra-band  localized  states  is  the  most  common  charge  loss 

mechanism in disordered semiconductors. We presented in Chapter 1 the rate corresponding to 

SRH recombination in the presence of a single localized state (see Eq. (1.9)). The description 

of a recombination model when a quasi-continuous distribution of traps is involved is however 

a more complex problem. In this regard, it is useful to make a distinction between different 

traps according to whether a trap can adopt or not the role of a recombination centre. Thus, a 

trap will be act as a recombination centre when the rate for the capture of a carrier with the  

opposite polarity is comparable or larger than the release rate by thermal activation (multiple-

trapping or hopping model). The so-called  demarcation levels, defined by those energies at 

which  both  rates  are  equal,  have  been  widely  used  for  modelling  of  recombination 

mechanisms  in  disordered  semiconductors4,35. Since  release  rates  decrease  as  traps  move 

further away from the mobility edges, electrons and holes situated between their respective 

demarcation levels, Ed,n and Ed,p, would have a higher probability of recombination than that 

of release from their traps. As a consequence, there is a gap, between Ed,n and Ed,p, where 

traps effectively act as recombination centres and recombination takes place with a larger rate.

These concepts, defined in general for trap-assisted recombination, actually depend on 

the properties of the particular system considered. Therefore, specific recombination models 

have to be formulated. A widely used recombination model for disordered semiconductors is a 

distance-dependent  radiative recombination  mechanism via  localized  states.  This  model  is 

connected with the previous description and assumes that the creation of an electron-hole pair 

is  immediately  followed  by a  trapping  of  both  charges  by  localized  states  placed  in  the 

mobility gap. Hence, if both charges are located between demarcation levels they can undergo 

recombination from these states with a transition rate given by the following expression3

(2.40)

where the prefactor is of the order of the typical dipole radiative rate ∼ 108
 s{1 and Rnp is the 

electron-hole pair separation. Note the analogy of Eq. (2.40) with the hopping model of Eq. 

(2.5).

Another classification of localized states can be made in terms of their different type of
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involvement in transport and recombination events. In the one hand, we can define  shallow 

states as those traps characterized by very small ionization energies (in the order of phonon 

energies). On the other hand, we call deep states those having much higher ionization energies 

where capture of carriers usually involve multiphonon transitions. At room temperatures, from 

a statistic point of view, whereas electrons and holes trapped in shallow traps are reemitted 

with high probabilities into delocalized states, charges located in deep traps are not released 

easily so spend much more time immobile. Moreover, shallow states are often empty traps 

located close to the mobility edges while deep traps are located below the Fermi levels (above 

in the case of holes). As we will see in Chapter 6, both types of traps can act as recombination  

centres in some disordered heterogeneous systems.

2.3.1. Recombination in dye-sensitized solar cells

It is widely reported in a DSC that  ¿n decreases as illumination intensity or forward 

bias is increased36. This behaviour has been related to a progressive filling of traps in the 

nanostructured semiconductor as the light intensity is augmented. In this sense, an expression 

for the effective electron lifetime was proposed in relation with the free electron lifetime ¿c, 

that is, the lifetime in the absence of traps37.

           (2.41)

Eq. (2.41) is derived within a model that assumes the rate of recombination depends 

linearly on the free electron density37. In addition, it is assumed that capture and release rates 

are much faster than response times in typical experiments24 (quasi-static approximation). In 

the case in which , Eq. (2.41) adopts the form

           (2.42)

Thus, as the trapping factor   is positive and larger than unity, we can 

observe that the resulting electron lifetime ¿n becomes larger that  ¿c, what is intuitive in the 

sense  that  trapping  effects  reduce  the  probability  of  recombination  in  extended  states.
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Fig. (2.9). Electron lifetime as a function of localized electron density. Adapted from Fig. 6 
of reference 25

Assuming now that the DOLS in the TiO2 has an exponential function as described in Eq. 

(2.2) the following expression can easily be derived from Eq (2.33)24.

           (2.43)

Hence, one obtains a power law with respect to the free electron density. As for the electron 

diffusion  coefficient,  the  electron  lifetime can  be  expressed  in  terms  of  the  total  density. 

Indeed, taking into account Eq. (2.32) (and bearing in mind again that  ) the following 

relation is easily derived.

           (2.44)

Again,  a  power  law  with  respect  the  total  density  is  derived,  as  normally  found  in  the  

experiments37.
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An equivalent circuit corresponding to the main processes of a DSC is often utilized38. 

In this context, the concept of recombination resistance Rrec is usually introduced

           (2.45)

where Urec is the recombination rate, L is the thickness of the film and A is the cell surface 

area. If we assume that recombination rate is linear with respect to the free electron density, 

that is, , then the recombination resistance adopts the following form

           (2.46)

 

where  Eredox is  the  redox potential  of  the  acceptor  species  in  solution  and R0 is  the 

recombination resistance of a DSC in  absence of illumination (EF = Eredox).  Note that to 

derive Eq. (2.46) we have used the following relation between the free electron concentration 

and the photovoltage, 

(2.47)

being n0 the electron density in the dark (see Eq. (2.28).

Eq.  (2.46)  describes  the  same effect  than  that  of  the  electron lifetime,  this  is,  the 

recombination  resistance  decreases  as  electron  density  increases,  what  augments  the 

recombination rate. However, although the same dependences are observed in measurements 

of a DSC, recombination resistance curves with respect to the voltage usually show slopes 

different from the thermal voltage kBT/q:

           (2.48)

where ¯  is a dimensionless parameter. Values of ¯ obtained from impedance measurements in 

a typical DSC are in the order of 0.5{0.739,40,  meaning that  the  recombination rate is  not 

simply proportional to the conduction band electron density but expressed as
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           (2.49)

where  kr is a kinetic constant with units of  cm{3(1{¯)
 s{1. This non-linear behaviour of the 

recombination rate with respect to the conduction band electron density has been related to the 

fact that, as well as recombination through extended states, other channels of recombination 

are  present  in  parallel  in  a  DSC,  for  example  direct  charge  transfer  of  electrons  from a 

distribution  of  localized states  close  to  the  interface.  Specifically, it  has  been proposed a 

charge transfer mechanism39,41 from an exponential distribution of surface states in the oxide 

gs(E), given by Eq. (2.2). The model also assumes that the probability of electron transfer at 

the energy level  E in the oxide to the distribution of acceptor species in the electrolyte is 

governed by the Marcus-Gerischer model42 and takes the form43

 (2.50)

where k0 is a time constant for tunnelling, which is dependent on the distance of the acceptor 

to the surface and c the concentration of oxidized species in the electrolyte. The parameter ¸ 

represents the outer sphere reorganization energy, that is the activation energy for the process 

of transferring the solvation shell structure from equilibrium condition of the oxidized species 

to the most probable structure of the reduced species (or viceversa). This parameter is equal 

for both reduced and oxidized species so that

           (2.51)

where Eox and Ered are the most probable energies for the unoccupied and occupied states in 

solution, respectively (see Fig. (2.10)). An expression for the outer sphere reorganization of a 

redox-active ion at a semiconducting electrode can be calculated by the expression44,45

           (2.52)

where ²0 is the vacuum permittivity, r is the radius of molecules, R the distance between the 

electrolyte and the electrode, ns and ²s are the refractive index and the static dielectric constant 

of the solvent, respectively and nel and ²el the dielectric constants of the electrode material (nel 
= 2.5 and ²el = 86 for anatase TiO2).
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Fig. (2.10). Diagram illustrating the exponential distribution of donor states in the oxide and 
the Marcus-Gerischer transfer probability to the electrolyte.

Thus,  in  terms  of  this  new  charge  transfer  mechanism,  the  recombination  rate  can  be 

calculated as45

(2.53)

The corresponding expression of the recombination resistance from Eq. (2.53) is then41,43.

             (2.54)

where  R'0 is  a  constant.  After  a  mathematical  treatment  and  under  the  approximations 

 and  one obtains
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           (2.55)

with

           (2.56)

so we obtain the same dependence of the recombination resistance than that given by 

Eq.  (2.48).  In  this  model,  the  recombination  resistance  decreases  exponentially  as  a 

consequence of an increase of both  density of donor states  (Eq. (2.2))  and charge transfer 

probability ºrec due to an increasing voltage. It is important to remark that eventually ºrec may 

decrease at higher voltage, provided that Marcus inverted region is reached. In this situation 

Eq. (2.55) is not longer valid and we should use Eq. (2.54). In Chapter 6 we will use RWNS to 

describe recombination kinetics in a more general situation without approximations.

2.3.2. Diffusion length concept

Diffusion length was firstly introduced by Amaldi and Fermi in 1936 in the context of 

neutron diffusion in paraffin samples as the distance that “a neutron will diffuse before it gets 

captured by a proton”46.  The diffusion length appears in the solution of the 1-D diffusion 

equation with a single recombination term governed by a certain lifetime ¿n. The solution of 

this equation is exponential, with the diffusion length occurring in the exponent: exp({x/Ln). 

Ln is also the first moment of the probability distribution function,  which shows that this 

parameter corresponds to the average value of the distance traveled by the particles before they 

disappear by recombination.

In the context of electron transport, Ln is a crucial parameter for any system in which 

diffusion is the main transport mechanism. For instance, it is widely utilized in  DSCs. The 

diffusion  length  is  commonly  determined  by  independent  measurements  of  the  electron 

diffusion coefficient Dn and the electron lifetime ¿n, according to47

           (2.57)

It is well-known that, in contrast to both electron diffusion coefficient and lifetime,
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whose values cover a wide range of order of magnitudes with an increasing density, diffusion 

length  values  are  usually  maintained  in  the  same  order  of  magnitude.  In  the  context  of 

previous models, we can see from Eqs.  (2.19) and (2.42) that  there is a compensation effect 

when the diffusion length is calculated.  Thus, electron diffusion length of Eq. (2.57) adopts 

the following form

                                                                               (2.58)

which is constant with electron density. Similarly, for the case of an exponential distribution of 

states, applying Eqs. (2.36) and (2.43) a constant diffusion length is again obtained due to the 

fact that the same factor lies in carrier equilibration for both chemical diffusion coefficient 

(Dn) and lifetime (¿n)24. A more intuitive explanation of this compensation behaviour is based 

on  the  assumption  that  recombination  is  transport-limited48–50 so  that  the  recombination 

constant (the inverse of the lifetime) should be proportional to the diffusion coefficient. This 

implies that the product contained in Eq. (2.58) should remain constant upon variations of the 

Fermi level since diffusion and recombination have exactly the same Fermi level dependence. 

In other words, if the system diffuses more quickly it also recombines more quickly, so that the 

diffusion length remains constant.

However,  increasing  diffusion  lengths  with  respect  to  the  Fermi  level  have  been 

reported in recent experiments in DSCs43,51. To solve this problem a reinterpretation of Eq. 

(2.41) has been made in terms of the effective free electron lifetime, ¿f 39,52

           (2.59)

         

where  ¿f is  calculated taking into account the non-linear recombination rate given by Eq. 

(2.49)39,52

                      (2.60)

Hence, Eqs. (2.59) and (2.60) lead to a Fermi level dependence of the electron lifetime 

¿n given by39

56



Chapter 2            Disordered semiconductors

           (2.61)

which predicts an increase of  ¿n with respect to the free electron density but with an slope 

different than that given by Eq. (2.43).

With these new expressions it can be seen that factors in Eqs.  (2.34) and  Eq.  (2.61) do not 

compensate so Eq. (2.57) leads to a non-constant diffusion length with respect to the Fermi 

level, given by39

           (2.62)

In a  recent  paper  it  has  been pointed out  that  the  diffusion  length,  defined as the 

average value of the distance travelled by electrons until  a  recombination event occurs,  is 

equivalent to the diffusion length obtained via Eq.  (2.57) using a  Dn and a  ¿n obtained by 

small perturbation methods52.
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CHAPTER 3

Random Walk Numerical Simulation

The Random Walk Numerical Simulation (RWNS) method is presented in this 
Chapter. We firstly review the most relevant studies that have been carried out by 
means of the RW method. Later on, we describe in detail the basic functioning of 
the  RW  algorithm.  The  advantages  of  using  RWNS  to  study  disordered 
semiconductors with a  broad dispersion of  energies are discussed.  We provide 
details of the most important properties of the simulation method and relate then 
to the dynamic models discussed in Chapter 2. The specific boundary conditions 
utilized  in  the  calculations  are  also  described.  Finally,  we  describe  the  main 
properties that can be obtained from the calculations. Thus, extraction of energy 
level populations as well as dynamics properties, like the diffusion coefficient, the 
lifetime and the diffusion length are outlined. 
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3. Random Walk Numerical Simulation

3.1. Simulation and modelling

The use of electronic computing machines as a valuable method of research is well 

established. Its benefits are to gain insight in the internal mechanisms, which are not available 

to measurements, and therefore to enable interpretation of them. In addition, simulation and 

modelling  provide  information  for  improvements  in  device  applications  suggesting  proper 

strategies. The recent rapid progress of performance of computers has allowed an inexpensive 

way to research in this direction. Among other techniques, the Monte Carlo method, based on 

the  massive  generation  of  random numbers,  has  been  extensively  applied  in  Condensed-
Matter  Physics  and  Theoretical  Chemistry.1 The  Monte  Carlo  method  provides  a  way  to 
replace the solution to a particularly difficult analytical or numerical problem by proposing a 
suitable algorithm based in random numbers. This algorithm is then fed to a computer so that 
the difficult numerical work is done by the machine and valuable physical information can be 
obtained as a results of a thorough analysis. 

Current  research  on  new  architectures  for  low-cost  photovoltaic  devices  based  on 

disordered materials and the boom in nanotechnology provides new exciting fields in which to 

apply computer simulation methods. An useful route to study the carrier transport in these 

photovoltaic systems is to use random walk numerical simulation (RWNS), a type of Monte 

Carlo simulation. It is useful for those cases in which one is interested in geometrical details 

of disordered semiconductors, for example, in the influence of a particular morphology on 

transport  and  recombination  magnitudes.  Likewise,  it  is  specially  suitable  to  study 

characteristics  of  materials  from  first  principles  in  amorphous  or  nanostructured 

semiconductors.  The  main  reason  consist  on  the  fact  that  RWNS  allows,  without  huge 

computational demands, for a flexible description of randomly localized states with a broad 

dispersion  in  energies,  what  is  crucial  for  the  understanding  of  the  transport  and 

recombination in these devices, in the long time and spatial scales.

The use of RW methods to study charge transport in disordered materials goes back to 

the early eighties, mainly due to the works of Movaghar, Bässler, Baranovskii and coworkers2–5 

who used this simulation technique to test the validity of analytical results to describe hopping 

and trapping processes. The famous 1993 work of Bässler2 illustrates the utility of the RW 

method to describe conduction in organic semiconductors. The applications to modelling of 

nanostructured  TiO2 solar  cells  were  pioneered  in  1999  by  Nelson6,  who  adapted  the
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Continuous  Time  Random Walk (CTRW) theory  of  Scher  and  Montroll  to  design  a  RW 

simulation algorithm that  sampled efficiently  the  trap  energy distribution  characteristic  of 

nanocrystalline titanium dioxide. Later on, RW calculations have been efficiently used to study 

electron  mobilities7,  diffusion  coefficients8–10 and  recombination  properties11–13 in  dye-

sensitized solar cells. It has also been applied to obtain surface photovoltage transients14,15.

3.2. Main features of the random walk numerical algorithm

The RW simulation  method6,10,16,17 is  a  stochastic  calculation in  which particles  are 

moved at random in a 3-dimensional network of traps  arranged on a lattice not necessarily 

ordered.  In the most simple version traps or sites are randomly distributed in space with the 

same  average  distance,  although,  as  we  will  see,  more  complex  configurations  can  be 

implemented18.  RW  methods  allow  for  an  analysis  of  different  spatial  disorder  or 

morphologies, as well as different degrees of energy disorder in the studied material.

Energy disorder in a RW simulation is considered by making the traps to conform to an 

arbitrary distribution of energies. For example, it is possible the implementation of the two 

typical densities that are encountered in most of inorganic and organic disordered materials, 

i.e., Eqs. (2.2) and (2.3). In this thesis we will focus on the exponential distribution because, 

besides we deal mostly with inorganic materials, where exponential functions are generally 

assumed19,20, it has been argued than a band tail can be also considered for organic solar cells  

when the Fermi level is well below the mobility edge (i.e. low carrier densities)21,22. This has 

also been demonstrated in nanocrystalline TiO2 by Anta et al.7 These authors used gaussian 

distributions  to  model  the  distribution  or  energies  and  found  that,  at  realistic  electron 

densities, only the tail of the distribution determined the behaviour of the conductivity. Hence, 

each  trap  i will  be  associated  to  a  particular  value  of  energy  Ei according to  Eq.  (2.2). 

Moreover, the procedure for the assignment of energies to a particular trap is at random within 

this distribution so that no energy correlations between neighboured traps are considered.

The random walk method works by giving to each trap a release time according to a 

certain expression that depends on the model we use to describe the transport process. This 

way, RW simulation makes it possible to implement a specific mechanism of transport (the 

model) and check,  from first principles, how the dynamic properties (diffusion coefficient, 

electron populations, recombination rates and so on) depend on the microscopic structure of 

the  material,  that  is,  the  particular  distribution  of  localized  states  and  the  morphological
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features. In the context of solar cells applications10,14,17, two alternatives are relevant and can be 

used  for  the  computation  of  the  release  times,  following  models  previously  described  in 

Chapter 2: hopping and multiple-trapping. In both cases, the transport implies that detrapping 

is thermally activated with the trap energy being the activation barrier.

If we use the multiple-trapping model23–25 the release time to the transport level  ti is 

given by

 (3.1)

where  R is a random number uniformly distributed between 0 and 1 and  t0 (=1/º0) is the 

attempt-to-jump time. In this equation, Ec is a reference value of the energy that represents the 

transport level (i.e., the mobility edge).

Alternatively,  if  we  use  the  hopping  model26–28,  the  release  time,  tij,  for  hopping 

between two sites i and j, is calculated via29

  (3.2)

where rij is the distance between the sites, ®l is the localization radius and Ei and Ej are the 

energies of the target and starting sites, respectively. In both models, the use of a random 

number  R implies that different release times from a certain trap are possible.  The factor 

factor  ln(R) guarantees that the distribution of detrapping times for a single trap energy Ei 
conforms  to  a  Poisson distribution  (which  is  the  characteristic  distribution  for  first  order 

relaxation kinetics governed by a single lifetime).

Actually, the release times that arise from Eqs. (3.1) and (3.2) correspond to the inverse 

of  the  frequencies  or  rates  presented  in  Chapter  2  and  used  by  some  authors2,30. Thus, 

calculations in the time domain should lead to the same results.

Basic algorithm of a RW simulation based on times

A RW simulation based on times is organized as follows:
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1. The simulation starts at time t0 = º0
{1 by distributing randomly the carriers in the traps.

2. Carriers  are  given release  times  according  to  Eqs.  (3.1) or  (3.2) for  the  energies  and 

positions of the sites they visit. Waiting times are then defined as the difference between the 

release time of the carrier and the time already spent by the carrier in a particular site.

3. For each simulation step the carrier with the shortest waiting time  (tmin) is allowed to 

move.

4. The waiting times for the rest of the carriers are reduced by tmin. On the other hand, it is 

computed a new release time for the carrier that has just moved, i.e., this carrier adopts the 

release time corresponding to the trap it jumped to.

5. The process is repeated by means of subsequent movements of the carrier with the shortest 

waiting time, so that the simulation advances by time steps of length tmin. This time increment 

is a variable quantity that depends on the current configuration of the system and the sites 

occupied at each particular moment. 

Fig.  (3.1)  Illustration of  the  random walk method employed in  this  work.  Traps (open 
circles) are distributed on a simulation box of size aL. Some of these traps are occupied by 
charge  carriers  (grey  circles).  For  a  certain  carrier  (black  circle),  hopping  times  to  
neighboured traps are computed but restricted to those traps within the cut-off radius rcut 
that are not occupied.
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Point  5  above shows that  a  RW numerical  simulation is  an adaptive time-step simulation 

procedure. The broad dispersion in energies of the sites in nanocomposites, as we can see in 

Eq. (2.2), leads to a variation in waiting times of various orders of magnitude, so an adaptive 

time-step is very convenient to describe transport adequately. For example, if at a given time 

the shortest waiting time correspond to a trap of a low energy E, then, the simulation advances 

a long time (corresponding to the release time of a very deep trap) only in one step, reducing 

the  execution  time  of  the  simulation.  This  feature  of  the  RW method  is  very  important,  

because it makes it possible to study phenomena that occur in a very long time scale, not 

accessible to atomistic or  "ab initio" methods31.

Along  the  simulation,  each  carrier  must  have,  as  well  as  a  waiting  time,  a  most 

probable jump specified by the label of the trap it is aimed to jump to. This neighboured trap 

must accomplish some conditions:

• It must be located inside an sphere of a  cut-off radius,  rcut. Therefore, given a trap  i, a 

neighbouring trap j is not considered if the distance between the traps rij, is larger than rcut.

• RW simulation is carried out with the restriction that no more than one carrier is allowed 

per site. Therefore, a move is forbidden if the trap is already occupied.

• If a given trap is already a target site for another carrier, then it is not considered either.

In the case of the multiple-trapping model, the release time does not depend on the 

target site (see Eq. (3.1)). Hence, the trap that finally acts as a target site is chosen randomly 

among all the available traps. On the contrary, in the hopping model, the release time does 

depend on the target site, (see Eq. (3.2)) and the trap that provides the shortest release time is 

chosen to act as target site among the rest of the traps for a particular carrier. Note that this  

process must be executed before the RW algorithm is started. On the other hand, convergence 

should be ensured by choosing a cut-off radius which is long enough (but not too long, to 

avoid excessive computational times).

Periodic boundary conditions along the three directions of space are applied by default 

in most of the simulations carried out in this thesis. Hence, a carrier crossing a simulation box 

boundary is automatically reinjected through the opposite side of the box. Proceeding this 

way, a stationary state (signalled by a constant carrier flux or a constant diffusion coefficient) 

is rapidly achieved. To implement the periodic boundary conditions it is necessary to keep 

records in the simulation of  the absolute coordinates of the carriers,  in  order  to  compute 

properties (like the mean square displacement), which depend on them.
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Fig.  (3.2)  Hopping  transport  in  a  packing  of  nanospheres.  The  simulation  box  is 
periodically replicated in the three directions of space to simulate the hopping transport 
(right), but real coordinates are considered to describe injection and collection (left). The 
dashed line stands for the carrier generation profile, which resembles a Lambert-Beer law 
for light coming on the  x-direction. Black dots represent the traps on the surface of the 
nanospheres

However, in Chapter 7 an study of the charge collection efficiency on a surface is 

carried out, and this requires to consider charge generation in accordance to optical absorption 

lengths of the order of microns. However, the use of a simulation box of the order of microns 

is not computationally feasible for the trap densities characteristic of the materials studied 

here.  To surmount this  problem we have devised a numerical  procedure where the actual 

distance of the carrier with respect to the collecting substrate is continuously stored during the 

simulation. In practise, we carry out a typical simulation of an infinite system (with periodic 

boundary conditions). However, in addition, the actual  x-position of the carrier is also taken 

into account. This is considered in two steps of the algorithm: (1) when carriers are injected in 

the sample along x-direction according to the Lambert-Beer law (see Fig. (3.2)), and (2) when 

carriers are collected at x = 0. Therefore, the fictitious coordinates arising from the application 

of the periodic boundary conditions are only considered in Eqs. (3.2) and (2.2), but injection 

and collection are modeled according to a real coordinate. This way a macroscopic film with a 

size of microns can be adequately simulated with a manageable number of nanospheres and 

traps.
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3.3. Extraction of Properties From RW Simulations

Energy Level Populations

It  is  known  that,  under  equilibrium  conditions,  the  electron  concentration  n is 

determined by the density of states g(E) and the Fermi-Dirac distribution f(E{EF), dependent 

on the position of the Fermi energy EF (or on a quasi-Fermi energy in the case of stationary 

excitation of electrons). This relation is given by Eqs. (2.25) and  (2.26). RWNS calculations 

can be carried out for different electron densities in order to extract dynamic properties as a 

function of Fermi level. Thus, by running a long enough RWNS calculation it is possible to 

construct a histogram N(E) of the number of carriers that occupy levels of energy between E 

and  E+dE.  From  these  histograms  the  corresponding  occupancy  probabilities  can  be 

extracted. Since we implement the distribution of states g(E), we can compute the probability 

of a trap of energy between E and E+dE to be occupied by means of N(E)/g(E). The result 

is that, as a consequence of the restriction that no more than one carrier is allowed per trap,  

this probability tends to adopt the Fermi-Dirac shape7,10 with a well-defined Fermi level (see 

Fig. (3.3)) as the system approaches the stationary regime.  It is important to notice that, in 

contrast to previous studies32–34 the Fermi–Dirac function is not imposed a priori, but it arises 

naturally from the calculation instead. 

Diffusion Coefficient

In accordance to the RW algorithm, carriers diffuse through the lattice of trap sites. 

Thus,  the  jump  diffusion  coefficient  Dj can  be  computed  from  the  mean-squared 

displacement  by Eq. (2.20). The mean square displacement is observed to be linear 

at longer times (normal diffusion). This allows extracting the diffusion coefficient from the 

slope of the curve in the time plot according to the following expression

 (3.3)

where  N is the total  number of carriers.  Very high numerical demands are often required 

when simulating systems with a  considerable number of carriers and trap states.  In those 

cases,  to  compute  jump  diffusion  coefficients  (or  other  transport  and  recombination
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Fig. (3.3) Illustration of the trap energy distributions used in the multi-electron and single-
electron RWNS calculations.

properties)  with  a  reasonable  computational  time,  the  following  approximation  is 

implemented:  the  exponential  distribution in  Eq.  (2.2)  is  truncated for energies below the 

Fermi level, hence assuming that deeper traps are always occupied. This is the so-called one-

electron approximation that makes it possible to simulate transport at a given position of the 

Fermi level with the movement of a single carrier10. This idea is illustrated in Fig. (3.3).

Monte Carlo simulation has shown that  the  tracer diffusion coefficient,  D*,  which 

gives the random walks of a single particle

 (3.4)

is practically equal to the jump diffusion coefficient defined by Eq. (3.3) in a broad range of 

densities and  temperatures35. RWNS results for the diffusion coefficient versus Fermi level 

obtained from both types of calculations are essentially the same, which shows that collective 

diffusion is equivalent to the random walk of a single carrier10. This result shows that the kind 

of systems studied here behave ideally, and that carrier-carrier interaction can be neglected.
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Lifetime and Diffusion Length

In most of the work accomplished in this thesis, we have implemented recombination 

of carriers in a RW simulation. Following classic13,17,36 and recent literature37,38 we assume that 

recombination in a DSC is determined by trapped-carriers. We make a further assumption 

giving a  recombining character  to both shallow and deep traps, as described in Chapter 2. 

Thereby, all the traps in the distribution are allowed to act as recombination centre. Hence, 

when a carrier reaches one of these traps, there is a probability, dependent on the specific  

recombination mechanism used for each system, to undergo recombination and be removed 

from the sample.

Taking into account this situation, we compute both the average time and the average 

distance that a carrier is moving until it becomes effectively recombined. In order to simulate

Fig. (3.4)  Illustration of the random walk numerical procedure utilized in this thesis to 
compute  the  diffusion  length  Ln.  A  three-dimensional  network  of  traps  is  distributed 
randomly  and  homogeneously  in  space.  The  energies  of  the  sites  are  taken  from  an 
exponential distribution. A recombining character is given to an arbitrary amount of traps 
(solid  circles)  so  that,  when  an  electron  reaches  one  of  these  traps,  it  may  undergo 
recombination and be removed from the sample.
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a solar cell  at  open-circuit  conditions and under illumination a constant  carrier  density is 

maintained  in  the  sample.  This  is  achieved  by  imposing  that  when  a  carrier  has  just 

recombined another one is immediately injected into the system in another site at random. For 

this  fresh carrier both time and distance are reset so that average time and distance between 

recombination events can be computed, stored and represented versus total simulation time. 

Finally,  these  magnitudes  are  renormalized  by the  total  number  of  carriers  and  the  total 

number of recombination events so that the result is effectively an average distance and time 

for one single carrier.

One can argue that these magnitudes are not computed as collective quantities defined 

from kinetic  equations  based on densities.  Nevertheless,  we will  show in  Chapter  5  that, 

despite computing individual diffusion length and lifetime from simulation averages, these 

magnitudes  effectively  correspond  to  those  defined  according  to  Eqs.  (2.57) and  (2.59) 

respectively.

The implementation of all the properties and procedures described in this Chapter have 

been programmed using Fortran 90. (For more details see Appendix C).

References to Chapter 3

(1) Frenkel, D.; Smit, B. Academic Press 2002.

(2) Bassler, H. Physica Status Solidi B-Basic Research 1993, 175, 15–56.
(3) Movaghar,  B.;  Grunewald,  M.;  Ries,  B.;  Bassler,  H.;  Wurtz,  D.  Physical  Review B 
1986, 33, 5545–5554.
(4) Silver, M.; Schoenherr, G.; Baessler, H. Physical Review Letters 1982, 48, 352–355.
(5) Baranovskii, S. D.; Efros, A. L.; Gelmont, B. L.; Shklovskii, B. I.  Journal of Physics  
C-Solid State Physics 1979, 12, 1023–1034.
(6) Nelson, J. Physical Review B 1999, 59, 15374–15380.
(7) Anta, J. A.; Nelson, J.; Quirke, N. Physical Review B 2002, 65.
(8) Kopidakis, N.; Benkstein, K. D.; Lagemaat, J. van de; Frank, A. J.; Yuan, Q.; Schiff, E. 
A. Physical Review B 2006, 73.
(9) Benkstein, K. D.; Kopidakis, N.; Lagemaat, J. van de; Frank, A. J. Journal of Physical  
Chemistry B 2003, 107, 7759–7767.
(10) Anta,  J.  A.;  Mora-Sero,  I.;  Dittrich,  T.;  Bisquert,  J.  Physical  Chemistry  Chemical  
Physics 2008, 10, 4478–4485.
(11) Petrozza, A.; Groves, C.; Snaith, H. J. Journal of the American Chemical Society 2008, 

70



Chapter 3           Random Walk Numerical Simulation

130, 12912–12920.
(12) Nelson, J.; Haque, S. A.; Klug, D. R.; Durrant, J. R. Physical Review B 2001, 63, 6320.
(13) Kopidakis, N.; Benkstein, K. D.; Lagemaat, J. van de; Frank, A. J. Journal of Physical  
Chemistry B 2003, 107, 11307–11315.
(14) Anta, J. A.; Mora-Sero, I.; Dittrich, T.; Bisquert, J.  Journal of Physical Chemistry C 
2007, 111, 13997–14000.
(15) Mora-Sero, I.; Anta, J. A.; Dittrich, T.; Garcia-Belmonte, G.; Bisquert, J.  Journal of  
Photochemistry and Photobiology a-Chemistry 2006, 182, 280–287.
(16) Anta, J. A. Energy and Enviromental Science 2009.
(17) Nelson, J.; Chandler, R. E. Coordination Chemistry Reviews 2004, 248, 1181–1194.
(18) Anta, J. A.; Morales-Florez, V.  Journal of Physical Chemistry C 2008,  112, 10287–
10293.
(19) Bisquert, J.; Fabregat-Santiago, F.; Mora-Sero, I.; Garcia-Belmonte, G.; Barea, E. M.; 
Palomares, E. Inorganica Chimica Acta 2008, 361, 684–698.
(20) Monroe, D. Physical Review Letters 1985, 54, 146–149.
(21) Kirchartz, T.; Pieters, B.; Kirkpatrick, J.; Rau, U.; Nelson, J. Physical Review B 2011, 
83.
(22) MacKenzie, R. C. I.; Kirchartz, T.; Dibb, G. F. A.; Nelson, J. The Journal of Physical  
Chemistry C 2011, 115, 9806–9813.
(23) Tiedje, T.; Rose, A. Solid State Communications 1981, 37, 49–52.
(24) Bisquert, J. Physical Review Letters 2003, 91.
(25) Vanmaekelbergh, D.; de Jongh, P. E. Phys. Rev. B 2000, 61, 4699–4704.
(26) Hartenstein, B.; Bässler, H. Journal of Non-Crystalline Solids 1995, 190, 112–116.
(27) Gonzalez-Vazquez, J. P.; Anta, J. A.; Bisquert, J. Physical Chemistry Chemical Physics 
2009, 11, 10359.
(28) Bisquert, J. Journal of Physical Chemistry C 2007, 111, 17163–17168.
(29) Miller, A.; Abrahams, E. Physical Review 1960, 120, 745–755.
(30) Novikov, S. V.; Dunlap, D. H.; Kenkre, V. M.; Parris, P. E.; Vannikov, A. V. Physical  
Review Letters 1998, 81, 4472–4475.
(31) Calvo-Muñoz, E. M.; Selvan, M. E.; Xiong, R.; Ojha, M.; Keffer, D. J.; Nicholson, D. 
M.; Egami, T. Phys. Rev. E 2011, 83, 011120.
(32) Arkhipov,  V.  I.;  Heremans,  P.;  Emelianova,  E.  V.;  Adriaenssens,  G.  J.;  Bassler,  H. 
Applied Physics Letters 2003, 82, 3245–3247.
(33) Li, L.; Meller, G.; Kosina, H. Applied Physics Letters 2008, 92.
(34) Bisquert, J. Physical Chemistry Chemical Physics 2008, 10, 1–20.
(35) Uebing, C.; Gomer, R. Journal of Chemical Physics 1994, 100, 7759.
(36) Peter, L. M. Journal of Physical Chemistry C 2007, 111, 6601–6612.
(37) Villanueva-Cab,  J.;  Wang,  H.;  Oskam,  G.;  Peter,  L.  M.  The  Journal  of  Physical  
Chemistry Letters 2010, 1, 748–751.
(38) Jennings, J. R.; Wang, Q. The Journal of Physical Chemistry C 2010, 114, 1715–1724.

71



CHAPTER 4

Random  Walk  Numerical  Simulation  for 
Hopping  Transport  at  Finite  Carrier 
Concentrations

The  RWNS  method  is  used  to  compute  diffusion  coefficients  for  hopping 
transport  in a fully disordered medium at finite  carrier  concentrations.  We use 
Miller–Abrahams jumping rates  and an  exponential  distribution  of  energies  to 
compute  the  hopping  times  in  the  random  walk  simulation.  The  computed 
diffusion coefficient shows an exponential dependence with respect to Fermi-level 
and Arrhenius behaviour with respect to temperature. This result indicates that 
there is a well-defined transport level implicit to the system dynamics. To establish 
the origin of this transport level we construct histograms to monitor the energies 
of the most visited sites. In addition, we construct “corrected” histograms where 
backward moves are removed. Since these moves do not contribute to transport, 
these histograms provide a better estimation of the effective transport level energy. 
The analysis of this concept in connection with the Fermi-level dependence of the 
diffusion  coefficient  and  the  regime  of  interest  for  the  functioning  of  dye-
sensitised solar cells is discussed.
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4.  Random  Walk  Numerical  Simulation  for  Hopping 
Transport at Finite Carrier Concentrations

4.1. Introduction and methodology

As  discussed  in  Chapter  2,  the  theoretical  description  of  electron  transport  in 

disordered  materials is a challenging issue with implications in the fields of dye-sensitised 

solar cells (DSC)1, plastic solar cells2, organic light emitting diodes3 and organic electronics4. 

In these materials, the transport rates are determined by two kinds of microscopic disorder: 

energetic  disorder  characterized  by  a  broad  distribution  of  localized  states5 and  spatial 

disorder, related to the morphological features of the material6,7. The correct description of the 

influence of these two kinds of disorder and their microscopic parameters on the transport 

features of the material is crucial to the design of better performing devices.

Two main approaches have been used to study electron transport in these materials: the 

multiple-trapping  model  and  the  hopping  model.  Both  mechanisms  have  already  been 

described in Chapter 2, where it was pointed out that, in order to obtain analytical expressions 

for the electron diffusion coefficient, it is necessary to make averages over spatial and energy 

disorder. This analysis is especially cumbersome in the context of the  hopping model since 

both energetic and spatial disorder must be taken into account. However, this problem can be 

simplified if the distribution of energies for the localized states is very steep. In this case it has 

been  shown that  a  particular  level,  known as  transport  energy,  determines  the  dominant 

hopping  events  for  carriers  sitting  in  very  deep  states8–13.  The  existence  of  an  effective 

transport level reduces the hopping transport to multiple trapping, with the transport energy 

playing the role of a mobility edge. This concept has been utilized to derive Eq.  (2.39), a 

theoretical  expression  for  the  diffusion  coefficient  of  electrons  moving  via  a  hopping 

mechanism in  an  exponential  distribution  of  localized  states8.  Nevertheless,  the  transport 

energy  has  been  shown  to  be  affected  by  the  fact  that  the  system is  not  ideal,  that  is, 

correlations between carriers may play an important role. These correlations can be due to 

exclusion effects, which makes the transport energy depend on Fermi level position9,14, or due 

to energetic correlations between charges and dipoles15,16.

Hopping transport in disordered semiconductors has been amply studied over the last 

decades in relation to inorganic semiconductors such as amorphous silicon and also to organic 

conductors17. The interest in electronic transport in the presence of an exponential distribution
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of states has increased with the application of nanostructured wide bandgap semiconductors in 

DSCs18,19.  Indeed,  it  has  been  shown  that  for  systems  using  relatively  thick  TiO2 porous 

nanocrystalline layers, electron transport may impose limitations to charge extraction20. Hence, 

since  DSC operate  at  large  electron  densities,  it  is  crucial  to  determine  the  transport 

mechanism in these systems as a function of charge density and, especially at  high Fermi 

levels, beyond the analytical approximations adopted previously, that use commonly multiple 

trapping arguments8,21.

In this chapter we apply the random walk numerical simulation (RWNS) method22–27 to 

obtain the jump diffusion coefficient in a hopping system with an exponential distribution of 

localized states and at finite carrier concentration. In addition, we use our calculations to cast 

light on the foundations of the transport energy approximation in this case. To do that, we 

implement the hopping mechanism  via  the Miller–Abrahams jumping rates28, given by Eq. 

(2.7). The RWNS calculations yield the jump diffusion coefficient as a function of Fermi level 

and temperature22. We have carried out our simulations on a network of randomly distributed 

sites. Placing the sites on an ordered spatial arrangement has been shown to affect the results 

for the carrier mobility29. Thus, to work with a fully disordered system permits us to eliminate 

the effect of introducing an artificial spatial order on the simulation results.

We have used the simulations to construct histograms of the most visited energies so 

that  the  probability  for  the  electrons  to  jump  to  target  sites  of  specific  energy  can  be 

calculated. The form of this histogram for jumps upward in energy will allow us to identify the 

existence of a well-defined maximum and how it depends on carrier concentration and Fermi 

level. As noted by Arkhipov et al.11, the transport energy can differ noticeably from the energy 

of the most probable jump due to the influence of neighboured sites close in energy. These 

sites make carriers hop back and forth many times so that those moves do not contribute to  

transport and hence to the computation of the diffusion coefficient. The RWNS method makes 

it possible to remove those jumps from the calculation so that a better approximation to the 

“effective transport energy” can be obtained for the studied cases.

Calculations were carried out with 1–100 carriers and the size of the simulation box 

ranged between 10 and 65 nm. A density of traps of Nl = 1027 m-3 was used in all cases. This 

corresponds to an average distance between traps of 1 nm. It must be stressed that, as traps are 

distributed randomly, hops can be executed for distances either longer or shorter than this 

averaged distance. Hereafter, the simulations are described by a label  N/aL where  N is the 

number of carriers and aL the size of the simulation box in nm’s.
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Fig.  (4.1).  Jump  diffusion  coefficient  as  a  function  of  cut-off  radius  from  RWNS 
calculations with Miller-Abrahams hopping rates.

As mentioned in Chapter 3, to save computing time a certain cut-off  radius  rcut is 

introduced. Neighbours located beyond this distance are not considered as target sites. Since 

the  hopping times in  Eq. (3.2) do depend on distance between traps,  the cut-off  distance 

should be large enough to ensure that the results are not significantly affected. In Fig. (4.1) the 

diffusion coefficient as a function of rcut is plotted for two values of the localization radius. 

As it could be expected, a larger localization radius requires a larger cut-off radius to ensure 

convergence. Hence, for ®l = 0.5 nm and 2.5 nm a cut-off radius of 2.5 nm and 4.5 nm were 

found to be sufficient, respectively. These are the parameters used henceforth.

With the idea in mind that hopping transport can be rationalized using the concept of 

transport  energy, we  have monitored the  energies of  the target  sites  for jumps upward in 

energy  in  the  RWNS  calculations.  The  method  followed  here  consists  in  computing  an 

histogram of the energies of the target sites only when the energy of these traps is higher than 

the starting sites of electrons. Hence, in each step of simulation, if the target trap fulfils this 

condition,  its  energy is  stored in  the  histogram.  For  reasons  than  will  be  discussed later, 

another kind of histogram of energies is implemented in the simulation. Now, in each step of
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simulation, the energy of the target site is stored only when its energy is  higher than the 

starting site and when in the previous step of simulation this site was not the starting one. In 

this manner, we ignore backward jumps for the computation of the histogram of upward jumps 

energies.

4.2. Results and discussion

Energy of the most probable jump and transport energy concept

For an exponential distribution of localized levels, the classical result10,30 is that the 

fastest upward jump occurs in the vicinity of the so-called transport energy10

 (4.1)

where  ¢Etr  is given by Eq.  (2.11)  independently of the energy of the starting site.  This 

expression  is  obtained  by  maximizing  the  upward  hopping  rate  for  an  average  hopping 

distance. Alternatively the transport energy can be obtained by averaging the hopping rate 

below a certain energy value as reported by Arkhipov11,31. This latter procedure has been put 

into question32 due to the difficulty of considering the effect on transport of all relevant hops. 

In any case, the existence of a transport energy implies that the hopping model should behave 

in a similar way to the multiple trapping model, where there is a transport level by definition.

In  connection  with  the  transport  energy  approximation,  we  have  monitored  the 

energies of  the target sites for jumps upward in energy in  the RWNS calculations.  These 

values were used to construct a histogram of energies. Results can be found in Fig. (4.2) for 

two densities corresponding to labels 100/123 and 100/153 (®l = 0.5 nm,  T0 = 800 K and 

T = 275 K). The results reveal that most carrier moves take place in the vicinity of a certain 

energy that always lies (as expected) above the Fermi energy for each particular case.

In this chapter we make a critical analysis of the following assumption: the maximum 

of the energy histogram,  Emax, can be assimilated to the value of the transport energy. We 

must note that the former is just a simulation result whereas the latter is a theoretical concept  

obtained  under  certain  approximations  whose  origin  we  want  to  test  using  numerical 

simulation. Monte Carlo simulation has been used by Cleve et al.33 and Novikov and Malliaras 

with  similar  purposes15.  However,  Cleve  et  al.33 investigate  an  empty  system  with  no
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Fig. (4.2). Occupation probabilities (f(E{EF), full symbols) and histograms of the energies 
of target sites (N(E), open symbols) in RWNS calculations for jumps upward in energy. 
The  latter  have  been  normalized  with  respect  to  the  maxima.  Parameter  values  are 
®l = 0.5 nm , T0 = 800 K, T = 275 K and densities corresponding to labels 100/123 (circles) 
and 100/153 (squares).  The following values are obtained from the simulations for both 
densities:  EF  =  -0.22 eV (Emax = -0.12 eV) and  EF = -0.26 eV (Emax =  -0.18 eV) 
respectively. The solid line stands for an exponential trap distribution of T0 = 800 K.

influence of the concentration of carriers. On the other hand, the work in Ref. 15 investigates a 

Gaussian distribution that applies in organic conductors.

The most relevant feature of the present calculations is that  Emax is found to move 

upwards  in  the  energy  scale  when  the  Fermi  level  is  raised.  A  similar  effect  has  been 

described for the transport energy with a Gaussian distribution of states14. The variation of 

Emax with density and Fermi level is shown in Fig. (4.3) for two characteristic temperatures 

(T0 = 600 K and T0 = 800 K). The calculations have been extended to the regime of very low 

densities, with Fermi levels between 0.17 and 0.61 eV and densities up to 7·1016 cm-3. It must 

be noted that at low densities the statistics of the simulation is very poor, which increases the 

uncertainty of Emax. This is extracted when the population distribution if found to relax to a
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Fig. (4.3). Energy of the most probable jump versus Fermi level (upper panel) and carrier 
density (lower panel) as obtained from RWNS calculations with Miller-Abrahams hopping 
rates with ®l = 0.5 nm. Results shown correspond to T0 = 600 K (circles) and T0 = 800 K 
(triangles). The dashed and dotted lines represent the classical values as obtained from Eq. 
(2.11).

Fermi–Dirac distribution with a well-defined Fermi level.

The poor statistics in the low density limit are related to the occurrence of spurious 

peaks in the energy histograms. These are due to carriers jumping many times back and forth 

between sites that happen to be close in distance and in energy and tend to disappear when the 

simulation is very long. As a matter of fact the RWNS predictions at low densities do not 

converge to the classical value of Eq.  (2.11) as it  could be expected. The reasons for this 

disagreement, in connection with the concept of effective transport energy of Arkhipov et al.11 

will be discussed below.

In any case, if we assume that  Emax can be assimilated to the transport energy, the 

same behaviour is found by Arkhipov and coworkers9 and Li and coworkers.14 The carrier 

density dependence of  Emax is a result of the progressive filling of the localized states, that
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prevent carriers from hopping to neighboured sites for which the Miller–Abrahams formula 

yields high probability. The carriers are then forced to jump to levels of higher energies, hence 

producing a larger value of the transport energy. At very low concentrations this filling effect 

is negligible and Emax remains constant. Nevertheless, the real connection between Emax and 

the transport energy is subtle and requires further analysis, as discussed below.

Fermi level dependence of the diffusion coefficient

As explained before, the jump diffusion coefficient for carriers can be computed from 

the RWNS calculations as a function of Fermi level. Results in reduced units for two test cases 

(®l = 0.5 nm, T0 = 800 K, T = 275 K and ®l = 2.0 nm, T0 = 800 K, T = 275 K) are presented in 

Fig. (4.4). The simulation data show that the logarithm of diffusion coefficient scales almost 

linearly with Fermi level. Diffusion coefficients are found to be higher for large localization

Fig. (4.4). Jump diffusion coefficient vs. Fermi level as obtained from RWNS calculations 
with Miller-Abrahams hopping rates (full circles) and several theoretical predictions (see 
text for details): Eq. (2.39) (solid line), Eq. (4.2) with Etr taken from the classical value of 
Eq.  (2.11) (open circles),  Eq.  (4.2) with  Etr = E'max (squares),  Eq.  (4.2) with  Etr = 0 
(times). The dashed line is a linear fit of the simulation data. Results shown correspond to 
T = 275 K and T0 = 800 and localization radius of ®l = 2 nm and 0.5 nm.
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radius. This is explained by the fact that delocalization favours jumps to traps further apart and 

produces shorter average hopping times.

The exponential dependence of the diffusion coefficient with respect to the position of 

the Fermi level is analogous to the typical prediction of the multiple trapping model. This 

result suggests that there should exist a well-defined transport level that controls the transport 

of  carriers  under  equilibrium  conditions.  However,  the  results  presented  in  the  previous 

subsection reveal that the energy of the most probable jump does move to higher energies 

when the trap distribution becomes progressively filled. This appears to be contradictory to 

the fact that there is a fixed transport energy. In the next subsection this issue is discussed and 

clarified.

Diffusion coefficient and transport energy

In Chapter 2 it was established that the jump diffusion coefficient Dj can be separated 

in two factors according to Eq. (2.22) where  is an average hopping distance and  

is  an  average  hopping  frequency34–36.  In  hopping  transport,  there  is  not  a  well  defined 

separation  between hopping  at  different  distances  and hopping at  different  energy levels. 

However, the rationale for the transport energy approximation is that the relevant jumps occur 

to a well defined level, and in this case Eq.  (2.22) may provide a useful approach to obtain 

analytical  expressions  for  hopping  transport  as  a  function  of  Fermi  level.  The  numerical 

simulations performed in this work constitute an excellent tool to check the validity of such 

approximations. Therefore, following the work from previous authors8,9, we compute the jump 

diffusion  coefficient  using  Eq.  (2.22).  According  to  the  transport  energy  concept  both 

quantities can be calculated from

             (4.2)

where  is the frequency for an upward hop from the energy E to the transport 

energy Etr  (Eq. (2.7)) at a fixed distance .
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By applying the zero-temperature limit of the Fermi–Dirac  distribution in   of 

Eq.  (4.2) and introducing the classical value of Eq.  (2.11) for the transport energy, Bisquert 

found  the  expression  given  in  Eq.  (2.39)  for  the  diffusion  coefficient8.  This  theoretical 

expression predicts an exponential behavior with respect to the Fermi energy, in analogy with 

the multiple-trapping result and in accordance with the simulation (see Fig. (4.4)). However, 

the theoretical slope (27.71 eV-1 for  T0 = 800 K and ®l = 0.5 nm) is slightly larger than the 

simulation result.

In spite of this encouraging result, the exponential behavior of the diffusion coefficient 

is not consistent with the upward shift of the average hopping energies when the Fermi level is 

increased. As it can be observed in Fig. (4.2) and (4.3), the maximum of the energy histogram 

Emax lies always above and approximately at a constant distance with respect to the Fermi 

level. If we would assume that Emax can be assimilated to the transport energy, this behaviour 

would lead to a constant diffusion coefficient according to Eq. (2.39).

Effective transport energy

To disentangle  from the  paradox posed in  the  previous  subsection,  the  concept  of 

effective  transport  energy of Arkhipov and coworkers11 is  especially useful.  These authors 

make a distinction between the energy that controls transport at equilibrium conditions and the 

energy of the most probable jumps. That these two are different has been already observed in 

Monte Carlo simulations for hopping systems in a Gaussian density of states30.

As mentioned above, RWNS calculations at low densities produce energy histograms 

with spurious peaks in the low energy region. These peaks arise from carriers jumping back 

and forth between neighbouring sites. The consequence in the numerical simulation is that 

these  “oscillatory”  moves do not  contribute  to  the  diffusion  of  the  carriers  and therefore 

should be excluded in the estimation of the transport energy.  Bearing this is mind, we have 

extended the computation of  the histograms of hopping energies to the situation in which 

backward jumps are ignored. To achieve that, the coordinates of the starting site are stored for 

every move so that when the carrier returns to its original position, the target energy is not  

used  to  compute  the  energy  histogram,  since  these  jumps  do  not  produce  a  net  spatial 

displacement of electrons.

Results for both types of energy histograms are presented in Fig. (4.5) for calculations 

with  a  single  carrier  in  an  empty  exponential  trap  distribution  and  for  a  finite  density 

corresponding to label  10/153.  The most  visible  feature is  that  the spurious peaks  tend to
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Fig. (4.5).  Histograms of  the energies of the target sites  N(E),  (squares) and the same 
without considering backward jumps between pair of sites  N '(E) (triangles, see text for 
details). Results for simulations at a finite carrier density (10/153) (upper panel) and for a 
single carrier (lower panel) are shown. The parameters used were T = 275 K, T0 = 800 K 
and ®l = 0.5 nm.

disappear  when  backward  jumps  are  ignored.  However,  sharp  peaks  are  not  completely 

removed. This is due to the fact that oscillatory moves between pairs of sites are not the only 

moves that do not contribute to transport. Carriers can get “trapped” between small groups of 

sites and follow circular trajectories before escaping, especially at lower energies. Nevertheless 

to remove these “second-order” moves is much more difficult in the numerical computation 

and goes beyond the scope of the present work. The occurrence of spurious peaks is magnified 

in the present calculations by the fact that we perform our simulations on a random network of 

traps. As mentioned above, this leads to the possibility of traps that happen to be very close to  

each other. This problem does not appear in the simulations of Bässler and  coworkers30,33,37, 

which are executed on a cubic lattice. Simulations on-lattice reduce the numerical demands 

and produces results more in accordance to the assumptions of the theory (see first expression 

in Eq.  (4.2) for instance) but at  the cost of losing the subtleties of the positional disorder 

implicit to these kind of systems29.
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Fig. (4.6). Illustration of two different types of jumps. Upwards jumps of the left picture do 
not establish a real contribution to the diffusion coefficient so should not be stored in the 
energy histogram. In contrast, upward jumps of the right picture contribute to transport so 
the energy of the target sites should be stored in the energy histogram.

A second feature of the corrected histograms is that the maximum, that we call E 'max, 

lies at higher energies than in the original histogram. That the effective transport energy lies 

above the energy of the most probable jump is the main conclusion of the work of Arkhipov et 

al.11 and  it  is  confirmed  in  the  present  calculations.  The  simulations  of  Hartenstein  and 

Bässler30 and Cleve et al.33 also predict energies for the most probable jump below the classical 

value of  Eq.  (2.11).  On the contrary, the computation of the histogram without  backward 

jumps for a single carrier leads to a maximum much closer to the theoretical value of -0.26 eV 

predicted by Eq.  (2.11) (see Fig. (4.5)). It must be born in mind that Eq.  (2.11) is obtained 

under  the  assumption  that  all  hops  occur  at  a  constant  average  distance  whereas  in  the 

simulation traps can be occasionally very close to each other and this induces the appearance 

of the oscillatory moves mentioned above.

The energy of the maximum of the corrected histograms, E 'max, allows us to propose a 

better estimate for the transport energy that is implicit to the diffusion coefficient dependence 

on the Fermi level. Results for this are collected in Fig. (4.7) together with the values of the 

most probable jump as computed in Fig.  (4.3). Here it is observed that  E 'max, lies always 

above Emax and that it converges to the classical value of Eq.  (2.11) at low densities.
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Figure  (4.7). Energy of the most probable jump (triangles),  Emax, and estimation of the 
effective  transport  energy,  E 'max, (circles)  as  a  function  of  Fermi  level.  The first  are 
extracted from the maxima of the energy histograms whereas the latter are extracted from 
the maxima of  the “corrected” histograms with  backward jumps between pair of  sites 
removed. The horizontal line represents the classical value predicted by Eq.  (2.11). The 
parameters used were T = 275 K, T0 = 800 K and ®l = 0.5 nm. 

Simulated diffusion coefficient versus theoretical predictions

The concepts introduced in the previous subsections allow us to use the E 'max  values 

from  the  simulated  histograms  to  produce  theoretical  values  of  the  diffusion  coefficient 

according to  Eqs.  (2.22) and  (4.2).  The results,  together  with  the  simulated  data  and the 

predictions of the approximate formulas (2.11) and (2.39) can be found in Fig. (4.4).

We observe that Eq.  (2.22) and (4.2) with the transport energy assimilated to  E 'max 

reproduce  Bisquert’s  formula  at  low Fermi  levels.  This  is  not  surprising  if  we take  into 

account  that  the simulation reproduces the classical  value of Eq.  (2.11) in  this  regime as 

explained above. The agreement between the theories and the simulation is also good in the
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low Fermi level region for the localized case. However, as we move towards large carrier 

densities the theoretical values separate from Bisquert’s formula although they tend to remain 

close to the simulated data. This effect is basically a consequence that Eq.  (2.39) is derived 

under the assumption that the Fermi level is well below the transport level. By introducing the 

proper Fermi–Dirac function in Eq. (4.2) the match with respect to the simulation is improved. 

This effect is more visible in the delocalized case (®l = 2 nm) for which the classical transport 

energy is -0.55 eV, than in the localized case (®l = 0.5 nm) for which the classical value equals 

-0.26 eV.

Due to this saturation effect, we find that Eqs. (2.22) and (4.2) in combination with the 

transport  energy  values  obtained  from  the  simulated  histograms  do  predict  a  linear 

dependence at low values of the Fermi level only. Nevertheless the simulation predicts an 

almost linear dependence at all regimes. To understand this we have to take into account that 

at high occupations a substantial amount of the upward hopping moves go to levels close to 

the conduction band level (see Fig. (4.2)). This introduces a distortion in the average implicit 

to Eq.  (2.39) because no hops above E = 0 are allowed. To ascertain the magnitude of this 

distortion we have performed calculations with Eqs.  (2.22)-(4.2) assuming that the transport 

level coincides with the conduction band level, i.e., Etr = 0. This calculation renders a linear 

dependence in the full density range. The agreement with the simulation data is good at high 

Fermi levels (where upwards hopping moves are controlled by the upper limit of  E = 0 but 

poor at low Fermi levels, where transport is controlled by jumps to the transport energy level. 

The  results  shown  in  Fig.  (4.4)  indicate  that  the  real  transport  energy  should  lie 

between the classical value of Eq. (2.11) and the conduction band level E = 0. The values of 

E 'max obtained from our corrected histograms are close but not the same as Etr. To obtain this 

we should distinguish moves that contribute effectively to transport from those that do not. 

This calculation would require to remove also the “second-order” moves discussed previously.

Temperature dependence of the diffusion coefficient

RWNS calculations were performed to obtain the effect of ambient temperature on the 

diffusion coefficient. Arrhenius plots for these calculations are shown in Figs. (4.8) and (4.9) 

in the temperature range 260 – 340 K. Nearly linear plots are obtained, with an activation 

energy that is larger for deeper Fermi levels, as it could be expected. The Arrhenius behavior 

is  characteristic  of  the  multiple-trapping  transport22,38.  This  is  an  indication,  as  discussed 

above, that at a fixed Fermi level, there is a well-defined transport energy that makes transport
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Fig. (4.8). Jump diffusion coefficient vs. inverse of ambient temperature as obtained from 
one-particle RWNS calculations with Miller-Abrahams hopping rates at  T0 = 800 K and 
®l = 0.5 nm. Results shown correspond to Ef = -0.3 eV (circles) and Ef = -0.4 eV (squares). 
The activation energies derived from both set of data are 0.15 and 0.24 eV respectively.

to  occur  effectively  via  thermal  activation  to  a  transport  level.  A similar  result  has  been 

obtained by Vissenberg and Matters using percolation theory39.

It must be noted that the theoretical framework contained  in previous expressions is 

shown  to  predict  a  quasi  Arrhenius  behaviour  as  well.  This  is  due  to  the  fact  that  the 

temperature dependences of the prefactors and the transport energy are much weaker than the 

energetic exponential factor. Furthermore, the transport energy is either a constant (at low 

occupations)  or  it  moves  towards  higher  values  (at  high  occupations).  In  both  cases  an 

Arrhenius behaviour with respect to temperature is expected.

The  Arrhenius  behavior  is  maintained  if  the  characteristic  temperature  of  the 

distribution is lower. Another important feature is that the activation energy is smaller for the 

delocalized case. This indicates that carrier percolation becomes facilitated when the range of 

the mean jump is larger, so that sites of similar energies are available for carriers.
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Fig.  (4.9).  Same  as  Fig.  (4.8)  but  for  T0 =  600  K  and  multi-particle  calculations  for 
®l = 0.5 nm (squares) and  ®l = 2.0 nm (triangles).  The activation energies derived from 
both set of data are 0.10 and 0.11 eV respectively.

4.3. Conclusions to Chapter 4

It  is interesting to make a connection with the relevant  regime in  DSC and related 

devices. It is known that at 1 sun illumination the electron density inside the semiconductor 

oxide is approximately equal to 1017 cm-3 = 104 nm-3 (1 electron per  nanoparticle40). For a 

characteristic  temperature  of  T0 =  600–800 K and a  trap  density  of  1021 cm-3,  which  are 

realistic values27,41 for nanocrystalline TiO2, this density corresponds to Fermi energies below 

0.60 eV. As it can be observed in Figs. (4.3) and (4.7), this value corresponds to the regime for 

which the effective transport energy converges with the classical value given by Eq.  (2.11). 

Hence the predicted behaviour for the diffusion coefficient is  close to that yielded by the 

approximate formula  (2.39) and thus indistinguishable from that predicted by the multiple-

trapping model.

Furthermore, Arrhenius behavior with typical activation energies of 0.10–0.15 eV are
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commonly  found  in  the  experiments38 for  nanocrystalline  TiO2.  Best  agreement  with  the 

simulation data is found for  T0 = 800 K and ®l = 0.5 nm. Again the fact that there exists a 

well-defined  transport  level  in  the  regimen  relevant  for  the  functioning  of  DSC under 

operating conditions produces Arrhenius like behaviour like the multiple-trapping model.

In summary, the random walk numerical simulation (RWNS) method has been used to 

compute diffusion coefficients for hopping transport in a fully disordered medium at finite 

carrier concentrations. The computed diffusion coefficient shows an exponential dependence 

with respect to Fermi-level and Arrhenius behavior with respect to temperature, what indicates 

that there is a well-defined transport level implicit to the system dynamics. To establish the 

origin of this transport level histograms to monitor the energies of the most visited sites have 

been constructed. In addition, we have constructed “corrected” histograms where backward 

moves are removed. The result is that since these moves do not contribute to transport, the 

latter histograms provide a better estimation of the effective transport level energy.

However, the difficulty  of  predicting the real  transport  energy from the  simulation 

suggests that the best method to estimate its value could be from the results of the diffusion 

coefficient  itself.  Hence,  the  effective  transport  level  would  be  defined  as  the  value  that 

reproduces  the  “experimental”  Dj via  Eq.  (2.39).  This  value  will  always lie  between the 

classical value of the transport energy (Eq. (2.11)) and E = 0.

References to chapter 4

(1) O’Regan, B.; Gratzel, M. Nature 1991, 353, 737–740.

(2) Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Advanced Functional Materials 2001, 

11, 15–26.

(3) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, 

R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539–541.

(4) Forrest, S. R. Nature 2004, 428, 911–918.

(5) Bisquert, J. Physical Chemistry Chemical Physics 2008, 10, 1–20.

(6) Benkstein, K. D.; Kopidakis, N.; Lagemaat, J. van de; Frank, A. J. Journal of Physical  

Chemistry B 2003, 107, 7759–7767.

(7) Anta, J. A.; Morales-Florez, V.  Journal of Physical Chemistry C 2008,  112,  10287–

10293.

88



Chapter 4      Hopping transport at finite carrier concentrations

(8) Bisquert, J. Journal of Physical Chemistry C 2007, 111, 17163–17168.

(9) Arkhipov, V. I.;  Heremans,  P.;  Emelianova,  E.  V.; Adriaenssens,  G.  J.;  Bassler,  H. 

Applied Physics Letters 2003, 82, 3245–3247.

(10) Baranovskii, S. D.; Thomas, P.; Adriaenssens, G. J.  Journal of Non-Crystalline Solids 

1995, 190, 283–287.

(11) Arkhipov, V. I.; Emelianova, E. V.; Adriaenssens, G. J. Physical Review B 2001, 6412.

(12) Grünewald, M.; Thomas, P. Physica Status Solidi (b) 1979, 94, 125–133.

(13) Shapiro, F. R.; Adler, D. Journal of Non-Crystalline Solids 1985, 74, 189–194.

(14) Li, L.; Meller, G.; Kosina, H. Applied Physics Letters 2008, 92.

(15) Novikov, S. V.; Malliaras, G. G. Physica Status Solidi B-Basic Solid State Physics 2006, 

243, 387–390.

(16) Novikov, S. V.; Dunlap, D. H.; Kenkre, V. M.; Parris, P. E.; Vannikov, A. V. Physical  

Review Letters 1998, 81, 4472–4475.

(17) Tessler, N.; Preezant, Y.; Rappaport, N.; Roichman, Y. Advanced Materials 2009,  21, 

2741–2761.

(18) Gratzel, M. Nature 2001, 414, 338–344.

(19) Bisquert, J. Physical Chemistry Chemical Physics 2008, 10, 49–72.

(20) Hamann, T. W., J., R. A. Energy & Enviromental Science. 2008, pp. 66–78.

(21) Bisquert, J. Journal of Physical Chemistry B 2004, 108, 2323–2332.

(22) Anta,  J.  A.;  Mora-Sero,  I.;  Dittrich,  T.;  Bisquert,  J.  Physical  Chemistry  Chemical  

Physics 2008, 10, 4478–4485.

(23) Nelson, J. Physical Review B 1999, 59, 15374–15380.

(24) Anta, J. A.; Nelson, J.; Quirke, N. Physical Review B 2002, 65.

(25) Nelson, J. Physical Review B 2003, 67.

(26) Anta, J. A. Energy and Enviromental Science 2009.

(27) Anta, J. A.; Mora-Sero, I.; Dittrich, T.; Bisquert, J.  Journal of Physical Chemistry C 

2007, 111, 13997–14000.

(28) Miller, A.; Abrahams, E. Physical Review 1960, 120, 745–755.

(29) Parris, P. E. The Journal of Chemical Physics 1998, 108, 218–226.

(30) Hartenstein, B.; Bässler, H. Journal of Non-Crystalline Solids 1995, 190, 112–116.

(31) Arkhipov, V. I.;  Heremans,  P.;  Emelianova,  E.  V.; Adriaenssens,  G.  J.;  Bassler,  H. 

Journal of Physics-Condensed Matter 2002, 14, 9899–9911.

(32) Baranovskii,  S. D.;  Cordes, H.;  Kohary, K.;  Thomas, P.  Philosophical Magazine B-

Physics  of  Condensed  Matter  Statistical  Mechanics  Electronic  Optical  and  Magnetic  

Properties 2001, 81, 955–964.

(33) Cleve, B.; Hartenstein, B.; Baranovskii, S. D.; Scheidler, M.; Thomas, P.; Baessler, H. 

89



Hopping transport at finite carrier concentrations            Chapter 4

Physical Review B 1995, 51, 16705.

(34) Reed, D. A.; Ehrlich, G. Surface Science 1981, 102, 588–609.

(35) Uebing, C.; Gomer, R. Journal of Chemical Physics 1991, 95, 7626–7635.

(36) Myshlyavtsev, A. V.; Stepanov, A. A.; Uebing, C.; Zhdanov, V. P. Phys. Rev. B 1995, 52, 

5977–5984.

(37) Bassler, H. Physica Status Solidi B-Basic Research 1993, 175, 15–56.

(38) Boschloo, G.; Hagfeldt, A. Journal of Physical Chemistry B 2005, 109, 12093–12098.

(39) Vissenberg, M.C.J.M. Physical Review B 1998, 57, 12964.

     (40)   Peter, L. M. Journal of Physical Chemistry C 2007, 111, 6601–6612.
     (41)  Petrozza, A.; Groves, C.; Snaith, H. J. Journal of the American Chemical Society 2008, 130, 

12912–12920.

90



CHAPTER 5

Determination  of  the  Electron  Diffusion 
Length  in  Dye-sensitized  Solar  Cells  by 
Random Walk Simulation

The  diffusion  length  is  a  crucial  parameter  controlling  the  electron  collection 
efficiency in dye-sensitized solar  cells  (DSC). In this  Chapter,  we carry out  a 
direct computation of this parameter for a DSC with a short diffusion length by 
running a random walk numerical simulation with an exponential distribution of 
trap states and explicit incorporation of recombination. The diffusion length and 
the  lifetime are  estimated  from the  average distance  travelled  and the  average 
survival  time  of  the  electrons  between  recombination  events.  The  results 
demonstrate  the  well-known  compensation  effect  between  diffusion  and 
recombination that keeps the diffusion length approximately constant on a wide 
range of illumination intensities or applied biases. The assumptions considered in 
the present model indicate that the two alternative views described in the literature 
to rationalize this effect (either “dynamic” or “static”) are equivalent.
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5. Determination of the Electron Diffusion Length in Dye-
sensitized Solar Cells by Random Walk Simulation

5.1. Introduction

The good performance of  DSCs1,2 and other new generation solar cells relies on the 

favorable  dynamic  competition3–5 between  photoinduced  processes  and  recombination 

pathways that cause a reduction of the collection efficiency. Among the first, the transport of 

photogenerated  electrons  through  the  semiconductor  nanostructure  is  central  for  good 

performance.  For  a  DSC device  to  work  efficiently,  photogenerated  electrons  travelling 

through the semiconductor nanostructure should be collected to a fraction close to a 100%. As 

the electron diffusion length Ln represents the distance that electrons travel on average before 

recombining with an electron acceptor, efficient cells must be characterized by Ln values that 

exceed the semiconductor film thickness.

As we pointed out in Chapter 2, it has been observed experimentally in common DSCs 

that  the  electron  diffusion  length  remains  approximately  constant  on  a  wide  range  of 

illumination  intensities  or  applied  biases6–8.  This  behaviour  arises  from  the  opposite 

dependences  of  Dn and  ¿n with  respect  to  the  applied  bias,  which  makes  their  product 

approximately  constant.  In  the  one  hand,  the  diffusion  coefficient  increases  when  the 

illumination is augmented (or a more negative potential is applied). In contrast, the lifetime 

becomes shorter when the light intensity or the negative applied potential is increased. While 

the former is often explained by a trap-filling mechanism either in the context of the multiple-

trapping model or the hopping model, the latter is somehow a more complicated effect to 

rationalize and two different views can be found in literature.

On the one hand, it can be assumed that if the electron transport becomes faster when 

the Fermi level is raised, then the probability for an electron to find an electron acceptor is 

larger, so that the electron lifetime is shortened. We call this interpretation the “dynamic” 

view and it  can  be  found in  the  works  of  Nelson  et  al.9, Kopidakis  et  al10, Anta  et  al11, 

Villanueva  et al.12,13 Also Petrozza and  coworkers14 discussed  recombination in  connection 

with this "dynamic" view. On the other hand, a careful analysis of the multiple-trapping model 

under the assumption that  the rates for trapping and detrapping are much higher than the 

typical recombination rate, demonstrate that free and trapped electrons maintain a common 

equilibrium even if the system is perturbed by, for instance, a recombination event. This result
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is due to Bisquert and  Vikhrenko15 and we call it the “static” view (in fact, this is usually 

referred  to  as  the  “quasi-static  approximation”,  described  in  Chapter  2).  From  these 

considerations, a constant diffusion length is derived (see Eq. (2.58)). The approximation of 

Bisquert and Vikhrenko demonstrates that it is not necessary to resort to a dynamic, transport-

limited mechanism to explain the observed behaviour of the lifetime and the diffusion length.

As discussed in Chapter 2,  a later  study16 further clarified the interpretation of the 

electron lifetime, which was formulated in the form of Eq. (2.59), where ¿f is a free electron 

lifetime. This quantity is interpreted as the effective probability of survival of electrons in the 

conduction band. In general, ¿f depends on the specific recombination mechanism, and it will 

be a constant if the rate of recombination of free electrons is proportional to their density. 

However,  the  recombination  mechanism  may  involve  a  combination  of  charge  transfer 

channels, especially due to the contribution of a distribution of surface  states17,18.  In a first 

approximation the recombination rate is effectively observed to depend on a power on the free 

electron density13,19,20, , which has important implications for the variation of the 

diffusion length with bias illumination or potential  in the solar  cell19 (for a more detailed 

explanation of the origin of this "non-linear" recombination we refer the reader to Chapter 6). 

Thus, from Eqs. (2.18) and (2.59) we obtain

  (5.1)

which predicts that the diffusion length should increase with the steady-state Fermi level via 

the Fermi level dependence of ¿f. As a matter of fact, recent reports on DSCs indicate that the 

electron  diffusion  length  is  not  strictly  constant  but  it  increases  with  applied  voltage21–24. 

Specifically  the  study  by  Villanueva-Cab  and  coworkers25 has  carefully  determined  the 

variation of Ln at different bias illumination and good agreement has been found with the ¯-

recombination model. Hence, these recent reports suggest that equilibration (trapping) factors 

present in both the diffusion coefficient and the measured lifetime are essentially the same 

number,  , so that the asymmetry of these two quantities refers to the free electron 

lifetime, which causes a variation of the diffusion length.

The purpose of the work presented in this Chapter is twofold. On the one hand we 

pursue to compute the electron lifetime and electron diffusion length for a dye-sensitized solar 

cell, at potentiostatic conditions (fixed Fermi level) by means of the Random Walk Numerical 

Simulation (RWNS). On the other hand we intend to cast some light on the origin of the  

compensating behaviour of the electron diffusion length and to establish how the “dynamic” 

and the “static” views mentioned above are in fact equivalent. We will see that the RWNS
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method  employed  here,  although  based  on  dynamic  postulates  (random  generation  of 

detrapping  and  recombination  times)  reaches  a  quasi-stationary  state  that  reproduces  the 

theoretical  dependences  predicted  for  the  diffusion  coefficient  and  the  lifetime,  hence 

explaining the compensation behaviour).

5.2. Results and discussion

The procedure outlined in Chapter 3 permits us to run a multi-electron calculation at 

fixed density or Fermi level. However, to approach conditions similar to those typical of an 

operational cell, a huge amount of computer time is required. To save time when computing 

the electron diffusion length at realistic conditions, most of the simulations presented in this 

Chapter are carried out using the one-electron approximation, also described in Chapter 3. It 

is demonstrated25,26 that this procedure reproduces the electron diffusion coefficient of the full 

calculation with reasonable precision.

It  may be  argued  that  the  one  electron  calculation  does  not  correctly  capture  the 

slowing down of  the lifetime by the  trapping-detrapping process,  that  is  described in  the 

model by the factor . However, it must be observed that the main limiting factor in 

the  trapping-detrapping  dynamics  is  detrapping  from deep  traps,  and  the  fastest  of  such 

occupied traps are on average those at the Fermi level. Therefore the convenient truncation 

procedure still keeps the main aspect of the collective dynamics. This conclusion is  further 

supported when the results are compared with those of the time decay of the full population 

by recombination, as it will be discussed below.

The  RWNS  procedure  here  devised  allows  for  simultaneous  computation  of  the 

electron diffusion coefficient, the electron lifetime and electron diffusion length at the same 

Fermi level position.  In order to avoid excessive computational times,  we have taken into 

account parameters reported in the literature21,26,27 for a DSC with a solid-state hole conductor 

to carry out our calculations. However, in Chapter 6, simulations reproducing longer diffusion 

lengths  than  those  studied  in  this  Chapter  are  considered.  Hence  we  take  t0 =  10-14  s, 

T0 = 1100 K and T = 300 K. The total trap concentration is assumed to be28,29 Nl = 1027 m-3. In 

addition  one  recombining  trap  is  introduced  per  64000  normal  traps  and  a  further 

recombination probability of 0.05 is imposed. Finally a cut-off radius of 2.5 nm is introduced 

in the computation so that jumps to neighboured traps beyond this distance are not considered.
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With these parameters the simulation predicts an electron diffusion length of 1.6 m, which isμ  

consistent with the values reported in the literature21,27 for this kind of solid-state solar cell.

In  Fig.  (5.1) the time evolution of the derivative of the mean square displacement 

(related to the jump diffusion coefficient), the lifetime and the electron diffusion length is 

reported. It is observed that the simulation reaches rapidly a stationary situation in which the 

mean square displacement behaves linearly with time (constant time derivative) within the 

statistical  uncertainty  of  the  simulation  (normal  diffusion).  This  has  been  shown  to 

correspond, in multi-electron simulations, to the situation in which the electron population 

reproduces Fermi-Dirac statistics26. On the contrary, the lifetime and the diffusion length are 

found to reach the stationary state at longer times. This is easy to understand if we bear in 

mind that  the  characteristic  times  for detrapping (as  derived from Eq.  (3.1)  for electrons 

sitting at the Fermi level) are much shorter than the characteristic time for recombination (the

Fig. (5.1). Time evolution of the derivative of the mean square displacement (upper panel), 
electron lifetime (middle panel)  and electron diffusion length (lower panel)  in a  typical 
RWNS calculation carried out in  this work. Data shown correspond to a multi-electron 
calculation with 50 electrons in a simulation box of 18 × 18 × 18 nm3.

95



Determination of the electron diffusion length in dye-sensitized solar cells            Chapter 5

lifetime). In Table (5.1) values obtained for these characteristic times are reported. The results 

demonstrate that the assumption on which the quasi-static approximation is based (that is, that 

equilibration between free and trapped electrons much faster than recombination) holds in this 

case.  On  the  other  hand  the  simulation  time  is  long  enough  to  sample  efficiently  many 

recombination events so that the values of the lifetime and the electron diffusion length are 

estimated correctly.

Table (5.1): Characteristic times for the one-electron RWNS calculations performed in this Chapter.

EF / eV 
Release time 

from EF / s 
Average lifetime ¿n / s Total simulation time / s

-0.35  7.7 · 10-9   (8.13 ± 3.50)·10-5 0.05 

-0.45 3.7 · 10-7   (1.38 ± 0.22)·10-3 0.5 

-0.55 1.8 · 10-5   (2.22 ± 0.46)·10-2 1

-0.65 8.5 · 10-4   (3.75 ± 0.63)·10-1 50

Results for the diffusion coefficient, the lifetime and the diffusion length as a function 

of Fermi level can be found in Fig. (5.2). The RW simulation provides a nice demonstration of 

the  compensation  effect  discussed  in  the  Introduction.  The  diffusion  coefficient  scales 

exponentially with Fermi level as reported before26,30 and shown in Chapter 4 (although for a 

hopping model). The slopes obtained from the simulated data were 31.86 eV -1 and 28.09 eV-1 

for  Dj and  ¿n respectively.  These  values  compare  favourably  with  the  predictions  of  the 

theoretical formula derived in the context of the multiple-trapping model (see Eq.  (2.38))30. 

This equation predicts 28.15 eV-1 for T = 300 K and T0 = 1100 K. As a consequence of the 

equal but opposite behaviours of  Dj and  ¿n, the electron diffusion length remains constant 

within the statistical uncertainty of the simulation, in accordance with the predictions of the 

diffusion-limited model or the quasi-static approximation.

It is important to establish whether the average lifetime and average diffusion length 

extracted from the simulations correspond to the real quantities occurring in Eqs. (2.59) and 

(2.57). As mentioned above, the diffusion length appears in the solution of the 1-D diffusion 

equation  with  a  first-order  recombination  term31,32.  On  the  other  hand  the  lifetime  is  the 

parameter controlling the exponential time decay of a first-order recombination reaction. In 

order to clarify this point we have computed the distribution of survival times and distances 

travelled  by  the  electrons  before  they  recombined  (see  Fig.  (5.3)).  It  is  found  that  these

96



Chapter 5                 Determination of the electron diffusion length in dye-sensitized solar cells

Fig. (5.2). Jump diffusion coefficient (upper panel), electron lifetime (middle panel) and 
electron diffusion length (lower panel) vs. Fermi level. In the middle panel two methods to 
compute the electron lifetime are plotted: average of survival times (circles), time decays 
(triangles). Note that due to the logarithmic scale, the error bars fall within the symbol size  
in the case of the diffusion coefficient and the lifetime. 

distributions do indeed follow an exponential behaviour. However the result obtained for the 

distribution of distances do not fit to an exponential in the short lengths region. Ignoring this  

region  in  the  fitting,  we  obtain  reasonable  agreement  between  the  average  value  of  the 

diffusion  length  (1.62  ±  0.15  m)  and  that  derived  from  to  the  fitting  (1.44  m).  Theμ μ  

agreement is more remarkable for the lifetimes: 1.38 ± 0.22 ms (average) versus 1.23 ms 

(fitting).

The result of this analysis indicates that the average value obtained from the simulation 

correspond to the real diffusion length of Eq. (2.57). A similar assumption can be established 

for the  lifetime.  However,  it  must  be  born  in  mind that  this  is  normally introduced as  a 

collective magnitude, defined from kinetic equations based on total densities. We should then 

distinguish between the individual magnitudes (computed by the simulation) and collective 

parameters  in  analogy  with  the  distinction  between  “jump”  and  “chemical”  diffusion
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Fig.  (5.3).  Distribution  of  survival  times  (upper  panel)  and  distances  traveled  by  the 
electrons  before  recombination  (lower  panel)  as  obtained  from  one-electron  RWNS 
calculations at EF = - 0.45 eV. The solid lines stand for fittings to an exponential function. 
The data are normalized with respect to the first point in the distribution. 

coefficient.33 Note in this regard that a simple relationship is found for the chemical diffusion 

coefficient if the trap distribution is exponential (Eqs. (2.23 and (2.37)).

            (5.2)

This relation states that the Fermi level dependence of both diffusion coefficients is the same, 

at least for an exponential distribution. We might think that the same relation holds for the 

lifetimes since an exponential behaviour with respect to Fermi level is obtained.

However,  as  we  will  show  below  by  multi-electron  calculations,  this  lifetime  is 

observed to  correspond  to  the  collective lifetime  ¿n.  Hence  we can  compare  directly  the 

electron diffusion length obtained from the simulation average to that derived from Eq. (2.57). 

Results can be found in Table (5.2).
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Table (5.2). Values of the chemical diffusion coefficient, lifetime at different Fermi levels as obtained from RW 
simulation. Values of  Ln have been obtained from Eq. (2.57) and RW simulation respectively. Note that the 
diffusion coefficients shown are extracted from the simulated ones according to Dn = (T0/T)Dj.

EF  / eV Dn / cm2s{1 ¿n / s
Ln / ¹m

Eq. (2.57)

Ln / ¹m

(RWNS)

-0.35 (5.17 ± 0.08)·10-4 (8.13 ± 3.50)·10-5 2.50 ± 0.46 1.61 ± 0.21

-0.45 (2.80 ± 0.42)·10-5 (1.38 ± 0.22)·10-3 1.97 ± 0.30 1.62 ± 0.15

-0.55 (1.37 ± 0.37)·10-6 (2.22 ± 0.46)·10-2 1.74 ± 0.42 1.61 ± 0.18

-0.65 (3.45 ± 1.18)·10-8 (3.75 ± 0.63)·10-1 1.14 ± 0.29 1.62 ± 0.20

We observe  that  the  diffusion  length  obtained  “indirectly”  does  not  preserve  the 

constancy with respect  to Fermi level.  This is  a  consequence of  the fact that,  due to the 

statistical uncertainty of the simulation, the slopes obtained for  Dj and  ¿n, are not exactly 

equal. In any case, our results show that the individual quantities maintain the same behavior 

that  their  “chemical”  counterparts.  Hence,  the  compensation  behavior  predicted  by  the 

theories.

The determination of the lifetime, above, has been obtained from a direct computation 

of the survival time of the electron population. However, experimentally the lifetime is usually 

obtained by monitoring the decay of the Fermi level. To provide further support to the method 

employed here to compute the electron lifetime, we have carried out multi-electron random 

walk  simulations  aimed  to  resemble  a  typical  open-circuit  voltage  decay  experiment34,35. 

Hence,  we  have  run  simulations  with  an  initial  number  of  electrons  that  correspond 

approximately to the Fermi levels studied in Table (5.2) and with no energy cut-off in the trap 

energy distribution. The calculation is performed with the same recombination features as in 

the one-electron simulations (same concentration of recombining traps and same probability 

of recombination). However, in this case no new electrons are introduced after recombination 

so that the concentration of electrons in the sample decreases with time. This a Random Walk 

method analogous to that used by Petrozza et  al.14 The analysis of this decay at short times 

shows that it  is exponential,  and the numerical fitting yields an approximate value of the 

lifetime at the corresponding value of the Fermi level. Results are shown in Fig. (5.2) (middle 

panel, triangles) and in Fig. (5.4). It is observed that the lifetimes reproduce quite accurately 

the values obtained from the "average" method. The new diffusion lengths shown in Table 

(5.3)  also  remain  approximately  constant,  within  the  statistical  error,  upon  Fermi  level 

variation.
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Fig.  (5.4). Variation of the electron concentration with time as obtain from multi-electron 
random walk  simulation  including  explicit  recombination  with  recombining  traps.  The 
results correspond to an approximate initial Fermi level of  EF = - 0.561 eV. The red line 
represent the fit to an exponential function at short times.

Table (5.3). Values of the lifetime at different Fermi levels as obtained from multi-electron RW simulations and 
analysis of the decay in the population of electrons (See Fig. (5.4)). The Fermi levels were extracted from fitting 
the occupation probability in the multi-electron calculation. Values of LnEq have been obtained from Eq. (2.57).

EF  / eV ¿n / s
Ln / ¹m

Eq. (2.57)

-0.36 (3.15 ± 0.04)·10-5 1.28 ± 0.02

-0.46 (1.25 ± 0.02)·10-3 1.87 ± 0.16

-0.56 (3.87 ± 0.10)·10-2 2.30 ± 0.34

-0.66 1.37 ± 0.09 2.17 ± 0.44

At this point it is important to discuss the two “views” presented at the beginning of 

this chapter. We must take into account that the RWNS procedure is a dynamic method in 

which electrons move on a random network of traps within a certain time span. If the Fermi
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level is raised, the electrons move faster on average, and therefore they are more likely to 

encounter a recombining trap. This explains why the lifetime becomes shortened when the 

Fermi  level  is  raised  and  supports  apparently  the  “dynamic”  view of  the  recombination 

process. However it must be taken into account that the simulation reaches at a certain time an 

stationary situation in which the diffusion coefficient (at earlier times) and the lifetime (at 

later  times)  remain  constant  for  the  same  Fermi  level.  In  multi-electron  calculations  this 

situation is found to correspond to a situation in which the electron population relaxes to the 

equilibrium Fermi distribution.26 Hence, the results provided by the simulation arise from the 

fact that the system is at internal equilibrium with a trapping-detrapping rate which is much 

faster  than  the  characteristic  recombination  time.  Therefore,  the  “static”  view  in  which 

diffusion coefficient and lifetime arise from a quasi-equilibrium with a well-defined Fermi 

level is in accordance with the results analyzed here. 

On the  basis  of  the  preceding results  we can  further  discuss  the  interpretation  of 

transport and recombination in a DSC according to the two approaches that have been used in 

the literature. The transport limited recombination is a statement that recombination becomes 

faster (shorter lifetime) as transport becomes faster. Inherent to multiple trapping mechanisms 

is a displacement of electrons in the conduction band. Given a distribution of recombining 

traps, the only factor causing an acceleration of recombination at higher Fermi level is the 

progressive  filling  of  deep  traps.  But  this  is  precisely  the  same  process  causing  the 

acceleration of the transport rate. So indeed, transport limited recombination and quasi-static 

model describe a unique model.

As  discussed  in  the  introduction,  recombination  shows  additional  features  (i.e.  a 

power-law dependence on free electron density) to those derived from the simple multiple-

trapping  description.13,14,19,25 This  means  that  the  compensation  effect  that  we  have  just 

demonstrated will be only partly satisfied and the electron diffusion length is not a constant. A 

more detailed description of this, with the reproduction of non-constant diffusion lengths will 

be presented in Chapter 6.

5.3. Conclusions to Chapter 5

One-electron random walk simulations within the multiple- trapping approach have 

been carried  out.  Direct  computation  of  the  diffusion  length  has  been  implemented,  and 

values of the order of micrometers have been obtained for realistic parameters extracted from
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recent literature. We find that the diffusion length maintains a constant value upon Fermi level 

variation.  Electron  lifetimes at  different  densities  have also been computed,  and we have 

obtained an exponential dependence with respect to the Fermi level, producing linear-log plots 

with  slopes  quite  similar,  although  with  opposite  sign,  also  in  agreement  with  previous 

experimental and theoretical studies.

The numerical method and the results  obtained in this  work indicate that both the 

“dynamic” and the “static” views to explain recombination in  DSCs are indeed equivalent. 

Extensive multielectron calculations that take into account a more fundamental point of view 

that can reproduce, at a finer level, the behaviour of the diffusion lengths, are reported in  

Chapter 6. 
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CHAPTER 6

Origin of Non-linear Recombination in 
Dye-sensitized Solar Cells

In this Chapter, the transport and recombination mechanisms of photogenerated 
electrons  in  dye-sensitized  solar  cells  are modeled  by random walk  numerical 
simulations with explicit description of the electron transfer process in terms of 
the Marcus-Gerischer model. The recombination rate is computed as a function of 
Fermi  level  in  order  to  extract  the  electron  lifetime  and  its  influence  on  the 
electron  diffusion  length.  The  simulation  method  allows  to  relate  the 
recombination reaction  order  to  the  trap  distribution  parameter,  the  band edge 
position and the reorganization energy. The results shows that a model involving 
electron transfer from both shallow and deep traps adequately reproduces all the 
experimental phenomena, including the dependence of the electron lifetime and 
the  electron  diffusion  length  on  the  open-circuit  voltage  when  either  the 
conduction band or the redox potential are displaced. Non linear recombination is 
predicted when the electron diffusion length increases with Fermi level, which is 
correlated with a  reaction order  different  from one,  in  an open-circuit  voltage 
decay “experiment”.
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6.  Origin  of  Non-linear  Recombination  in  Dye-sensitized 
Solar Cells

6.1. Introduction

In  nanostructured  metal  oxide  electrodes,  recombination  between  photogenerated 
electrons  in  the  oxide and electron acceptors  in  the  electrolyte and at  the  semiconductor 
surface  (dye cations)  is  a  complex process  in  which the  energetics  of  the  semiconductor 
electronic structure and the distribution of relevant acceptor states play an important role. In 
addition, spatial disorder such as the position of the reaction centers (recombination sites, 
traps, etc...) and charge transport in the nanostructured oxide and in the liquid electrolyte also 
influence the kinetics. Charge transfer reactions across the semiconductor-electrolyte interface 
also  include  electron  injection  and dye regeneration1,2.  The  adequate  description  of  these 
important  charge  transfer  reactions  is  now  becoming  a  primary  topic  in  the  theoretical 
description of nanostructured solar cells.

The fact that the recombination kinetics in the  DSC exhibit non-linear features was 
noticed more than ten years ago in the works by Schlichtörl, van de Lagemaat, Frank, Peter 
and coworkers3–6. Later, the importance of non-linear recombination kinetics in DSC has again 
been stressed.7–10 Non-linear features are detected in the non-ideal dependence of the open-
circuit photovoltage on illumination intensity (with an slope larger than 59 mV/decade) and in 
the  non-ideal  behaviour  of  the  recombination  resistance  with  respect  to  applied  bias 
(measured via impedance spectroscopy11–13). Moreover, non-linear effects result in the increase 
of the electron diffusion length as the electron density in the semiconductor is increased8–10,14.

Non-linear recombination is normally expressed in terms of the kinetic equation

 (6.1)

A reaction  order  (¯)  of  one,  indicative  of  simple  unimolecular  recombination  via 
conduction-band states, leads to an ideal slope of 26 mV (59 mV/decade) in the open-circuit  
voltage (VOC) - log(illumination intensity) plot15 and to an electron diffusion length that is 
constant with respect to illumination intensity. However, reaction orders ranging between 0.6 
and 0.8, indicative of sub-linear recombination kinetics with respect to free electron density, 
are  generally  found in  dye-sensitized  solar  cells10,13,16–19.  The  reaction  order  has  important 
implications for the photoconversion efficiency. Assuming an ideal dependence of the free
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Fig.  (6.1).  Comparison  between  linear  (¯ =  1)   and  sub-linear  (¯ <  1)  recombination 
kinetics. k1 is the pseudo-first order recombination constant. Taken from reference 22

electron density with respect to voltage, the described recombination rate leads to a current-
voltage curve given by8 

 (6.2)

which is equal to Eq. (1.1) with ¯ = 1/m. Eq. (6.2) predicts that reaction orders significantly 

smaller  than  one  lead  to  current-voltage  curves  with  small  fill  factors,  hence  showing  a 

reduced efficiency with respect to an “ideal diode” solar cell. The recombination losses can 

also  be  enhanced  under  illumination,  as  recently  discussed20,21.  Recently,  non-linear 

recombination kinetics has been included in the numerical description of the  I-V curve of a 

DSC22.

In this Chapter we focus on the attempt to understand the effect that the energetics of 
the redox pair and semiconductor produce on the transport-recombination kinetics. In addition 
we pursue to determine the fundamental origin of a recombination order different from one. 
To do  so,  we  analyze  the  recombination  kinetics  at  the  semiconductor  oxide-electrolyte 
interface starting from the molecular mechanisms involved in the electron transfer reaction. 
As it is generally accepted that electron trapping plays a significant role in the recombination
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reaction7,23,24, we focus here on the interplay between the energetics of the electrons in the 
semiconductor nanostructure and the density of states of the electron acceptors. Hence, we 
combine  the  theoretical  description  of  trap  density  distributions25,26 and  trap-limited 
transport14,27–29 with the well-known Marcus-Gerischer (MG)15,30 theory of charge transfer at 
semiconductor-electrolyte interfaces. 

The MG model has been utilized13,31 to describe the kinetics or recombination from a 
distribution  of  localized  states  to  a  distribution  of  acceptor  states  in  the  electrolyte.  In 
summary,  their  approach  is  based  on  Eq.  (2.53).  This  equation  simply  states  that  the 
recombination rate is a consequence of the interplay of three contributions: the number of 
states available at each value of the energy in the semiconductor (described typically by an 
exponential distribution for an inorganic semiconductor), the probability that this energy state 
is occupied (Fermi-Dirac) and the number of states available in the electrolyte, as determined 
by  the  MG  formula.  To  obtain  the  net  recombination  rate  the  product  of  these  three 
probabilities should be integrated to all values of the energy between the redox Fermi level 
(Eredox) and the semiconductor conduction band edge (Ec). Starting from this basic scenario, 
it  has  been  derived  an  approximate  analytical  expression  for  the  recombination  rate13,31 

applying the zero temperature limit of the Fermi-Dirac distribution and assuming that the 
Marcus reorganization energy is much larger than the photovoltage.

According to this simplified formalism, the reaction order is given by Eq. (2.56).

             (6.3)

Hence, for characteristic temperatures or around 900-1200 K,26,32 recombination orders of ~ 
0.75-0.85 are predicted, close to the experimental values. This model is also successful to 
predict the correct temperature dependence of the recombination order7, although abnormally 
high characteristic temperatures seem to be required to fit the experimental data. On the other 
hand, to assume that the reorganization energy is much larger than the photovoltage may be 
too strong of an approximation, since reorganization energies of the order of 0.4-1.2 eV are 
commonly reported for typically used redox couples24,30,33–35.  An additional complication is 
that assuming that the reorganization energy is very large, excludes the possibility that the 
system may enter  the  Marcus  inversion  regime,  a  situation  that  has  been claimed  in  the 
literature10,30.

MG theory has recently also been applied by Ondersma and Hamann35 to successfully 

predict the shape of the electron lifetime curve versus voltage in  DSCs with outer-sphere
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redox shuttles. The formalism of these authors is also based on the description represented by 

Eq. (2.53), but with explicit consideration of inner and outer reorganization energies (see Eq. 

(2.52)).  The model devised by these authors includes electron transfer mediated by surface 

states, that can play a significant role in the recombination reaction. More recently Ansari-Rad 

et  al.36 also  use Eq.  (2.53) as  a  starting  point  to  devise a  theoretical  model  where the  ¯ 

exponent is calculated as a function of Fermi level, showing that it is always less than unity, 

except when the Fermi level approaches the conduction band. It has to be noted that most of  

these previous studies focused on the determination and analysis of the electron lifetime, a 

magnitude which is usually measured at open-circuit or at a position-independent Fermi level. 

However,  a  solar  cell  at  working  conditions  does  not  operate  at  open  circuit,  but  in  the 

presence  of  a  density  gradient,  which drives  electrons  to  the  external  contact.  Hence the 

interplay between transport and recombination (as manifested by the value of the diffusion 

length) is decisive for good electron collection at real operating conditions.

In the previous Chapter,  we applied the random-walk numerical simulation method 
(RWNS)27–29 to evaluate the lifetime (¿n) and the diffusion length (Ln) for electrons moving in 
an  exponential  distribution  of  trap  energies.  This  procedure  requires  to  incorporate 
recombination kinetics in the algorithm, which was assumed to occur according to a constant 
probability. This way, only trapping/detrapping events and the population of the electronic 
states (traps) contribute to the Fermi level dependence of  ¿n and  Ln  . Using this simplified 
method, the compensation effect predicted by various authors37–40 can be nicely reproduced 
from a microscopic mechanism of transport/recombination. In this Chapter we extend this 
method  by  introducing  a  non-constant  recombination  probability,  which  depends  on  the 
energy of the donor and the acceptor state according to the MG model15,41.  As stated in Eq. 
(2.53), the probability of recombination and the recombination rate should depend on the 
population of electronic states in the semiconductor (controlled by the Fermi level position) 
and the reorganization energy of the redox couple in the electrolyte. It is expected that all 
these microscopic parameters produce complex kinetics that cannot be described by a reaction 
order of one.

6.2. Methodology

The aim is two-fold: on the one hand we intend to analyse the problem posed by the 
kinetic equation and Eq  (2.53)  from first principles, using RWNS, a versatile tool to study, 
simultaneously, transport and recombination. On the other hand we intend to extend previous 
theoretical work by establishing unambiguously the effect of the reorganization energy and
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the relative positions of redox energy and conduction band on both the diffusion length and 
the lifetime.

To do so, we have introduced an energy-dependent recombination mechanism in the 
RWNS algorithm, which is described by the MG model. The MG model has been introduced 
previously  by  a  number  of  authors7,15,30,31,35 to  describe  recombination  in  DSCs.  To our 
knowledge, this work represents the first time that MG theory is incorporated in a RWNS 
calculation. Basically, this is done by giving a recombining character to the network of traps 
in such a way that its energy distribution serves as the medium from which a direct charge-
transfer from traps is applied. However, in order to achieve a complete recombination model 
two alternative stochastic procedures based on the MG description have been implemented. It 
has to be noted that these two models represent different recombination mechanisms, in which 
transport plays a distinct role.

The first recombination procedure brings about the computation of a probability of 
recombination PR each time an electron reaches a trap of energy E. This is obtained via the 
following expression

 (6.4)

with  kr0 = 2k0c,  where  k0 is  a time constant for tunnelling and  c is  the concentration of 
oxidized species in the electrolyte in accordance to Eq. (2.50). This description, which we will 
call Model 1, can be seen as an extension of the calculations of Chapter 5 in which a constant 

recombination probability is replaced by a more realistic energy-dependent probability14. By 
this procedure we can simulate the interplay between the random walk of the electrons and the 
charge transfer to the electrolyte.  

The second recombination procedure involves a formulation based on times instead of 
probabilities. Thus, the waiting times numerical algorithm is modified in such a way that each 
electron is assigned a recombination time along with its detrapping time. These recombination 
times are computed according to the inverse of Eq. (6.4)

 (6.5)

where  R is a random number uniformly distributed between 0 and 1 and  tr0 is a adjustable
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prefactor that controls the time scale of recombination. The implementation of this algorithm 
(that we will call Model 2) is as follows: once charge carriers have been injected, detrapping 

and recombination times are computed for all of them via Eqs. (3.1) and (6.5) respectively. 
Both types of times are stored in the same list of  waiting times in such a way that if the 
minimum time corresponds to detrapping, that carrier is selected to move into its target site.  
On the contrary, if the minimum time corresponds to recombination, the carrier is removed 
from the sample. Once executed either the move or the recombination, both detrapping and 
recombination times of the rest of the carriers are reduced by tmin.

A mechanism based on times rather than on rates or probabilities leads, in principle, to 
the  same  results  because  according  to  Eqs.  (6.4) and  (6.5) a  low recombination  time  is 
equivalent  to  a  high  recombination rate  (and  vice  versa).  However,  there  is  an  important 
difference between both models, which is  based on the sequence in which the simulation 
moves are executed.  In Model  1 the  MG formula is  applied  after  each detrapping event. 

Hence, transport will influence recombination to some extent. On the contrary, in Model 2, 

the application of the MG formula runs in  parallel.  Hence transport and recombination are 
separated  and  uncorrelated.  Furthermore,  in  Model  2 direct  transfer between  trapped 

electrons and electrolyte acceptors is possible, whereas in Model 1, only electrons that have 

been  previously  detrapped  (i.e.  quasi  free electrons),  are  allowed  to  recombine.  In  both 
models,  however,  recombination  can  take  place  starting  from any trap  state  (either  via  a 
previous detrapping or by direct transfer) and not only from the conduction band.38 This is a 
reasonable assumption if  we consider that  the great  majority of electrons will  be trapped 
(approximately 90% as recently estimated)24 and that electrons spend a much longer time in 
trapped states than in the conduction band.

It must be noted that in the RWNS formalism utilized in this thesis there is strictly no 
conduction band level. Ec is just the parameter that determines the transport activation energy 
in the multiple-trapping description of Eq. (3.1) and the origin of energies in the exponential 
distribution of Eq. (2.2). Furthermore, simulation times are always normalized with respect to 
t0 in Eq. (3.1), which represents the average residence time of electrons in the conduction 
band. Hence, electrons do no effectively stay in the conduction band and they cannot undergo 
direct recombination from the conduction band, within this particular formalism. However, as 
the mechanism of recombination based on Eq. (6.4) (Model 1) involves that electrons should 

get detrapped before they have the possibility to undergo a recombination process, it can be 
seen as an alternative view to a “conduction band recombination probability” under certain 
conditions. In fact,  if we bear in mind that detrapping times from shallow traps are much 
shorter than from deep traps and that most of the sites have energies close to the “conduction 
band”  (for  an  exponential  distribution)  one expects that  Model  1 samples  preferentially 

recombination from shallow traps whereas Model 2 samples recombination from deep traps.42
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Fig. (6.2). Illustration of the transport and recombination processes studied in this Chapter. 
The meaning of the reorganization energy,  ¸, and the Fermi level position (showed as a 
shaded region) is explicitly indicated in the figure.

In this Chapter we study the Fermi level dependence of the electron diffusion length 
for both kinds of recombination mechanisms. In addition, we present the results for a hybrid 
model,  which  is  a  combination  of  both.  In  all  cases,  the  recombination  rate  of  specific  
electrons will depend on their energies and this will introduce a number of  recombination 
events  in  the  simulation  for  a  given set  of  input  parameters.  Hence,  the  objective of  the 
simulation procedure is to store the time and the distance that electrons survive/travel before 
they  recombine.  As  we will  see  below, only  the  hybrid  model  is  capable  of  adequately 
reproducing the behaviour of the system with respect to Fermi level and conduction band 
position. In Fig. (6.2), a schematic representation of the numerical procedure and the physical 
processes  involved  is  shown.  Using  the  different  models,  we  perform  random  walk 
simulations of two experiments that are generally used to characterize recombination kinetics: 
(i) determination of kinetic parameters under constant illumination intensity and under open 
circuit voltage conditions; an (ii) open circuit voltage decay measurements upon switching off 
the light source.

In a first kind of simulations (steady-state RWNS), as the solar cell is simulated at 
open-circuit  conditions  and  under  constant  illumination  intensity  (fixed  Fermi  level),  a 
constant electron density should be maintained in the sample. This is achieved by imposing 
the restriction that when an electron has just recombined, another electron is immediately 
injected into the system in another place at random. For this  fresh  electron, both time and
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distance are reset such that the average time and distance between recombination events can 
be computed, stored and represented versus total simulation time. Finally, these magnitudes 
are renormalized by the total  number of electrons and the total  number of recombination 
events so that the result is effectively an average time and distance for one single electron. We 
have demonstrated in Chapter 5 that this procedure yields true electron lifetimes and diffusion 
lengths14.

In a second kind of simulations (transient RWNS), the restriction of re-introducing 
electrons  is  removed.  This  procedure  makes it  possible  to  simulate  a  typical  open-circuit 
voltage  decay  experiment41.  As  no  new electrons  are  introduced  after  recombination,  the 
concentration of electrons in the sample decreases with time according to certain kinetics. It  
has been found that this decay can be described by a power law, such that the reaction order ¯ 
with respect to free electron density can be extracted by means of a fitting procedure to the 
integrated version of Eq. (6.1). 

In Chapter 1 we saw that the electron lifetime is defined by Eq. (1.10). The lifetime is 

hence  defined as  the  variation of  the  recombination  rate  for  small  variations  of  the  total 

density, and it is the lifetime extracted from small-perturbation techniques such as impedance 

spectroscopy. Alternatively a pseudo-first  order lifetime can be defined20,22,36,43 In the same 

way, the electron lifetime with respect to the Fermi level can be monitored from the decay 

according to7,44

 (6.6)

As shown in Ref. 36, both lifetimes are not equal. In Ref. 22 it has been shown that the two 

life times are proportional to each other and related by a constant (equal to ®/¯). 

In  this  Chapter  we use  Eq.  (6.6)  to  extract  the  lifetime from the  transient  RWNS 

calculations. It is shown that this procedure reproduces the values of lifetimes obtained from 

the "average" method described above, for the same Fermi level,  quite accurately. This is 

consistent with results contained in Chapter 5, where it was found that the distribution of 

survival times for electrons was exponential in a simulation performed at constant Fermi level, 

corresponding to  first-order  recombination kinetics.  The time constant  of  this  distribution 

coincided with the lifetime obtained by averaging the survival times of the electrons.

In order to keep the number of adjustable parameters as small as possible, we have 
employed  values  reported  in  the  literature  for  most  of  the  parameters  used  in  the
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simulations14,30.  Hence,  we use  T0 = 700-1100 K,  T = 300 K,  Nl = 1027 m-3 (meaning an 
average trap-trap distance of 1 nm) and t0 = 10-14 s. A cut-off radius of 1.5 nm is introduced in 
the simulation so that jumps to neighboured traps beyond this distance are not considered. To 
study the effect of a shift of the band edges, we have used two different values for the position 
of the conduction band extracted from the work of Jennings and Wang30: Ec = 0.95 eV for the 
case of no additives and Ec = 0.7 eV in the presence of 2M Li+ in the electrolyte solution. The 
only adjustable parameters are those controlling recombination (kr0 or  tr0 (or both) and ¸ ). 
Independent adjustment of  kr0 and  tr0 gives us freedom to favour one model over another. 
Both parameters depend on the distance between electron and acceptors and can vary with the 
composition of the electrolyte. For instance, addition of adsorptive species such us TBP or Li+ 

can increase the distance between electrons in the semiconductor and the redox-active ions, as 
suggested by Nakade et al.34 Furthermore, different tunnelling factors are expected for traps of 
different  energy.  However,  for  simplicity,  we  have  considered  both  kr0 and  tr0 factors 
independent of energy.

As can be seen in Appendix A, the adjustment of kr0 and tr0 for each model (and the 
ratio  of  them  in  the  case  of  a  combination  of  both)  does  not  modify  the  Fermi  level 
dependence of the lifetime and the diffusion length so we are able to represent the results 
normalized by the maximum value of the measured magnitudes in each case. Moreover, to 
avoid  excessive computational times, systems with relatively small  diffusion lengths have 
been simulated with the restriction that  it  must always be ensured that  the time scale for 
trapping/detrapping is much shorter than the time scale of recombination, as shown in our 
previous work14. Finally, a sufficient number of independent simulations (defined for different 
random number sequences) have been carried out in order to ensure good statistics in the final 
results.

6.3. Results and discussion 

Results of steady-state RWNS simulations using Model 1 for two different values of 

the reorganization energy are presented in Fig. (6.3) (upper panel). Electron diffusion length 
calculations are shown as a function of the energy difference EF { Eredox, which corresponds 
to  the  open-circuit  voltage  (Voc)  produced  by  the  solar  cell  at  steady-state.  In  the  dark, 
EF { Eredox  = 0, and the system remains in thermodynamic equilibrium.

It is observed that the diffusion length increases with  Voc with an energy-dependent 
recombination  probability  provided that  the  reorganization  energy is  sufficiently  low  (i.e. 
¸ = 0.2 eV). In contrast, for a higher reorganization energy (¸ = 0.6 eV) the electron diffusion
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Fig. (6.3).  Top:  Electron diffusion length calculated by steady-state RWNS calculations 
using  Model  1 for  two  values  of  the  reorganization  energy.  Bottom:  Distribution  of 
energies for electrons undergoing recombination. The same two values of the Fermi level 
are  shown  for  both  reorganization  energies:  EF {  Eredox =  0.25  eV  (solid  line)  and 
EF {  Eredox  = 0.07 eV (dashed line). The characteristic temperature of the trap energy 
distribution  utilized  in  the  simulation  was  T0 =  1100  K  and  a  band  offset  of 
Ec { Eredox = 0.7 eV was considered. 

remains constant. The predictions of  Model 1 presented in Fig. (6.3) can be explained as 

follows. For an exponentially increasing trap density distribution, the detrapping probability of 
electrons increases upon shifting the Fermi level to higher energies. As a consequence, the 
time spent in the nanostructured film is shorter, making recombination less likely. However, 
the probability of recombination also depends on the number of acceptor states, as described 
by Eq.  (6.4). At this point, two scenarios can be observed: (1)  Linear regime: for a redox 
couple with a reorganization energy larger than Voc, the recombination probability is increased 
due to the increase of the available acceptor states upon raising the Fermi energy. As a result, 
there is  a compensation effect that keeps the diffusion length approximately constant.  (2) 
Non-linear regime: for redox couples with a small reorganization energy, the recombination 
probability decreases with increasing Voc, when the system enters the Marcus inverted region. 
In this case, the diffusion length is expected to increase with increasing (open-circuit) voltage, 
since  the  recombination  kinetics  become slower  due  to  the  lower  probability  of  electron
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transfer to the solution.

The origin of the dissimilar behaviour of the diffusion length can also be understood 
by inspecting the lower panel of Fig. (6.3), where the distribution of trap energies from which 
the electrons undergo a recombination event is shown. For the case in which the diffusion 
length does not increase with voltage, this distribution is exponential,  indicating that most 
electrons recombine from states close to the conduction band. On the other hand, when the 
diffusion length increases with voltage, the distribution exhibits a maximum at intermediate 
energies. The appearance of this maximum is a consequence of the interplay between two 
opposite effects: the increase of the density of donor states characteristic of an exponential 
function, and the decrease of the density of acceptor states as the energy of the electron is 
raised. More importantly, the two regimes differ in another feature. For the linear case the 
distribution  of  states  from which  recombination  occurs  does  not  change when the  Fermi 
energy, i.e. the electron density, is varied. Hence, the diffusion length remains constant. On 
the contrary, for the non-linear case the distribution maximum gets displaced towards lower 
energies. This  change in the recombination probabilities explains why the diffusion length 
tends to increase as more electrons are accumulated in the semiconductor for the non-linear 
case.

The previous result shows that a non-constant behaviour of the diffusion length with 
respect to Voc (non-linear regime) can be reproduced with an energy-dependent recombination 
probability using Model 1. However, it must be recognized that this regime is only accessible 

if the open-circuit voltage is above the most probable oxidation energy in the electrolyte (Eox), 
i.e. in the Marcus inverted regime. This last requirement implies that for typical values of the 
open circuit voltage of standard DSC of 0.6-0.8 V, very  small values of the reorganization 
energy are needed. However, values below ¸ = 0.4 eV are rather unrealistic35. On the other 
hand, the models of Bisquert et al.7,15 and Villanueva-Cab et al.45 show consistent formalisms 
according to which an increasing electron diffusion length with respect to Voc can be achieved 
assuming much higher values of the reorganization energy. Hence, it is concluded that Model 

1 does not achieve an adequate description of non-linear recombination in DSCs, implying 

that other charge-transfer mechanisms must be taking place.

As described in  the  previous  section,  the  alternative  Model  2 assumes that  direct 

transfer between trapped electrons and electron acceptors can take place. This is implemented 
by computing recombination times via Eq. (6.5) and allowing for removal of electrons when 
these  times  are  shorter  than  the  transport  times,  in  accordance  with  the  usual  RWNS
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Fig. (6.4). Electron diffusion length calculated by steady-state RWNS calculations using 
Model 2 for different values of the reorganization energy and the characteristic temperature: 
T0 = 700 K and, ¸ = 2 eV (circles), T0 = 700 K and ¸ = 2 eV (squares) and T0 = 1000 K, 
¸ = 20 eV (triangles). Results are obtained from the Marcus-Gerischer formula (Eq. (6.5)) 
and a density of electronic states in the semiconductor given by Eq. (2.2). A band offset of 
Ec {  Eredox =  0.95 eV was considered.  Dashed lines  correspond to fits  to  Eq.  (2.62). 
“Theoretical (th)” and “simulated (RW)” values of the adimensional parameter  ¯ are also 
indicated in the graph.

algorithm. Steady-state  results  for the  electron  diffusion  length  obtained by  Model  2  are 

presented in Fig. (6.4).

First  of  all,  it  can be  observed that,  in  contrast  to  Model  1,  Model  2 predicts  an 

increasing  diffusion  length  versus  the  open-circuit  voltage  for  a  high  value  of  the 
reorganization energy. Moreover, the curves exhibit exponential behaviour in accordance to 
the  theoretical  models7,45 where  Eq.  (2.62) is  derived7 with  a  theoretical  value  for  the 
exponential parameter given by Eq.  (6.3). However, although the simulations with  Model 2 
predict an exponential behaviour, the parameter ¯ extracted by fitting to Eq. (2.62) does not 
coincide with the theoretical value of Eq.  (6.3). This is due to the fact that those equations 
were  derived  under  the  assumption  that  the  reorganization  energy  is  several  orders  of 
magnitude larger than the open-circuit voltage (which is indeed a strong approximation). As a 
matter of fact, curves in Fig.  (6.4)  using a reorganization energy of  ¸ = 20 eV do offer a
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possibility  to  test  the  prediction  of  (6.3).  Such an  unrealistic  value  of  the  reorganization 
energy (although otherwise appropriate for theoretical reasons) permits us to obtain simulated 
slopes  closer  to  the  theoretical  values  of  (6.3).  On  the  other  hand,  Model  2 reproduces 

qualitatively the  temperature dependence of the diffusion length.  Thus, it is found that for 
T0 = 1000 K the slope of the log (  vs. EF { Eredox) curves is higher than for T0 = 700 

K in accordance to the theoretical prediction of (6.3)7. In summary, Model 2 seems adequate 

to explain many of the experimental facts as well as the occurrence of a non-linear regime.

However,  it  is  essential  to  find  a  model  that  it  is  capable  of  reproducing  all 
experimental  observations  in  DSCs  in  order  to  clarify  the  charge-transfer  mechanisms 
involved in this type of solar cells. In this context, recent reports by Jennings et al. 10,30 showed 
that it is possible to induce a change from the non-linear to the linear regime by addition of 
lithium  ions  to  a  iodide/tri-iodide  electrolyte.  This  change  has  been  interpreted  as  a 
consequence  of  the  displacement  of  the  semiconductor  conduction  band  towards  more 
positive  potentials  upon  Li+ addition.  To describe  this  observation  we  have  carried  out 
simulations for different values of the Ec parameter with respect to the electrolyte equilibrium 
redox level, but keeping the total number of traps constant. In this context it has to be noted 
that  some authors24,35,46 have pointed out  that  the  electrochemistry  of  the  iodide/tri-iodide 
system is very complicated as it involves a multi-electron process and intermediate species 
such as I2

-. However, in this work we do not study the actual mechanism of electron transfer 
but the effect that the relative positions of conduction band and redox level, as well as the 
reorganization energy, have on the recombination kinetics. Even if charge transfer involves the 
production of I2

- instead of I3
- there will always be a distribution of acceptor energies given by 

Eq.  (2.50), which would be sensitive to displacement of either the conduction band in the 
semiconductor or the equilibrium redox level of the electrolyte.

Results for both models, together with experimental results from Refs. [10,30] for two 

compositions  of  the  electrolyte,  can  be  found in  Fig.  (6.5).  As indicated  in  the  previous 

section,  we can represent  results  normalized with respect to the maximum value  for both 

experimental  and  simulated  cases.  The  simulation  results  show  that  it  is  possible  to 

approximately  reproduce  the  experimental  curves  using  Model  1.  However,  again,  an 

unrealistic low value for the reorganization energy (¸ = 0.25 eV) is required. On the other 

hand, it is observed that if we use  Model 2 the diffusion length slope can not be changed 

when the band is displaced, neither by using a large reorganization energy (¸ = 2 eV) nor an 

intermediate one (¸ = 0.6 eV).
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Fig. (6.5). Left: experimental measurements (Ref. 10) of the electron diffusion length for a 
DSC with Li+ (red circles) and without Li+ ions (black squares) in the electrolyte and the 
predictions of Model 1 with ¸ = 0.25 eV, T0 = 700 K and T = 300 K are presented. Values 
of Ec { Eredox = 0.7 eV (red dashed line) and 0.95 eV (black solid line) are used for a DSC 
with and without Li+ ions in the electrolyte respectively. Different values of  kr0 (see Eq. 
(6.4) have been used for each case:  kr0 = 5·10-5 arb.  un. for  Ec {  Eredox = 0.7 eV and 
5·10-4 arb.  un.  for  0.95  eV.  Right: Predictions  of  Model  2 with  the  same parameters: 
T0 = 700 K, T = 300 K, Ec { Eredox = 0.95 eV (solid lines) - 0.70 eV (dashed lines). Two 
values of the reorganization energy: ¸ = 2 eV (red) and ¸ = 0.6 eV (black) are used for each 
type of electrolyte.

The change of the electron diffusion length behaviour upon band displacements has 
been interpreted as a modification of the  main recombination mechanism involved in  the 
semiconductor/electrolyte interface, from recombination via trap states to recombination via 
conduction band states.10,30 Here it is important to stress again that Model 1 can be interpreted 

as  an  alternative  view of  the  so-called  conduction  band recombination  if  a  high  enough 
reorganization  energy  is  applied.  Indeed,  it  can  be  seen  in  Fig.  (6.3)  that  when  the 
reorganization energy is higher than the photovoltage the energy distribution  for electrons 
undergoing  recombination  is  exponential  meaning  that  most  of  the  sites  from  which 
recombination events occur are those very close to the conduction band edge. These shallow 
states correspond to “nearly free” electrons, which are more likely to recombine. Hence, for 
an exponential distribution of trap energies, the shallow states (close to Ec) play the role of an 
effective  conduction band, with faster transport and more rapid recombination if  there are 
acceptor states available close to E = Ec. At the same time, Model 2 has proven to be ideal to 

reproduce recombination from deep traps due to its capacity to reproduce theoretical features 
that take into account this specific charge-transfer mechanism. In summary, it is reasonable to 
assume that  an  adequate  combination  of  the  two models  may be  able  to  explain  all  the 
experimental phenomenology, including the effect of the change of the diffusion length slope 
when plotted versus Voc. 
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In the following, RW simulation data as obtained by a combination of Model 1 and 
Model 2 (Hybrid Model) are presented. In these simulations electrons being detrapped are 

allowed to recombine by generating  probabilities  with Eq.  (6.4),  as defined by  Model 1. 

Simultaneously,  unmobile  electrons  are  also  allowed  to  recombine  directly  from  traps 
according to waiting times obtained by Eq. (6.5), as defined by Model 2. The relative weight 
of  each  type  of  recombination  is  controlled  by  adjusting  the  parameters  kr0 and  tr0, 
respectively.

Results  obtained  by this  hybrid  model,  along with  experimental  data  for  different 
compositions of the electrolyte, are shown in Fig. (6.6). The calculations were carried out 
using T0 = 700 K, T = 300 K, ¸ = 0.6 eV, kr0 = 8·10-5 arb. un., tr0 = 1.25·108 t0. The simulation 
results show that it is possible to reproduce the change of slope observed experimentally for 
realistic values of these microscopic parameters. It is observed, however, that a displacement 
of the conduction band towards lower energies (more positive electrochemical  potentials),

Fig (6.6). Electron diffusion length from experiments (symbols) and calculated by steady-
state RWNS calculations (lines) using the combination of Model 1 (Eq. (6.4)) and Model 2 
(Eq. (6.5)) (Hybrid Model). The simulations correspond to a system defined by ¸ = 0.6 eV, 
T0 =  700  K,  T =  300  K  and  Ec {  Eredox =  0.95  (black  )  and  0.7  eV  (red),  using 
kr0 = 8·10-5 arb. un. and tr0 = 1.25·108 t0. Note that data are normalized with respect to the 
maximum value.
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leads to longer diffusion lengths. Longer values of the electron diffusion length have been 
found experimentally when lithium ions are added in the electrolyte30. However it has been 
reported10 that freshly fabricated  DSCs with  LiTFSI (simulated system) exhibited higher  Ln 
than  DSC  with  no  additives  and  that  after  a  certain  time  Ln decreased,  although  the 
dependence with respect to the open-circuit voltage is preserved. The lowering of the electron 
diffusion length maintaining the dependence at the same time has also been reproduced as can 
be  seen  in  Fig.  (6.6).  To achieve  this  we  have  modified  the  prefactor  kr0 in  Eq.  (6.4), 
specifically from 8·10-5 to 2.5∙10-3 arb. un.

It  might be argued that the chosen value of the reorganization energy is somehow 
arbitrary.  Hence,  we  have  tried  to  fit  the  experimental  data  using  a  large  value  of  the 
reorganization  energy.  Results  of  these  RW simulations  are  presented  in  Fig.  (6.7) for 

¸ = 2 eV and two different values of the recombination prefactors (kr0 and tr0). In that case,

Fig. (6.7). Electron diffusion length calculated by steady-state RWNS calculations using the 
hybrid model. The simulations correspond to a system defined by ¸ = 2 eV, T0 = 700 K, 
T = 300 K and Ec { Eredox = 0.95-0.70 eV. Results are obtained from the Marcus-Gerischer 
formula (Eqs.  (6.4) and  (6.5)) and density of electronic states in the semiconductor (Eq. 
(2.2), trap energy distribution).
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an appreciable change of the Fermi level dependence of the diffusion length upon band shift is 
not  observed,  hence,  we  can  conclude  that  only  by  using  an  intermediate  value  of  the 
reorganization  energy,  which  is  lower  than  the  two  studied  values  of  Ec { Eredox,  the 
experimental behaviour can be reproduced. In other words, a certain contribution of the well-
known Marcus inverted regime is necessary to reproduce the observed trends30. To further 
clarify  this  point,  the  energy  distributions  for  electrons  undergoing  recombination 
corresponding to the simulations of Fig. (6.6) are shown in Fig. (6.8) for two different values 
of the  Fermi  level in  each case.  For  Ec = 0.95 eV (no additives in  the electrolyte),  it  is 
observed that the most probable donor energy is located in the vicinity of the Fermi level 
energy and is, therefore, different for each simulated open-circuit voltage. On the other hand,

Fig.  (6.8). Distribution  of  energies  for  electrons  undergoing  recombination  for  the  two 
values  of  the  conduction band energy studied in  Fig.  (6.6)  as  predicted by the Hybrid 
model. Two  Fermi  levels  are  represented  for  each  conduction  band  position: 
For  Ec {  Eredox =  0.95  eV  (top)  the  cases  EF {  Eredox =  0.45  eV  (solid  line)  and 
EF { Eredox = 0.58 eV (dashed line) are represented. Likewise, for Ec { Eredox = 0.7 eV 
(bottom) the cases EF { Eredox  = 0.39 eV (solid line) and EF { Eredox = 0.5 eV (dashed 
line) are represented. Calculations were carried out using  kr0 = 10-3 arb. un. and tr0 = 107 t0.
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for Ec = 0.7 eV (with 2M Li+ in the electrolyte), the most probable donor energy is situated in 
the vicinity of the conduction band position for both cases and does not change with respect to 
Voc. Therefore, a correspondence is actually observed between the electron diffusion length 
behaviour and the energy distribution function of recombination sites. This observation can be 
related to the Marcus inverted regime described in Fig.  (6.3), where an increasing electron 
diffusion length is expected when the recombination site is at a higher energy than Eox (the 
most probable energy of the electron acceptor in solution).  In conclusion, the interplay of the 
Marcus inverted regime and the displacement of the conduction band can correctly explain the 
change from a Voc  - independent to a Voc  - dependent diffusion length as a change of the main 
charge transfer mechanism, from recombination controlled by shallow traps to recombination 
controlled by deep traps.

To establish the “degree of non-linearity” we should estimate the reaction order ¯ with 
respect to free electron density. As indicated in the previous section and in Chapter 5, the 
RWNS method can be utilized to simulate an open-circuit photovoltage decay experiment. 
The kinetics of  the  recombination  reaction can be numerically  extracted by fitting to  the 
expression for the total electron density:

 (6.7)

which can be integrated to give:

 (6.8)

where A and B are constants. In Eqs. (6.7) and (6.8), the exponent ° is the reaction order with 
respect  to  the  total  electron  density.  Under  quasi-static  conditions  (internal  equilibrium 
between free and trapped electrons), the total and free electron densities are related to each 
other. The following relationship can be derived4

 (6.9)

where  n0 is the total density in the dark and  nc,0 the density of free electrons in the dark.
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Introducing Eq. (6.9) in Eq.  (6.7), and taking into account Eq. (6.1) we find

           (6.10)

Note that the reaction order with respect to the total electron density (°) can be larger than 
one,  even when (as  it  will  be  discussed below) the  recombination  rate  is  sub-linear  with 
respect to free electron density ( ).

The result of the fits to the electron density decays between specific Fermi levels in 
Fig.  (6.9) show that  a  larger  slope of the electron diffusion length with respect  to  Voc is 
correlated to a larger degree of non-linearity of the recombination kinetics. Hence, for the 
case of Ec { Eredox = 0.7 eV, where the diffusion length is independent of Voc as shown in Fig. 
(6.6), a  reaction  order  of  ¯ ~  0.99  is  obtained.  In  contrast,  for  the  case  of

Fig. (6.9). Evolution of the total electron population in a transient RWNS calculation using 
the Hybrid model of recombination for the same cases as those studied in Fig.  (6.6).  The 
solid line represents the result of the fitting to Eq. (6.8). Note that results shown correspond 
to rapid recombination kinetics (short-diffusion length).
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Ec { Eredox = 0.95 eV, where the diffusion length is dependent on Voc (Fig. (6.6)), a value of ¯ 
~ 0.78 is obtained. The results were obtained for a fast recombining system (short diffusion 
length). However, as shown in Appendix A, modifying the value of the prefactors in Eqs. (6.4) 
and (6.5) does change the absolute value of  Ln, but not its variation with respect to Fermi 
level. Hence, we can conclude that the observed correlation between non-linear recombination 
and diffusion length behaviour is  therefore in agreement with the results  of Bisquert  and 
Mora-Seró8 and Villanueva-Cab et al.9

By means of Eq. (6.6) the electron lifetime can be extracted from the electron density 
decays. The results are compared with the electron lifetimes obtained from the steady-state 
simulations using the averaging procedure in Fig. (6.10). It is found that both methods provide 
the  same results,  hence  confirming  that  the  behaviour  of  the  diffusion  length  is  actually 
connected  to  the  kinetics  of  the  recombination  reaction.  It  is  interesting  to  note  that  the 
behaviour of the lifetime is  the same as observed in experiments.10,47 Indeed, the electron

Fig. (6.10). Electron lifetimes for a system defined by ¸ = 0.6 eV, T0 = 700 K, T = 300 K 
and Ec { Eredox = 0.95 (black) and 0.70 eV (red). Symbols stand for results of the steady-
state  RWNS  calculations  and  lines  refer  to  lifetimes  extracted  from  transient  RWNS 
calculations and Eq.  (6.6).  Calculations were carried  out  using the Hybrid  Model  with 
kr0 = 10-3 arb. un. and tr0 = 107 t0. 

124



Chapter 6           Origin of non-linear recombination in dye-sensitized solar cells

lifetime is  reduced upon shifting the conduction band to lower energies meaning that  the 
recombination rate is enhanced. This is an expected characteristic, since when the conduction 
band is lowered, it gets closer to a fixed Fermi level, which is similar to raising the Fermi level 
(EF { Eredox) towards a fixed conduction band energy. As the recombination rate is increased 
upon  addition  of  Li+,  the  open-circuit  voltage  of  the  solar  cell  at  the  same illumination 
intensity  is  reduced.  This  suggests  that  it  is  kinetics  rather  than  thermodynamics  that 
determine  the  variation  of  Voc in  a  DSC  when  the  semiconductor  conduction  band  is 
displaced.  A  similar  effect  is  produced  when  a  redox  pair  with  a  different  equilibrium 
potential  is  used,  as is  the case for novel redox shuttles,  including those based on cobalt 
complexes.48–52 On  the  other  hand,  Fig.  (6.10)  shows  that  the  electron  lifetime  slope 
for  the  case  of  Ec { Eredox =  0.7  eV  is  higher  (defined  positive)  than  for  the  case  of 
Ec { Eredox =  0.95  eV.  This  is  consistent  with  the  fact  that  a  compensation  effect  that 
maintains the diffusion length constant is accomplished in the first case but not in the second.

6.4 Conclusions to Chapter 6

Electron  transport  and  recombination  processes  in  dye-sensitized  solar  cells  are 
described by means of a random-walk numerical simulation procedure based on the multiple-
trapping model,  and where recombination is  explicitly considered using Marcus-Gerischer 
theory. This model permits to relate the non-linear features of the recombination rate usually 
found in the experiments with the molecular mechanisms of transport and electron transfer 
that  take  place  in  the  nanostructured  semiconductor  and  at  the  semiconductor/electrolyte 
interface. Only a hybrid model that takes recombination from shallow traps and from deep 
traps into account at the same time reproduces all the experimental observations correctly. 
This work helps to understand how a non-linear regime can arise from the relative positions 
of the Fermi level and the equilibrium redox potential of the electrolyte. 

We have observed that  non-linear  recombination kinetics  can be detected for high 
values  of  the  reorganization  energy.  However,  only  if  we  consider  a  driving-force  for 
recombination in  the  Marcus inversion regime,  corresponding to  a  value of  the  oxidation 
energy lower than the conduction band position (small or moderate reorganization energy), it 
is possible to reproduce the experimental observation that a positive band-edge displacement 
leads to a change in the diffusion length behaviour, from being dependent on Voc to becoming 
independent of Voc. We explain the experimental observation as a consequence of a change in 
the main recombination mechanism involved in the system, from a shallow traps controlled 
charge  transfer  mechanism  (constant  diffusion  length)  to  a  deep  traps  controlled  charge 
transfer mechanism (diffusion length dependent on Voc). We believe that the results are very 
relevant to understand the performance of new redox-shuttles in dye-sensitized solar cells.
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CHAPTER 7

Charge  Collection  Efficiency  in 
Nanostructured Solar Cells

The  collection  efficiency  of  carriers  in  solar  cells  based  on  nanostructured 
electrodes is determined for different degrees of morphological one-dimensional 
order. The transport process is modelled by RWNS in a mesoporous electrode that 
resembles the morphology of nanostructured TiO2 electrodes typically used in 
DSCs and related systems.  It  is  found that  the partially ordered electrode can 
almost double the collection efficiency with respect to the disordered electrode. 
However, this improvement depends strongly on the probability of recombination. 
The  collection  efficiency  is  found  to  reach  very  rapidly  a  saturation  value, 
meaning  that,  in  the  region  of  interest,  a  slight  degree  of  ordering  might  be 
sufficient  to induce a large improvement in collection efficiency. A theoretical 
study of the influence of shape of the charge generation profile on the collection 
efficiency of a nanostructured solar cell is also presented. The numerical results 
show that if the charge generation profile is gaussian, the collection efficiency is 
found  to  increase  exponentially  as  the  centre  of  the  gaussian  approaches  the 
collecting electrode. Furthermore, the collection efficiency is roughly independent 
of the gaussian width for devices where there is no bias field. Simulations where a 
gaussian absorption is superposed on top of an exponential profile showed that the 
corresponding improvement in efficiency is very much dependent on the diffusion 
length.
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7.  Charge  Collection  Efficiency  in  Nanostructured  Solar 
Cells

7.1. Introduction

One of the reasons why new generation solar cells are attracting so much interest 

between scientists and technologists is the fact that they use materials in a disordered phase 

(although nanocrystalline in certain cases). Disordered media make unnecessary the highly 

expensive purification and crystallization process characteristic of high performance solar 

cells. Furthermore, they allow for transparency, multi-angle light harvesting, flexibility, etc.1–5 

However, there is recently a renewed interest in improving the efficiency of these devices by 

working with 1-dimensional (1D) ordered nanostructures such as nanowires, nanotubes, etc.6–

10 The idea is to improve the collection of charges using a photoanode where there is a more 

direct path towards the external circuit. This way faster transport and slower recombination is 

theoretically achieved, so that charge and energy losses are minimized. Nevertheless, these 

structures are commonly difficult to prepare with the quality required for making efficient 

devices. Hence, the use of 1D nanostructures leads to the following paradox: the advantages 

of using a disordered material is sacrificed for the sake of improving the efficiency of the 

device.  This  paradox  rises  the  question  of  how  important  is  the  benefit  of  using  1D 

nanostructures.

In a report by Tirosh et al.11, the issue of the influence of the ordering of an anatase 

nanocrystalline structure on electron diffusion was studied. These authors found a substantial 

increase  in  the  electron  diffusion  coefficient  when  a  partial ordering  is  induced  in  the 

nanocrystalline electrode by means of an electric field that is applied during the deposition 

procedure. This enhancement was interpreted in terms of percolation effects. The influence of 

the percolation path in  TiO2 nanocomposites (considered via a variable porosity) has also 

been studied  by Dittrich  et  al.12 and  Ofir  et  al.13 These  effects  have also  been described 

successfully by numerical modelling (random walk techniques)14–17. The effect of morphology 

on charge transport has also been studied for many other systems18–20 However, the effect of 

the ordering with both the consideration of transport and recombination, which is crucial to 

understand the  performance of  nanostructured solar  cells,  remains  to  be comprehensively 

studied. In this regard, it has been pointed out recently21 that the alleged benefit of using 1-D 

nanostructures should be taken with reserve, especially for DSC architectures where charge 

collection already approaches a 100%.
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In this Chapter we address this issue by exploring the relationship between degree of 

order  and  charge  collection  efficiency.  The  main  objective  is  to  find  a  semiquantitative 

functional relation between the increase in efficiency and an appropriate order parameter. This 

functional relation will help to assess the improvement produced by a hypothetical ordering of 

a  disordered  nanostructure  substrate  typically  used  in  dye-sensitized  solar  cells22.  This 

problem is addressed from the theoretical point of view, using numerical methods23,24.  The 

advantage of using numerical simulation is that degree of order and the charge collection 

efficiency can be more easily and unambiguously measured, isolating the effect of the order 

from other  effects  such  as  specific  surface  or  the  recombination  rate.  For  instance,  very 

recently25 ab initio simulation has been proven very useful to describe non-adiabatic charge 

transfer from quantum dots to the TiO2  surface. Here we study the effect of order on charge 

transfer, including transport and recombination, but on a larger spatial scale, not accessible to 

ab initio methods. The aim is to clarify and help guiding future research, which should be 

focused  on  obtaining  better  functioning  devices  by  addressing  the  key  issues  that  limit 

efficiency21.

7.2.  Methodology:  computation  of  the  collection  efficiency  for 
realistic nanostructures

The charge collection efficiency in photoelectrochemical cells is defined as the ratio between 

the number of charge carriers (electrons or holes) collected in the external circuit and the 

number of photogenerated carriers. This can be expressed as26

  (7.1)

where  ¿rec and  ¿tr are  the  lifetime and the  transport  time of  charge carriers,  respectively 

(measured at coincident positions of the Fermi level). The collection efficiency has typically 

been discussed in the current literature in terms of the diffusion  length27–30. As discussed in 

detail in Ref.  28 even if recombination is not linear, Eq.  (2.57) is used to define a “small 

perturbation” diffusion length, which is still useful to diagnose the collection efficiency of the  

device.  Hence,  the  longer  is  Ln,  the  larger is  the  probability  of  collecting charges  in  the 

external contact. Both Eqs. (7.1) and (2.57) show that good collection efficiency arises from a 

balance of fast transport and slow recombination. The effect expected from the use of 1D 

nanostructures is either to accelerate transport or to minimize recombination (or both). 
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Fig. (7.1). Top left: Simulation box (size ~ 400 nm) with a random-packing of nanospheres 
with electron traps located on the surface (R2  model). Top right: same as left but with a 
partial order induced along x -direction by Monte Carlo energy minimization. The external 
periodic potential is plotted with a red solid line. Bottom: “columnarity” of the array of 
nanospheres  (symbols)  for  various  replicas  and  energy  difference  with  respect  to  the 
minimum (solid line) versus the number of cycles executed in the minimization procedure. 
Energy  variation  is  normalized  with  respect  to  the  starting  situation, 
1{(E { Emin)/(Emax { Emin) and scaled for comparison purposes.

With the aim of studying the effect of working with a 1D nanostructure, we introduce 

order in a random packing of nanospheres (see Fig. (7.1)) that simulates realistic disordered 

porous TiO2 nanostructures. To do so we start from a random hierarchical packing generated 

by means of the cluster model24. In this calculation, a nanosphere radius of 20 nm has been 

considered and a low overlapping (about 10 %) between neighbouring nanospheres has been 

imposed, which was kept constant along all  the simulated structures.  Given the statistical 

uncertainty implicit to the construction algorithm, we have worked with five different replicas 

statistically independent, and averages were extracted. All of them comply with the following 

morphological parameters: specific surface area, S = 27.0 ± 0.8 m2/g, porosity, P = 56 ± 3 % 

and density,  ½ = 1.7 ± 0.1 g/cm3. To induce an ordering effect, these random structures are 

then exposed to an external 2D sinusoidal potential parallel to the collecting substrate with to 

complete  cycles  inside  the  simulation  box  (see  Fig.  (7.1)).  By  minimizing  the  potential 

energyof  the  system using  the  Monte  Carlo  (MC)  technique31,  1D order  is  progressively
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induced in the system. On each iteration, all the spheres (typically ~700 spheres) were allowed 

to decrease its potential energy, changing the morphology of the system. As interactions are 

being  computed,  the  system changes  progressively  its  morphology  from typical  random-

packing of particles arranged in hierarchical clusters, to 1D-ordered structures of columnar 

morphologies,  with  a  preferred  packing  direction  along  the  x-axis.  The  algorithm  runs 

keeping the specific surface area, the porosity and density of the structure within the intervals 

indicated above. This way, the influence of the 1D order alone can be probed, without being 

affected by other structural properties. The maximum order was achieved once the algorithm 

was unable to find any new position for any sphere of the system that reduces the energy of 

the system. This typically occurred for 100 Monte Carlo cycles. This way, different particulate 

realistic nanostructures are built without changing no other structural parameter appart from 

1D-order. Finally, following previous work,17,32,33 we place “electron” traps on the surface of 

the nanospheres (R2 model). For each of the five replicas, 25 different set of traps were placed 

and considered for the RW simulations described below.

The spatial location of the electron traps make it possible to measure the 1D order of 

the system with respect to the direction perpendicular to the collecting substrate (x-axis). To 

do so we choose as “order parameter” the standard deviation of the projected position of traps 

on the yz-plane (perpendicular plane to the preferred columnar direction) with respect to a 

grid of 10 x 10 cells. Hence, a larger columnar order implies a wider distribution, with a larger 

standard deviation, as traps tend to accumulate at specific positions in the grid. The standard 

deviation of the spatial location was called “columnarity”, in allusion to the measurement of 

the quality of being “columnar” of the system. In Fig. (7.2), 2D projections on the yz-plane of 

the  completely  disordered  (left)  and the  columnar  system (right)  are  shown.  It  has  to  be 

remarked that, despite a maximum order is achieved with respect to the energy minimization 

in  the  sinusoidal  potential,  this  numerical  procedure  does  not  produce  a  crystalline 

arrangement  of  particles,  but  a  disordered  arrangement  where  a  preferential  direction  is 

imposed in the system. As can be seen in Fig. (7.2), the distribution of traps in the yz-plane is 

rougly  homogeneous  for  the  disordered  system  (left  panel)  whereas  is  completely 

inhomogeneous for the columnar system (right panel). The standard deviation of the number 

of traps that fall on each cell of the grid is used to measure the columnarity of the systems. 

The typical standard deviation of 10 x 10 values is close to 67±5 for the disordered system and 

101±3 for the columnar system. In Fig. (7.1), the correspondence between ordering cycles and 

columnarity values is shown. 

133



Ordered electrodes to improve the charge collection efficiency           Chapter 7

Fig. (7.2). Grid and 2D projections of the trap positions on the perpendicular plane (yz). 
Left:  disordered  system and  right:  columnar  system.  The  standard  deviation  of  set  of 
numbers of points that falls on each cell of the grid is used to measure the order degree as a 
“columnarity” parameter.

Fig.  (7.1) shows how the columnarity and the total energy vary with respect to the 

number of iterations or cycles employed in the Monte Carlo energy minimization procedure. 

To estimate the statistical uncertainty of the packing algorithm, results for the five replicas of 

the packing of nanospheres are presented. (For each replica the ordering process of energy 

minimization  is  applied).  Note  again  that  full  minimization  (meaning  and  equilibrated 

situation) does not imply that perfect crystalline order is achieved. It is observed that there is a 

direct correspondence between relative columnarity parameter and the relaxation energy. The 

main conclusion is that the extent of the minimization procedure (i. e. the number of MC 

cycles) can be used to tune the degree of order in the system, hence allowing for a systematic 

investigation of the effect on charge collection efficiency in the presence of a preferential 

direction in the nanostructured electrode. 

The placement of “electron” traps on the surface of the nanospheres, and the ordering 

procedure described above provide a three-dimensional network of sites as input for a RWNS 

calculation17,23,28,30,34. Considering that the problem addressed in this Chapter is a matter of 

percolation, we chose the hopping model to carry out the simulation. Hence we use Miller-

Abrahams  hopping  rates35.  This  means  that  hopping  times  for  carriers  moving  between 

neighbouring  traps  are  computed  via  Eq.  (3.2).  In  addition,  an  exponential  energy 

distribution of localized states given by (2.2) is used in the calculations36. By means of Eqs. 

(3.2) and (2.2), spatial and energy disorder is adequately taken into account in the transport
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process. In this calculations we used36 T0 = 1100 K, T = 300 K, and t0 = 10-12 s. A surface trap 

density of 0.004 nm2  (with respect to the nanosphere surface) has been considered17.  This 

corresponds to a volumetric trap density of 2.3 10-4 nm-3 (meaning that traps are located at an 

average distance of 16 nm in the film).  In connection to this,  three localization radius of 

®l = 2.5, 10 and 20 nm have been studied. It is important to note that, since the traps are 

located on the surface of the nanospheres, and these are in contact, the actual distance between 

a  particular  trap  and  its  neighbours  is  shorter,  hence  allowing for  percolation  of  carriers 

throughout the network. 

In  addition  to  transport,  also  recombination  should  be  considered  to  study  charge 

collection efficiency. As in Chapter 5,  we introduced a constant probability (independent of 

trap energy) for carrier  removal.  As shown there,  this  probability  leads  to an exponential 

distribution  of  survival  times  for  carriers,  which  defines  a  carrier  lifetime.  This  lifetime 

defines in turn the characteristic diffusion length of the system. This probability was adjusted 

to give diffusion lengths of the order of microns, leading to the general result that in typical  

DSCs the time scale for recombination is much longer that the time scale for transport. In this 

Chapter we run also calculations analogous to that of Chapter 5 to determine the characteristic 

diffusion lengths of the practical cases for which the charge collection efficiency is calculated. 

Recombination  probabilities  ranged  between  PR =  10-10 and  10-2 in  arbitrary  units.  As 

described below, this is translated to a range of values for the diffusion length: the smaller is 

PR the longer is the diffusion length.

As discussed in Chapter 3, the description of the solar cell at real working conditions 

implies to use a considerable number of carriers and trap states, which leads to very high 

numerical demands. To reduce the computational time, the  one-electron approximation23,37, 

that makes it possible to simulate transport at a given position of the Fermi level with the 

movement of a single carrier, has been used. On the other hand, periodic boundary conditions 

are considered in the three directions of space31. Hence, the simulation box in  Fig.  (7.1) is 

periodically replicated in such a way that if a carrier crosses one of the box boundaries, it is 

automatically re-injected through the opposite boundary. Nevertheless, we aim to calculate 

charge collection efficiency in realistic systems and this requires to consider charge generation 

in accordance to optical absorption lengths of the order of microns, typical of the dyes used in 

dye-sensitized solar cells and related devices (for instance, the extinction coefficient of typical 

ruthenium  dyes38 is  1.4  104  M-1cm-1  at  ¸ ~  520  nm.  For  common  dye  loadings  of 

2-3 10-7 mol/cm2 one obtains absorption lengths of 2-4 m). However, the use of a simulationμ  

box of the order of microns is not computationally feasible for the trap densities used here. To
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deal with this situation the procedure explained in Chapter 3 is implemented so that real 

coordinates can be utilized when both charge generation and collection (an illustration of this 

strategy is presented in Fig. (3.2).

7.3. Results and discussion

The adequate implementation of the procedure explained in Chapter 3 regarding the 

simulation of a  macroscopic system is  tested in Fig.  (7.3).  In the simulation,  carriers are 

injected  along  the  x-axis  according  to  a  probability  given  by  the  Lambert-Beer  law: 

exp({x/Lab), where Lab is the characteristic optical absorption length. This depends on the

Fig. (7.3). Charge collection efficiency as a function of Fermi level position for a random 
packing of nanospheres (solid symbols, see top left panel in Fig. (7.1), and a fully relaxed 
ordered structure (open symbols, see top right panel in Fig. (7.1)) at different values of the 
absorption  length  Lab.  In  the  inset  the  collection  efficiency  is  plotted  versus  Lab for 
Ec { EF = 0.2 eV in a double logarithmic scale. Error bars are derived from results of 
statistically  independent  morphological  replicas.  Simulations  were  carried  out  for  the 
following parameters:  T0 = 1100 K,  T = 300 K,  t0 = 10-12 s, nanosphere radius = 20 nm, 
surface trap density=0.004 nm -2, ®l = 2.5 nm,. PR = 10-6 (arb. un.).
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optical features of the solar cell (concentration and absorption coefficient of the absorbing 

material). Four cases have been considered for this parameter, ranging between Lab = 300 and 

3300 nm. In Fig. (7.3) the charge collection efficiency is plotted versus Lab and the Fermi level 

position.  The simulation results  demonstrate  that  collection increases when the absorption 

length is  shorter.  Therefore,  as expected,  collection is  more efficient  for highly absorbing 

materials,  because carriers are generated, on average, closer to the collecting electrode. The 

collection efficiency is found to depend on Lab according to a power-law. This behaviour is 

found to be also predicted by the numerical solution of the continuity equation for electrons in 

the  photoanode39–41. The RW simulations give power law exponents of 0.7-0.8, whereas the 

numerical solution yields 0.65 for the equivalent case (see Appendix B for more details).

On the other hand, the collection efficiency decreases as the Fermi level gets deeper 

into the conduction band. This behaviour is only clearly observed for short absorption lengths. 

For longer absorption lengths the effect of the Fermi level is marginal. This observation can be 

interpreted in terms of the Fermi-level dependence of the diffusion coefficient38,42.  If  EF is 

raised, carriers diffuse more rapidly and the collection efficiency is increased. However, for 

long  optical  lengths,  carriers  are  generated  at  further  distances  and  the  probability  of 

recombining before being collected becomes more important. Therefore, the effect of a more 

rapid transport in minimized.

The influence of morphological (1D) order on charge collection efficiency is reported 

in Fig. (7.4) for different positions of the Fermi level and different recombination probabilities. 

In Fig. (7.4) the collection efficiency for the structure with the maximum degree of ordering 

(100 cycles in Fig. (7.1)) is compared to that of the disordered structure using the ratio ´100/´. 

The results of the simulations demonstrate that the collection efficiency can be improved by a 

factor close to two when a preferential direction is introduced in the system. This improvement 

is found to be roughly independent of Fermi level (Fig. (7.4), upper panel), suggesting that 

either illumination intensity or applied voltage would not modify this morphological effect. 

As it could be expected, the enhancement in collection efficiency is found to depend 

strongly on the kinetics of carrier recombination, i.e., on carrier lifetime. In the lower panel of 

Fig. (7.4) the improvement factor is plotted against the recombination probability PR. For very 

slow recombination, corresponding to very long diffusion lengths, the effect of the ordering is 

absent, since the collection efficiency approaches a 100% in both cases. This means that there 

is no benefit in providing a more direct percolation path to the external contact if the lifetime 

of electrons is long enough. The opposite situation corresponds to very rapid recombination,
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Fig.  (7.4).  Charge  collection  efficiency  improvement  ratio  for  ordered  structures 
(100 cycles, see Fig. (7.1)) with respect to a random packing of nanospheres. Top panel: 
Improvement ratio versus Fermi level at constant recombination probability. Bottom panel: 
Improvement ratio versus recombination probability at fixed Fermi level. The results for 
the diffusion length from simulations on an infinite fully disordered system29 are indicated. 
Error  bars  are derived from results  of  statistically  independent  morphological  replicas. 
Simulations were  carried  out  for  the  following parameters:  T0 =  1100 K,  T =  300 K, 
t0 = 10-12 s, surface trap density = 0.004 nm-2, ®l = 10  nm, nanosphere radius = 20 nm and 
Lab = 3.3 m.μ

with short diffusion lengths. In that case, no benefit is observed either, because the average 

distance travelled by the carriers is much smaller than the characteristic length scale of the 

columnar  order  imposed  in  the  system.  As  a  rule  of  thumb,  it  could  be  stated  that  the  

“ordering” effect is only observed when the diffusion length Ln is approximately of the same 

order of magnitude as the optical absorption length Lab and the characteristic length scale in 

which the order is induced. As it can be seen in the lower panel of Fig.  (7.4), maximum 

efficiencies  are  obtained  for  recombination  probabilities  of  PR =  10-5  -  10-3 (arb.  un.). 

Simulations in an infinite system for a random-packing give an average29 of Ln ~ 1.0 - 0.2 mμ  

for these probabilities, whereas the value used for the absorption length was Lab = 3.3 m.μ

The  possibility  of  tuning  the  degree  of  1D order  by a  partial  run  of  the  energy 

minimization  algorithm,  permits  us  to  investigate  whether  an  approximate  functional
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relationship  can  be  found  between  collection  efficiency  and  the  order  parameter 

(columnarity).  Results  for  this  are  presented  in  Fig.  (7.5),  where  we  have  chosen  an 

intermediate value of the recombination probability to better see the effect of the ordering. In 

this figure, the collection efficiency extracted from the RWNS calculations is plotted against 

the  columnarity.  The  RWNS  results  confirm  the  progressive  enhancement  in  collection 

efficiency when the order of the structure is increased. However, it is noteworthy that this 

enhancement  does  not  occur  linearly.  The  numerical  data  show that  the  improvement  is 

significant even for a weak ordering of the system, with a sudden increase at intermediate 

values of the columnarity (~ 86, 9-10 cycles). Thus, the collection efficiency reaches rapidly a 

saturation  value,  resembling  a  sigmoidal  function.  It  must  be  recalled  that  even  for  the

Fig. (7.5). Carrier collection efficiency as a function of the columnarity as extracted from 
RWNS  calculations  for  different  localization  radius  for  an  intermediate  value  of  the 
recombination probability PR = 10-6 (arb. un.), corresponding to Ln = 1.24 μm. Error bars 
are derived from results of  statistically independent morphological  replicas.  Simulations 
were carried out for the following parameters: T0 = 1100 K, T = 300 K, t0 = 10-12 s, surface 
trap density = 0.004  nm-2, nanosphere radius = 20 nm. Note that longer localization radius 
lead to better efficiencies, as carriers travel longer distances between recombination events.
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situation with maximum columnarity (full energy minimization, 100 cycles), the system does 

not have perfect crystalline order. In fact it  is basically a disordered structure but with a 

preferential alignment along the  x-direction induced by the external potential. The present 

results suggest that the introduction of a very slight degree of order in the nanostructure can 

lead to a huge and abrupt increase in collection efficiency.

The reason of the abrupt jump in the collection efficiency at intermediate order seems 

to be related to the existence of a percolation “threshold” in the plane perpendicular to the 

columnar direction. The relevance of the connectivity of the transport sites in the adequate 

direction has been stressed out  by several  authors15,19,43.  In this  case we have an effect of 

improved connectivity, but only in one direction. This acts in the following manner: when a 

columnar order is induced, gaps with very low trap density are created between the columns. 

This hinders the perpendicular jumping of the carriers and favours their harvesting in the 

collecting substrate. This hypothesis can be inferred from the “softening” of the jump when 

longer localization radius (meaning longer diffusion lengths) are utilized in the simulation. 

Hence,  when  electrons  travel  shorter  distances,  they  find  more  difficult  to  percolate  in 

directions parallel to the collecting surface when the systems are “more columnar”. However, 

further  work is  required  to  elucidate  the  precise  origin  of  this  behaviour,  and the  actual 

relationship  between  morphological  order  and  transport  properties  in  disordered 

semiconductors.

Effect of the shape of the absorption profile on the collection efficiency

How the charge charge collection efficiency is affected by the generation profile in 

nanostructured solar cells is investigated in this section. As a first approximation, this can be 

assumed to be exponential,  as  predicted by the  Lambert-Beer  law. This  is  the generation 

profile used so far. However, alternative charge generation profiles can be envisioned in solar 

cells  as  a  consequence  of  inhomogeneities  in  the  distribution  of  the  absorbing  material 

(arising, for instance, from a non-uniform adsorption of dye molecules in dye-sensitized solar 

cells) or the presence of agents that enhance light absorption at certain points like plasmonic 

nanoparticles44 or scattering layers45.

We have modelled the effect of inhomegeneities on the absorption by considering a 

Gaussian  shape for  the  charge  generation  profile  within  the  active conducting  layer.  Two 

parameters  are  here  relevant  to  establish  the  effect  on  the  efficiency,  namely  the  mean 

position, or “centre” of the Gaussian (xcentre), and the dispersion (width) of the Gaussian (¾). 

The influence of these two parameters is studied in Fig. (7.6)
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Fig. (7.6) Top panel: Charge collection efficiency results for a Gaussian generation profile 
(  = 250 nm) as obtained by RWNS calculations for a fully disorder electrode (left panel ofσ  
Fig. (7.1)). The efficiency is plotted as a function of the centre of the Gaussian with respect  
to the carrier collection boundary. Bottom panel: Same as top panel but for the efficiency  
plotted as  a  function of  the width of  the  Gaussian generation profile  and two different 
positions  of  the  centre.  Simulations  were  carried  out  for  the  following  parameters: 
T0 =  1100 K,  T =  300 K,  t0 =10-12 s,  surface  trap  density  =  0.004 nm-2,  ®l =  10 nm, 
PR = 10-6 arb. un.

In the upper panel of Fig. (7.6) the position of xcentre in the Gaussian absorption profile 

is  moved  with  respect  to  the  collecting  electrode.  As  expected,  smaller  distances  to  the 

collecting  electrode  correlate  to  larger  charge  collection  efficiencies.  Interestingly,  an 

exponential  law is  found between the  charge collection  efficiency and the  distance  to  the 

collecting electrode, so that small displacements lead to large increases of the efficiency. These 

results indicate that it is very important to produce local enhancements of the absorption of 

light close to the collecting electrode. In the calculations presented in the lower panel of Fig. 

(7.6) the position of the Gaussian is fixed, but  ¾ is varied. An interesting observation arises 

here,  namely that  the  charge collection efficiency is  roughly independent  of  the Gaussian 

width,  at  least  for  .  This  result  can  be  understood  as  a  consequence  of  the
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symmetry of the absorption profile and the absence of a bias field on the x-direction. Hence, 

as hopping moves are equally likely in both positive and negative directions, the collection of 

“forward” charge carriers gets compensated by the recombination losses of the “backward” 

carriers.  Obviously this  conclusion would not  hold for solar  cells  where,  for instance,  an 

electric field is acting on the x-direction. In that case a dispersion of a localized absorption 

would produce different effect depending on whether the device is at forward of reversed bias. 

On the other hand, a non-linear recombination kinetics, recently discussed in the literature28,46 

and studied in Chapter 6 would also affect this simple result.

In Fig. (7.7) the effect of superposing a local absorption, modelled by a Gaussian, on 

top  of  a  Lamber-Beer  profile,  is  analysed.  In  these  calculations,  a  Gaussian  profile  with

Fig. (7.7) Three different combinations of Gaussian (¾ = 250 nm, xcentre = 1400 nm) and 
exponential (Lab = ~ 1000 nm) carrier generation profiles utitlized in RWNS calculations 
with fully disordered electrodes. Simulations were carried out for the following parameters: 
T0 = 1100 K,  T = 300 K,  t0 =10-12 s,  surface trap density = 0.004 nm-2,  ®l = 10 nm, 
nanosphere  radius  =  20  nm and  PR =  10-6 arb.  un.  For  each  combination  the  charge 
collection efficiency obtained in the simulation is indicated.
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¾ = 250 nm, xcentre = 1400 nm is introduced. The Gaussian “bump” is added to a background 

exponential profile of  Lab = ~ 1000 nm. This pure exponential profile yields  ´ ~ 37% for 

PR = 10-6 arb. un. and ®l = 10 nm. This is the same case studied in Fig. (7.4) (lower panel) 

where a diffusion length of carriers of Ln = 1240 nm was obtained. These reference values are 

important to understand the results discussed in the following.

The  introduction  of  the  Gaussian  produces,  as  expected,  an  improvement  of  the 

efficiency of the device. However this improvement is very much dependent on the position of 

the  Gaussian.  Thus,  enhancing  local  absorption  close  to  the  collecting  electrode 

(xcentre ~ 200 nm) increases the efficiency from 37% (pure exponential) to 44.6% (exponential 

plus  Gaussian).  In  contrast,  if  the  Gaussian  is  placed  far  from  the  collecting  electrode 

(xcentre ~  1900 nm)  the  charge  collection  efficiency is  38.4%,  which means  that  no  real 

improvement is produced with respect to the pure exponential. This can be easily understood 

bearing in mind that carriers travel in average 1240 nm before disappearing by recombination. 

Enhancing  light  absorption  locally  at  distances  larger  than  this  value  results  in  no  net 

improvement  of  the  efficiency  of  the  solar  cell.  This  is  a  very  important  result,  because 

demonstrates that it is not sufficient to enhance light absorption to improve the efficiency of 

real  devices,  but  this  enhancement  should  be  implemented  in  accordance  to  the  charge 

transport properties of the conducting film.

7.4. Conclusions to Chapter 7

In this Chapter, a numerical procedure that permits to obtain the collection efficiency 

of  photogenerated  charges  in  nanostructured  electrodes  with  different  degrees  of  1-

dimensional order has been developed. The simulated system resembles a real nanostructure 

where charges are generated according to a Lambert-Beer with a optical length of the order of 

microns, and where transport and recombination are taken into account via a hopping model 

coupled with a constant recombination probability. The results show that collection efficiency 

would  be  almost  doubled  by a  partial  ordering  of  the  system.  The  maximum efficiency 

enhancement  only  takes  place  if  the  recombination  probability  (which  determines  the 

characteristic diffusion length of the system) is not too rapid or too low, with a diffusion 

length of the same order  of  magnitude as the optical  absorption length.  Furthermore,  the 

collection efficiency can be calculated as a function of the degree of order via a normalized 

order parameter. The results show that a very slight degree of 1-dimensional order can lead to 

a significant increase of the collection efficiency. The predictions contained in this theoretical
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work might be interesting to develop strategies where a preferential direction is induced in an 

originally disordered structure, such as in the use of hierarchical structures studied in the 

recent literature. Furthermore, it is shown that the alleged benefit of using 1-D nanostructures  

should be taken with reserve, as only if the recombination rate has intermediate values, a 

clear improvement is observed.

A theoretical study of the influence of shape of the charge generation profile on the 

charge collection efficiency of a  nanostructured solar cell  has also been carried out.  The 

numerical results show that there is a power law dependence of the collection efficiency with 

respect to the optical depth of the film if the charge generation profile is Lambert-Beer-like 

(i.e., exponential). If the profile is Gaussian, the efficiency is found to increase exponentially 

as the centre of the Gaussian approaches the collecting electrode. Furthermore, the collection 

efficiency is roughly independent of the Gaussian width for devices where there is no bias  

field. Simulations where a Gaussian absorption is superposed on top of an exponential profile 

showed that the corresponding improvement in efficiency is very much dependent on the 

position of the Gaussian with respect to (1) the collecting electrode and (2) the diffusion  

length.  These  results  show  that  in  practical  devices  it  is  not  sufficient  to  enhance  the 

absorption  of  light  to  improve the  efficiency  but  also  that  this  should  be  applied  at  an 

adequate location of the active film.
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CHAPTER 8

DISORDERED SEMICONDUCTOR 
HETEROJUNCTIONS

A disordered semiconductor heterojunction is modelled by means of RWNS. The 
numerical modelling is  performed by using simultaneously electrons and holes 
moving  according  to  Miller-Abrahams  hopping  rates.  In  addition  a  tunnelling 
mechanism is  implemented to account  for electron-hole recombination.  Energy 
disorder is taken into account via exponential distributions of trap energies for 
both electrons and holes and for the two semiconductors in the heterojunction. 
Using this numerical method, we are able to simulate charge separation through a 
disordered  heterojunction  and  observe  the  effects  on  the  surface  photovoltage 
(SPV) of different parameters like the thickness of the heterostructure, the carrier 
concentration and the band-offset. The relationship between the simulated results 
and recent experimental data of ETA solar cells are thoroughly discussed. A bulk 
heterojunction solar cell in steady-state has been modelled by including explicitly 
a  continuous  generation  of  electron-hole  pairs.  Thus,  open-circuit  voltage 
measurements have been reproduced from splitting of Fermi levels for electrons 
and holes. Values of the recombination current have also been obtained by means 
of RWNS, in good agreement with experimental results.
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8. DISORDERED SEMICONDUCTOR HETEROJUNCTIONS

8.1. Introduction

Localized states or traps in disordered materials are mostly located on the surface of 

grains and interfaces (as reported, for example, in amorphous silicon1,2). Moreover, when two 

disordered  semiconductors  with  different  work  functions  are  put  in  contact  to  create  an 

heterojunction it is known that the process of charge separation is limited by the existence of 

surface  defects  contributing  to  an  enhancement  of  recombination3.  On the  other  hand,  as 

described in Chapter 1, it is known that photovoltaic effect of both ETA and BHJ solar cells 

are extremely dependent on an efficient separation process of photogenerated carriers. Hence, 

characterization of disordered semiconductor interfaces is required in order to achieve better 

performing devices.

Charge  separation  in  disordered  heterojunctions  can  be  studied  experimentally  by 

surface photovoltage transients (SPV)4–7. The main advantage of this experimental technique 

is that allows to observe both diffusion and recombination mechanisms4,5,8–10 as well as spatial 

charge separation processes11 in very short distances (of the order of nm's). The SPV signal 

depends on the amount of charge separated in space, on the distance of center of negative and 

positive charges  and on the  dielectric  constant  of  the  semiconductor  (²²0,  where  ² is  the 

relative dielectric constant and  ²0 = 8.85∙10-14  F/cm)6. In the general case in which there is 

spatial distribution of both positive and negative charge carriers in the bulk, it can be shown 

that SPV adopts the following form11

 (8.1)

where N(t) is the total amount of electron-hole pairs per unit area at time t and 

is the mean position of holes (electrons), i.e. their “gravity” centre of charge.

However, direct interpretation of the time evolution of SPV in terms of the electronic 

processes  taking  place  in  thin-film  heterostructures  is  not  straightforward.  In  this  sense, 

RWNS can serve as an appropriate model as it allows to establish relationships between SPV 

measurements and microscopic parameters of specific electronic mechanisms12,13. Thus, we 

present  in  this  Chapter  an  improved  RW method  that  can  describe  adequately  the  main
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features involved in general disordered semiconductor thin-film heterostructures. Thanks to its 

flexibility and potentiality, this model permits interpretation of charge separation processes 

occurring at interfaces of many types of ETA solar cells,  such as In2S3-In2S3:Cu films or 

TiO2/CdS layers as well as BHJ (organic) solar cells.

Indeed,  it  has  recently  been  put  into  question  the  actual  mechanism  of  charge 

separation and charge transport taking place in BHJs. Specifically, it has been claimed that it 

is kinetics and diffusion, instead of a built-in electric field, what provides the  photocurrent 

and the photovoltage in this type of systems14. To check the validity of these assumptions the 

present model has been adapted to simulate a typical bulk heterojunction solar cell. As no 

electric fields are taken into account, this model can help to clarify this controversy. In Fig. 

(8.1) an scheme of the system is  shown. We assume that  the open-circuit  voltage can be 

calculated  from  splitting  of  Fermi  levels  for  electrons  and  holes  in  accordance  with  the 

following expression

Fig. (8.1). Illustration of typical polymer-fullerene bulk heterojunction solar cell.
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 (8.2)

where  and  are the electron Fermi level in the acceptor semiconductor and the hole 

Fermi level in the donor semiconductor respectively. As a matter of fact, the experimental Voc 
is found to depend linearly on the band offset between the acceptor and the donor, although it 

is always smaller15. In fact, and empirical shift of 0.3 eV is normally found. Hence, it is very 

interesting  to  ascertain  if  our  hopping  and  recombination  models,  without  using  electric 

fields, are capable of reproducing this experimental phenomenology.

The configuration of the system is implemented by means of an adequate combination 

of  spatial  disorder  and energy disorder.  As regards  the  former,  we  run  the  random walk 

simulation on a network of traps distributed randomly in space. As for the latter, we assume 

again that localized states are distributed according to an exponential distribution16,17.  In this 

Chapter, holes and electrons are considered simultaneously as charge carriers. Hence, we will 

use as trap energy distributions

           

 (8.3)

           

where  Nl is the total trap density,  kBT0n(p) is  the width of the distribution18,  E is the trap 

energy (negative), Ec is the electron mobility edge and Ev is the hole mobility edge. We have 

assumed for simplicity that the width of the distribution is the same for both electrons and 

holes. However, this numerical model allows also to use different distributions for both types 

of carriers. This possibility might be required for certain systems.

8.2. Methodology

The construction of the heterojunction is accomplished by introducing two simulation 

boxes, each of them acting as a different semiconductor with its specific electron and hole trap 

energy distributions. Thus, four different energy trap distributions are used in the system, each
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of them with its own value of the band (mobility) edge. With these considerations, it is clear 

that an specific band-offset can arbitrarily be prescribed by choosing different conduction and 

valence band edges on both sides of the heterojunction. On the other hand, the thickness of 

both semiconductors can also be varied arbitrarily.

Periodic boundary conditions along y-z direction are applied. Thus, a carrier crossing a 

y-z boundary is automatically reinjected through the opposite side of the box. In addition, to 

simulate an ultra-thin film, we impose reflecting boundary conditions in the x-dimension so 

that  carriers  arriving  an  x boundary  are  bounced  back  and  continue  moving  across  the 

network of sites. An scheme of the simulation procedure is presented in Fig. (8.2).

The  numerical  procedure  runs  as  follows.  Firstly,  electrons  are  initially  placed  at 

random on the network of traps for the second semiconductor (acting as an absorber) with 

holes introduced in neighbouring traps. However, in the case of the BHJ calculations, holes 

are generated directly in the polymer and electrons in the fullerene. This way the stationary 

state is more rapidly reached and the statistics is improved.

Fig. (8.2). Illustration of the system studied. A disordered heterojunction is modelled by 
means of band-offset of energy distributions of localized states for both electrons and holes. 
Hopping transport model is used for detrapping times (or rates). See text for more details.
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Each carrier is then given a certain detrapping time that determines the jumping rate or 

probability for a carrier to jump to another site. If we assume a hopping mechanism16,19,20 of 

transport,  the detrapping or release time for a carrier jumping from a trap  i to a trap  j is 

derived according to Eq. (3.2).

In  the  same  way,  to  account  for  electron-hole  annihilation,  a  distance  dependent 

recombination probability is introduced in the computation.12 Here we assume that there is a 

tunneling mechanism in such a way that charge carriers sitting in different traps are allowed to 

recombine with each other due an overlap of the wave functions of separated electrons and 

holes21. Hence, we use the inverse of Eq. (2.40) to account for recombination times:

 (8.4)

where tr0 is the inverse of a recombination frequency, ®l is the localization radius and Rnp is 

the distance between electrons and holes. Note that there is no energy-dependent factor in Eq. 

(8.4).  We have assumed that the recombination process is analogous to the hopping process 

and  electron-hole  recombination  is  always  a  process  where  energy  is  emitted  (either 

radiatively or  non-radiatively).  However,  energy factors might  also be  taken into account, 

especially for non-radiative recombination.

Once  charge  carriers  have  been  injected,  hopping  and  recombination  times  are 

computed for both electrons and holes via Eqs.  (3.2) and (8.4) respectively. Both types of 

times are then stored in the same list of waiting times in such a way that if the minimum is a  

detrapping time then the corresponding carrier is moved into its target site, whereas if it is a  

recombination time the corresponding electron-hole pair is removed from the sample. This is 

an analogous procedure to that used in Chapter 6 for "Model 2". Once performed the move or 

the recombination event, the hopping and recombination times of the rest of the carriers are 

reduced by tmin. Finally, the same procedure is repeated in each simulation step so that the 

jump or electron-hole recombination event with the minimum waiting time can be executed.

A second section of this chapter will focus on steady-state properties of disordered 

semiconductor heterojunctions instead of transient dynamics. For this reason, a second type of 

simulations  have been  carried  out  where  a  continuous  injection  of  electron-hole  pairs  is 

explicitly considered in the system, in accordance with the photon absorption frequency of 

solar  radiation  in  a  solar  cell.  In  these  simulations  an  steady-state  situation  is  reached,
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consequence of a balance between recombination and injection. This can be verified by the 

fact that the occupation probability fits to a Fermi-Dirac function (see Chapter 4) and that the 

the number of "alive" electron-hole pair  is kept constant. Thus, well defined Fermi levels for 

holes and electrons in both semiconductors (  and ) are obtained in equilibrium.

8.3. Results and discussion

SPV measurements. Application to ETA solar cells

Using the mean positions of electrons and holes, a SPV histogram can be computed 

from the RW calculations (see Eq. (8.1)). To use realistic values of SPV in experiments, the 

following parameters have been used:13,22 T = 300 K, t0n = t0p = 10-12  s, ®l = 1 nm, aL = 1 nm 

and ²r = 10. Having fixed these, we will focus on the role that recombination mechanism (by 

means  of  tr0),  absorber  thickness  (W2)  and initial  densities  (½0n,  ½0p)  play in  the  charge 

separation process taking place in the heterojunction upon photoexcitation.

Fig. (8.3). SPV transients from RWNS calculations for different values of the thickness of 
the absorber and the recombination frequency (1/tr0). Parameters used in the simulations 
are indicated in the Figure.
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SPV transients obtained from RW calculations for different values of tr0 and W2 are 

shown in Fig.  (8.3).  It  can be  observed that,  for fixed absorber  thickness,  the  higher  the 

recombination time prefactor in Eq. (8.4) is, the later appears the decay. This is explained by 

the  fact  that  as  tr0 increases,  the  probability  of  recombination  decreases  with  respect  to 

transport, so that fewer recombination events will occur. For tr0 = 1 s, very few carriers are 

recombined and the SPV signal is mainly controlled by diffusion and charge separation. Thus, 

in this case a saturation effect related to the total thickness of the heterostructure seems to 

appear after charge separation process has been taken place. We can also see that variation of 

recombination frequencies affects the SPV maxima, making it higher as it decreases. On the 

other  hand,  comparison  of  the  three  panels  indicates  that  for  a  given  value  of  the 

recombination frequency the SPV maxima appears at longer times as the absorber thickness 

(W2) is augmented. This is a consequence of the fact that for thicker absorbers the process of 

diffusion with respect to electron-hole recombination is favoured.

Fig. (8.4). Maximum surface photovoltage of the transient versus total width of the film for 
several values of the carrier concentration as obtained from RW calculations with Miller-
Abrahams hopping  rates  and  a  tunnelling  recombination  mechanism.  The  dashed  lines 
stand  for  linear  fittings  of  the  simulation  data.  The  inset  includes  the  electron  density  
dependence.
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Results of SPV maxima versus semiconductor thicknesses for various initial electron-

hole densities are presented in Fig. (8.4). As it can be observed, the maximum value of the 

SPV transients increases with respect to the width of the heterostructure according to a power 

law. It is interesting to note that the exponents also increase slightly with the illumination, 

from a slope of 1.2, for the minimum density (½0 = 6.25·1016 cm-3) to a value of 1.6 for the case 

of ½0 = 1.875·1018  cm-3.  Likewise, it is shown that the maximum value of the SPV transients 

increases linearly with respect to the charge density for a given value of the total thickness in 

the log-log scale. The exponent is close to the unity in all cases, in accordance to experimental 

observations6,9.  However,  a  saturation  effect  cannot  be  reproduced  for  larger  values  of 

illumination  intensities  (or  initial  charge  densities),   an  observation  also  reported  in 

experiments.  This  may  be  a  consequence  of  the  fact  that  for  high  charge  densities  the 

recombination mechanism changes and energy factors have to be taken into account.

The charge concentration dependence of the halftime (defined as the time required for 

the SPV to reach half of its maximum value) is shown in Fig. (8.5). As reported in recent

Fig. (8.5). Halftime of the transient versus carrier concentration for several values of the 
total width of the film as obtained from RW calculations with Miller-Abrahams hopping 
rates and a tunnelling recombination mechanism. The solid lines stand for linear fitting of 
the simulation data.
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Fig.  (8.6).  Maximum  surface  photovoltage  of  the  transients  versus  band-offset  in  a 
disordered heterojunction as obtained from RW calculations with Miller-Abrahams hopping 
rates and Tunnelling recombination mechanism.

works6,23, a decrease of the halftime with respect to the illumination intensity is observed. This 

behaviour is attributed to trap-filling effects22,24,25 and can be understood in the following way: 

a higher trap-density induces an increase of the Fermi level and the occupancy of the deep 

traps. According to Eq. (3.2) carriers move more rapidly on average between shallow traps, 

hence  favouring  a  more  rapid  dynamics  and  a  faster  decay.  Note  the  analogy  with  the 

transport-limited recombination model (dynamic view) of Chapter 5. The density dependence 

is found to follow a power law as shown in Fig. (8.5), with power exponents 1.30, 1.46 and 

1.44 for W = 20, 40 and 60 nm, respectively. This power exponent can be related to the trap 

average energy26.

SPV maxima with respect to the band-offset are presented in Fig. (8.6). The simulation 

shows that  the  SPV peak starts  to  be  negative  and  becomes  larger  as  the  band-offset  is 

augmented. Negative values of  SPV are expected if  we take into account that these cases 

correspond to values of  ¢Ec and  ¢Ev that permit holes to move to the first semiconductor 

while force electrons to stay in the absorber. When SPV > 0 the charge separation goes on the
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inverse direction (see Fig. (8.2)) while no significant charge separation takes place when ¢Ec 
and  ¢Ev are similar. In summary, in the two first cases we have a  Type-II heterojunction 

while  intermediate  values  of  ¢Ec in  Fig.  (8.6)  correspond  to  a  Type-I  heterojunction. 

Schemes of the corresponding band-offsets are presented in the inset of Fig. (8.6). The fact 

that the SPV maxima increase for larger band-offsets is a common experimental observation 

reported several times in the literature27.  A saturation effect appears at a certain value of the 

band  relative  positions.  This  is  an  interesting  result  since  this  effect  can  be  related  to  a 

maximum value of the open-circuit voltage (Voc) that can be achieved in a solar cell based on 

a particular disordered heterojunction.

Steady-state RWNS. Application to BHJ solar cells.

The following parameters have been used in the computations: T = 300 K, ®l = 2 nm 

and aL = 2 nm. Likewise, we have used values for both the trap density and the average trap  

energy that are commonly reported in literature in order to reproduce realistic open-circuit

Fig. (8.7). Occupation probability of energy levels. It is observed that when an stationary 
state is reached then electron and hole occupancies are given by Fermi-Dirac statistics. The 
open-circuit photovoltage is obtained from splitting of the Fermi levels (Voc ~ 0.55 eV).
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photovoltages and photocurrents14,15,28–30. First of all, energy histograms  of electron and hole 

occupancies in the fullerene and the polymer respectively are shown in Fig.  (8.7).  It  was 

observed that when an stationary state is reached, signalled by constant electron and hole 

densities (see inset of Fig. (8.7), carrier occupancies are given by Fermi-Dirac statistics. In 

this way, from these energy histograms it is possible to estimate the Fermi levels and therefore 

the open-circuit photovoltage from Eq. (8.2). The recombination frequency prefactor tr0 was 

adjusted  to  reproduce  the  experimental  Voc at  1-sun  illumination.  Proceeding  this  way, 

tr0 = 8·106 t0 has been found for the case presented in Fig. (8.7).

The open-circuit voltage Voc for different degrees of illumination was also calculated. 

Results can be seen in the upper panel of Fig. (8.8). First of all, it is found that values of the 

open-circuit voltage are always smaller than ELUMO(Ful) { EHOMO(Pol), what is a common

Fig. (8.8). Upper panel. Open-circuit voltage as a function of the illumination intensity from 
electron Fermi level in the fullerene and hole Fermi level in the polymer as obtained by RW 
simulations (circles). The dashed line was obtained by fitting to Eq. (8.6). Lower panel. 
Recombination current as a function of the open-circuit  voltage. The inset  includes the 
dependence of the recombination resistance Rrec, defined by Eq. (8.10), with respect to the 
open-circuit voltage as obtained by RWNS.

158



Chapter 8  Disordered semiconductor heterojunctions

experimental observation14. On the other hand, an exponential dependence of Voc with respect 

to the light intensity I is observed, as described in the following equation.

 (8.5)

Hence, from Eq. (8.5) we obtain ¯ = 0.31 for  a characteristic temperature of T0 = 1160 K. On 

the other hand, the recombination current JR  as obtained by RW simulation is shown in the 

lower panel of Fig. (8.8) as a function of the open-circuit voltage. Realistic values of JR were 

obtained as well as the same dependence than that observed experimentally30. The inset of the 

lower panel shows the dependence of the recombination resistance Rrec with the open-circuit 

voltage. The same behaviour than described by Eq. (2.48) is observed, with ¯ = 0.23.

However, commonly reported values of ¯ are of the order of 0.7-0.814. Therefore, new 

calculations were carried out with the average energy width of the distributions varied down 

to T0 = 500 K30. Results of this new simulations can be seen in the upper panel of Fig. (8.9). It 

can be observed that in this case the slope of the curve becomes more realistic (¯ = 0.62), 

what indicate that ¯ depends “empirically” on the trap parameter kBT0.

It is interesting to note that, according to Eq. (8.2) and applying the zero-temperature 

limit of the Fermi-Dirac distribution for both electrons and holes, the following expression can 

be derived for the open-circuit photovoltage

 (8.6)

where npair is the steady-state electron-hole density. Hence, it is possible to obtain Voc from 

the steady-state electron-hole densities, once equilibrium has been reached. The result of this 

calculation is also observed in the upper panel of Fig. (8.9), where the same dependence than 

Eq. (8.5) is observed even more accurately than from direct measurements of the Fermi levels.

The recombination current, JR, has also been measured as a function of light intensity 

for T0 = 500 K. The results can be observed in the lower panel of Fig. (8.9). An exponential
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Fig. (8.9). Upper panel. Open-circuit voltage as a function of the illumination intensity from 
electron Fermi level in the fullerene and hole Fermi level in the polymer as obtained by RW 
simulations (circles) and from the steady-state electron-hole density as obtained by RW 
calculations (diamonds). The dashed line was obtained by fitting to Eq. (8.6). Lower panel. 
Recombination current  as  a  function  of  the  open-circuit  voltage.  Fitting procedure  was 
made by adjusting Eq. (8.7).

dependence  of  the  recombination  current  with  respect  to  the  open-circuit  voltage  was 

observed, according to the following equation (see Eq. (6.2))

 (8.7)

with ¯ = 0.58, a value close to that obtained from Eq. (8.5).

8.4. Conclusions to Chapter 8

In  summary,  a  numerical  method  based on random walk  simulation  is  devised  to 

model charge separation in disordered heterojunctions. Charge transport is described via the
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Miller-Abrahams hopping model whereas electron-hole recombination is taken into account 

via a tunnelling mechanism. On the one hand, we have obtained theoretical results for surface 

photovoltage  transients  in  a  disordered  semiconductor  heterojunction  that  adequately 

reproduce the experimental behaviour well known in this type of systems. We have analysed 

the dependence of the SPV signal on the band-offset, the width of the heterostructure and the 

carrier  concentration.  We find that  the  surface  photovoltage increases  with  respect  to the 

band-offset until a saturation effect appears at a certain value of the band positions.

On the other hand, a typical bulk heterojunction solar cell has been modelled under the 

assumption that charge separation is achieved by a chemical potential field, consequence of 

different affinities and work functions, instead of a built-in electric field. The open-circuit 

voltage has been determined as a function of the light intensity and the resulting dependence 

coincide  with  that  obtained  from experimental  observations.  Likewise,  the  recombination 

current has been studied at different open-circuit voltages and it has been observed that it 

increases exponentially with increasing voltages.  The results  demonstrate  that  the random 

walk  method  is  an  useful  tool  to  study  disordered  heterojunctions  starting  from  basic 

assumptions about electronic mechanisms in the nanoscale. Further work is however required 

to clarify the effects of the different parameters (for instance, the band-offset) on the open-

circuit voltage and the recombination current of practical devices.
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CONCLUSIONS

The decisive role that randomly distributed localized states dispersed in energies play 
for  the  understanding  of  the  electron  dynamics  in  disordered  semiconductors  has  been 
analysed in this thesis. For this purpose, RWNS provides an easy-to-use tool with encouraging 
results. It permits to describe charge transfer processes in terms of microscopic mechanisms 
without the requirement of high computational times characteristic of ab initio calculations. 
Thus, specific transport and recombination processes that take place with the involvement of 
localized states can be modelled and related to macroscopic properties of the materials.

First of all, the RWNS method with Miller-Abrahams hopping rates and exponential 
distribution of energies on a random network of traps has been utilized to describe transport 
properties in random media and to obtain the jump diffusion coefficient versus Fermi level 
and  temperature.  An  approximate  exponential  dependence  is  found  for  the  former  and 
Arrhenius behaviour for the latter. The simulation helps to distinguish between the energy of 
the most probable jump and an estimation of the effective transport energy that determines the 
transport properties of the system.  Comparison of the present results with the conditions of 
interest in the functioning of photovoltaic devices based on nanocrystalline TiO2 reveal that in 
this case the effective transport energy is approximately independent of the Fermi level. Hence 
the observed behaviour is similar to that found with the multiple-trapping model, making both 
models "indistinguishable" from the experimental point of view.

On the other hand, in order to check the influence of the exponential distribution of 
localized states in the processes of recombination that take place in a DSC, RW calculations 
have been carried out including direct computation of the electron diffusion length and the 
electron lifetime. On the one hand, using an energy-independent recombination rate, we have 
been able to reproduce experimental observations on account with trap-filling effects, such as 
the  voltage  dependence  of  the  electron  lifetime,  as  well  as  open-circuit  voltage  decay 
experiments. On the other hand, a more sophisticated charge transfer mechanism, including an 
energy-dependent  recombination  rate,  has  been  studied.  The  behaviour  of  the  electron 
diffusion length with respect to the Fermi level has been explained in terms of the interplay 
between  the  energy  distribution  of  the  traps  in  the  oxide  and  the  acceptor  states  in  the 
electrolyte.

The role of different spatial configurations and morphologies in disordered materials 
has also been analysed. The results lead to the conclusion that a relevant collection efficiency 
enhancement is only achieved at intermediate values of the recombination probability. On the 
other hand, the results show that when this condition is accomplished just a slight partial 
ordering of the system is sufficient to a meaningful increase of the collection efficiency.
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Finally,  a  disordered  semiconductor  heterojunction  has  been  studied  by  means  of 
RWNS. Both transient and steady-state simulations have been carried out, with applications in 
Extremelly Thin Absorber solar cells and Bulk Heterojunction solar cells. It has been found 
that charge separation and transport can be achieved without the presence of a built-in electric 
field. In contrast, the appearance of a built-in  chemical potential  explains that one type of 
charge can pass across the interface while the other remains in the absorber. On account of 
recombination,  a  tunnelling  recombination  mechanism  has  been  implemented.  From  this 
model, the open-circuit voltage has been obtained as a function of the illumination intensity 
and results  in  agreement with experimental  observations have been achieved.  The surface 
photovoltage,  another  measure  of  charge  separation,  has  also  been  obtained,  and  their 
dependence on film thickness and band offset extracted.

In summary, it has been demonstrated that these calculations can be applied to a wide 
variety  of  new  generation  solar  cells,  such  as  dye  sensitized  solar  cells,  extremely  thin 
absorber solar cells or bulk heterojunction solar cells. Hence, the current intense research on 
photovoltaic devices based on disordered materials provides a promising field in which to 
apply the Random Walk Numerical Simulation method.
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CONCLUSIONES

En  esta  tesis  se  ha  hecho  un  estudio  teórico  de  la  dinámica  electrónica  en 
semiconductores  desordenados  mediante  el  método  de  simulación  numérica  de  marcha 
electrónica (RWNS). Para ello se ha tenido en cuenta explícitamente el decisivo papel que 
presenta la existencia de una distribución energética cuasi-continua de estados localizados en 
la banda prohibida de estos materiales. Se concluye que el método RWNS proporciona una 
eficiente herramienta de estudio, ya que permite describir procesos de transferencia de carga 
en base a mecanismos microscópicos sin el requerimiento de largos tiempos de computación, 
característicos de cálculos ab initio. De esta manera, se puede llevar a cabo un proceso de 
modelización de mecanismos específicos de transporte y recombinación en presencia de una 
distribución dada de estados localizados que permitan relacionarlos luego con propiedades 
macroscópicas.

En primer lugar, se ha hecho uso del método RWNS para un análisis de la difusión 
electrónica en medios desordenados teniendo en cuenta una red aleatoria de trampas con una 
distribución en energías exponencial y una probabilidad de salto entre estados localizados 
dada  por  la  fórmula  de  Miller-Abrahams.  Se  han  obtenido  resultados  del  coeficiente  de 
difusión  electrónico  en  función  del  nivel  de  Fermi,  obteniéndose  una  dependencia 
exponencial. Asimismo, se ha observado un comportamiento tipo Arrhenius del coeficiente de 
difusión con respecto a la temperatura. Este tipo de cálculos ayuda a distinguir entre la energía 
de  salto  más probable  y  la  energía  de  transporte  efectiva,  que determina las  propiedades 
dinámicas del sistema. Por último se ha hecho llevado a cabo un análisis de los resultados en 
el  contexto  de  una  celda  DSC  basada  en  TiO2.  Se  concluye  que  en  condiciones  de 
funcionamiento de este tipo de celdas la energía de transporte efectiva es aproximadamente 
independiente del nivel de Fermi. De esta manera, el comportamiento observado es similar al 
modelo multiple-trapping, dando lugar a que ambos modelos sean indistinguibles desde un 
punto de vista experimental.

Por otro lado, se han llevado a cabo cálculos RWNS con el objetivo de estudiar la 
influencia  de  una  distribución  exponencial  de  estados  localizados  en  el  proceso  de 
recombinación que tiene lugar en una celda DSC. Se han realizado cálculos directos tanto de 
la  longitud de  difusión  como de  la  vida  media  electrónicas.  Usando una probabilidad de 
recombinación  independiente  de  la  energía  se  han  podido  reproducir  observaciones 
experimentales, tales como la dependencia de la vida media electrónica con respecto al nivel 
de Fermi o el decaimiento del voltaje a circuito abierto, en términos de un efecto de llenado de 
trampas. También se ha estudiado un mecanismo de transferencia de carga más sofisticado, 
incluyendo  una  probabilidad  de  recombinación  dependiente  de  la  energía.  Mediante  este 
procedimiento  se  ha  podido  describir  el  comportamiento  de  la  longitud  de  difusión  con 
respecto al nivel de Fermi mediante la interrelación entre una distribución quasi-continua de 
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estados localizados en el óxido y una distribución de estados aceptores en el electrolito dada 
por el modelo de Marcus-Gerischer. 

El  papel  que  desempeñan  diferentes  configuraciones  espaciales  de  trampas  en  la 
dinámica  electrónica  se  ha  analizado  también  como  parte  de  esta  tesis.  Los  resultados 
muestran que un aumento relevante de la eficiencia de recolección con el grado de orden sólo 
puede alcanzarse para valores intermedios de la probabilidad de recombinación. Por otro lado, 
cuando se cumple esta  condición,  un leve aumento del  grado de orden es suficiente para 
conseguir un incremento significativo en la eficiencia de recolección de la celda.

Finalmente,  se  ha  desarrollado  un  modelo  para  heterouniones  de  semiconductores 
desordenados. Se han realizado simulaciones de fenómenos tanto transitorios como en estado 
estacionario,  con  aplicaciones  a  celdas  solares  de  absorbedor  ultrafino  y  celdas  solares 
orgánicas tipo "bulk heterojunction". Así, se ha observado que los procesos de separación y 
transporte de carga se pueden explicar en términos solamente de alineamiento entre bandas, 
sin necesidad de tener en cuenta un campo eléctrico interno. En cuanto a la recombinación, se 
ha  tenido en  cuenta  un  mecanismo de  efecto  túnel.  Mediante  el  presente  modelo  se  han 
obtenido  voltajes  a  circuito  abierto  en  función  del  grado  de  iluminación  análogos  a  los 
medidos experimentalmente así como potenciales superficiales en función del alineamiento de 
banda y el grosor del semiconductor. 

En resumen, esta tesis demuestra que el método RWNS se puede aplicar a una gran 
variedad de  celdas  solares  de  nueva generación,  tales  como DSC, ETA o BHJ,  con muy 
buenos resultados. Por esto mismo, la intensa actividad investigadora que se está llevando a 
cabo actualmente en el campo de la fotovoltaica proporciona un campo muy prometedor en el 
que llevar a cabo cálculos de marcha aleatoria.
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List of Symbols

® ratio of absolute temperature T  to the characteristic temperature T0 
®ab absorption coefficient
®l localization radius
aL size of the simulation box
¯ reaction order of the recombination rate with respect to the conduction band 

electron density
Dn electron diffusion coefficient
Dp hole diffusion coefficient
Dc conduction band electron diffusion coefficient
Dj jump diffusion coefficient
D* tracer diffusion coefficient
² relative dielectric constant
²0 vacuum permittivity or dielectric constant
´ conversion efficiency
´ col charge collection efficiency
E energy
Ec electron mobility edge
Ev hole mobility edge
Eg band gap of a material
EF Fermi level
EF n  electron Fermi level
EF p hole Fermi level
Eredox redox potential
E0 standard reduction potential
Ed,n electron demarcation level
Ed,p hole demarcation level
Etr transport energy
Emax maximum of the energy histograms
E 'max maximum of the corrected energy histograms
f(E { EF) Fermi-Dirac occupation function for state at energy E 
FF fill factor
°  reaction order of the recombination rate with respect to the total electron 

density
g(E) density of localized states per unit energy per unit crystal volume
I incident light power density
J total current density
Jn electron current density
Jp hole current density
Jc conduction band current density
J0 saturation current
Jsc short-circuit current density
kB Boltzmann constant
¸ reorganization energy
L thickness of the film
Lab absorption length
Ln electron diffusion length



¹ chemical potential
¹n electron mobility
¹p hole mobility
m ideality factor
ºij  jump rate between localized states i and j 
º0 attemp-to-jump frequency
ºrec recombination rate
ºr0 tunnelling recombination frequency
n photogenerated electron density
ni intrinsic carrier density
n0 equilibrium electron density (chapter 1)
nc conduction band electron density
nl electron density in localized states
Nc effective conduction band density of states
Nl density of localized states
N(t) total amount of electron-hole pairs per unit area at time t
N(E) number of carriers occupying an energy between E and E+dE  
p photogenerated hole density
p0 equilibrium hole density
P porosity
PR probability of recombination
q elementary charge
½ electron-hole pairs density
rcut cut-off radius

mean-squared displacement
R random number
Rnp electron-hole pair separation
Rrec recombination resistance
R0 recombination resistance in the absence of illumination
Rs series resistance
Rsh parallel or shunt resistance
¾ width of a gaussian absorption profile
S specific surface area
¿c conduction band electron lifetime in the absence of traps
¿f effective conduction band electron lifetime
¿n electron lifetime
¿rec lifetime of charge carriers
¿tr transport time of charge carriers
t time
t0 attempt-to-jump time
tr0  tunnelling recombination time
T absolute temperature
T0 characteristic temperature
Urad radiative recombination rate
UAug Auger recombination rate
USRH Shockley-Read-Hall recombination rate
Urec recombination rate
V voltage
Voc open-circuit voltage
W thickness of the film



Ân thermodynamic factor
mean position of holes (electrons)

xmean centre of a gaussian absorption profile

Acronyms

AM air mass
BHJ bulk heterojunction solar cell
CdTe cadmium telluride
CIS copper indium selenide
CIGS copper indium gallium diselenide
CuSCN copper thiocyanate
CTRW continuous time random walk
DSC dye-sensitized solar cell
DOLS distribution of localized states
ETA extremely thin absorber solar cell
GaAs gallium arsenide
HOMO highest occupied molecular orbital
In2S3 Indium sulfide
LUMO lowest unoccupied molecular orbital
MG Marcus-Gerischer
MC Monte Carlo
OSC organic solar cell
RW random walk
RWNS random walk numerical simulation
SRH Shockley-Read-Hall
SPV surface photovoltage
TCO transparent conductive oxide electrode
TiO2 titanium dioxide
ZnO zinc oxide



Appendix A: Invariance of the electron diffusion length behaviour 
with respect to recombination prefactor

Fig. (A1). Electron diffusion length calculated by steady-state RWNS calculations using the 
hybrid model for different values of the recombination prefactors (Eqs.  (6.4) and  (6.5)). 
The simulations correspond to systems defined by ¸ = 0.6 eV, T0 = 700 K and T = 300 K. 
Two values of the conduction-band position are considered:  Ec { Eredox = 0.95 eV (solid 
lines) and  Ec { Eredox   = 0.70 eV (dashed lines).  Results are obtained from the Marcus-
Gerischer  formula  (Eqs.  (6.4) and  (6.5))  and  a  density  of  electronic  states  in  the 
semiconductor given by Eq. (2.2).



Fig. (A2). Electron diffusion length calculated by steady-state RWNS calculations using 
Model 1 for different values of the recombination prefactor (Eq. (6.4)). The simulations 
correspond to a system defined by ¸ = 0.25 eV, T0 = 700 K, T = 300 K. Two values of the 
conduction-band  position  are  considered:  Ec { Eredox   =  0.95  eV  (solid  lines)  and 
Ec { Eredox   = 0.70 eV (dashed lines).  Results  are obtained from the Marcus-Gerischer 
formula (Eq. (6.4)) and density of electronic states in the semiconductor (Eq.  (2.2), trap 
energy distribution).



Fig. (A3). Electron diffusion length calculated by steady-state RWNS calculations using 
Model 2 for different values of the recombination prefactor (Eq.  (6.5)). The simulations 
correspond to systems defined by ¸ = 2.0 eV, T0 = 700 K, T = 300 K. Two values of the 
conduction-band  position  are  considered:  Ec { Eredox  =  0.95  eV  (solid  lines)  and 
Ec { Eredox  = 0.70 eV (dashed lines). Results are obtained from the based on times Marcus-
Gerischer formula (Eq.  (6.5)) and density of electronic states in the semiconductor (Eq. 
(2.2), trap energy distribution).



Appendix B: Theoretical dependence of collection efficiency on absorption 

length

The  collection  efficiency  of  DSC  at  short-circuit  conditions  was  obtained  by  solving 

numerically the continuity equation for the total density of electrons n(x,t) in the photoanode:

  (B1)

where  kn is a pseudo-first order kinetic recombination constant which can be related to the 

inverse of an electron lifetime:4 kn = 1/¿n. Note that the complex density dependence of the 

kinetics constants (Dn and kn) is implicitly indicated, meaning that these magnitudes can vary 

with space and time. Details on this computation can be found in Refs. 5?7

In  the  numerical  solution  of  Eq.  (S1),  the  generation  term  G(x)  is  derived  from 

Lambert-Beer law:

  (B2)

where  Áinj is the quantum injection yield,  I0(¸) is the solar spectrum (here taken from the 

standard AM1.5G) and ²cell(¸) is the wave-length dependent absorption coefficient of the dye 

in the solar cell.

The collection efficiency of the DSC is calculated from the ratio between the short-

circuit photocurrent and the total number of electrons generated in the film. The short-circuit 

photocurrent is in turn estimated from the gradient of the density  at contact x = 0

  (B3)

In Figure S2 the collection efficiency is calculated for different concentrations of the 

dye in the photoanode, meaning different values of the absorption length Labs  (obtained by 

fitting the generation term S2 to a single exponential function). The results reproduce a power 

law with a similar exponent to that found in the RW simulations shown in the main text.



Fig. (B1). Charge collection efficiency as a function of absorption length as obtained from 
the  numerical  solution  of  the  continuity  equation  with  diffusion,  recombination  and 
generation terms. The recombination rate is adjusted to fit the collection efficiency obtained 
in the RW simulations shown in Fig. (7.3). The dashed line stands for a power-law fitting of 
the data, with an exponent of ~ 0.65 as shown. 



 Program hjunc
!
!        ------------------------------------------------------------------------
!        --->  Random Walk in a heterojunction of disordered semiconductors <----
!        ------------------------------------------------------------------------
!
!     This is an...
!
!           ACTIVATED HOPPING CONTINUOUS TIME RANDOM WALK method                
!               AIM: SURFACE PHOTOVOLTAGES (2010)
!
!                   Original N Quirke september 1998
!                   Modified by J.A. Anta, May-August 1999
!                   Modified by J.A. Anta, September 2006 (diff coef.)
!                   Modified by J.A. Anta, November 2006 (spatial disorder)
!                   Modified by J.A. Anta, May 2007 (spatial disorder: improved)
!     Modified by J.P. Gonzalez, November 2008 (hopping model)
!     Modified by J.P. Gonzalez, September 2009 (second charge carrier)
!                   Modified by J.P. Gonzalez, May 2010 (disordered semiconductor heterojunction)
!
 IMPLICIT NONE
!
! fixed parameters:
!
  REAL*8, PARAMETER :: echarge = 1.60217733d-19 ! elementary charge 
  REAL*8, PARAMETER :: melec = 9.1093897d-31  ! electron mass
  REAL*8, PARAMETER :: m2nm = 1d9 ! nanometers to meter
  REAL*8, PARAMETER :: temp2kt = 8.613278d-05 ! kelvins to eV (kT)
  REAL*8, PARAMETER :: ebin = 0.005 ! energy grid in nofe and gofe histograms
  REAL*8, PARAMETER :: epsilon0 = 8.8547d-12 ! in C/(V.nm)
!
! trap attempt frequency and time unit 
!
  REAL*8 :: nu0 ! = h/(8*melec*aa**2) or 1/tunit
!
! input parameters (file="hjunc.in")
!
  INTEGER :: np            ! number of particles
  INTEGER :: nh            ! number of holes
  REAL*8  :: d,dyz         ! size length of simulation box in nm (d --> x-coordinate)
  REAL*8  :: d1            ! size length of sem.1 
  REAL*8  :: rcut          ! cut-off for hopping between neighbouring traps
  REAL*8  :: nsample       ! number of samples
  REAL*8  :: temp          ! temperature in K
  REAL*8  :: maxmoves      ! maximum number of moves
  REAL*8  :: maxtime       ! maximum time of simulation in units of tunit or tunith
  REAL*8  :: tbin          ! bin size for time histograms in units of tunit
  REAL*8  :: tunit         ! time unit for electrons(t0)
  REAL*8  :: tunith        ! time unit for holes (t0h)
  REAL*8  :: ec1           ! energy of conduction band edge (0 by default) for sem.1 (eV)
  REAL*8  :: ec2           ! energy of conduction band edge (0 by default) for sem.2 (eV)
  REAL*8  :: ev1           ! energy of valence band edge (0 by default) for sem.1 (eV)
  REAL*8  :: ev2           ! energy of valence band edge (0 by default) for sem.2 (eV) 
  REAL*8  :: ecut1         ! energy cutoff for exponential DOS used for electrons (eV)
  REAL*8  :: ecut2         ! energy cutoff for exponential DOS used for electrons (eV)
  REAL*8  :: ecuth1        ! energy cutoff for exponential DOS used for holes (eV)
  REAL*8  :: ecuth2        ! energy cutoff for exponential DOS used for holes (eV)
  REAL*8  :: temp01        ! characteristic temperature in K for exponential DOS used for electrons in sem.1
  REAL*8  :: temp02        ! characteristic temperature in K for exponential DOS used for electrons in sem.2
  REAL*8  :: temp0h1       ! characteristic temperature in K for exponential DOS used for holes in sem.1
  REAL*8  :: temp0h2       ! characteristic temperature in K for exponential DOS used for holes in sem.2
  REAL*8  :: alfa          ! electron localization radius (nm)
  REAL*8  :: alfah         ! hole localization radius (nm)
  REAL*8  :: alat          ! average distance between traps
  REAL*8  :: effmfac       ! rate between effective masses
  REAL*8  :: r0            ! electron Bohrs radius in angstroms (for tunneling recombination)
  REAL*8  :: tt0           ! recombination life time in units of tunit
  REAL*8  :: epsilonr      ! relative dielectric constant 
  REAL*8  :: dt1           ! time length between different pulses in s
!
  INTEGER :: ndist   ! number of grid points in distribution of trap energies
  REAL*8, DIMENSION(:), ALLOCATABLE :: epiege,pcum
!
! main variables
!
  INTEGER :: ntrap    ! number of traps
  REAL*8, DIMENSION(:), ALLOCATABLE :: x,y,z         ! coordinates of electrons
  REAL*8, DIMENSION(:), ALLOCATABLE :: x0,y0,z0      ! initial coordinates of electrons
  REAL*8, DIMENSION(:), ALLOCATABLE :: xr,yr,zr      ! real coordinates of electrons
  REAL*8, DIMENSION(:), ALLOCATABLE :: xh,yh,zh      ! coordinates of holes
  REAL*8, DIMENSION(:), ALLOCATABLE :: x0h,y0h,z0h   ! initial coordinates of holes
  REAL*8, DIMENSION(:), ALLOCATABLE :: xrh,yrh,zrh   ! real coordinates of holes
  REAL*8, DIMENSION(:), ALLOCATABLE :: e             ! energy of electrons

  REAL*8, DIMENSION(:), ALLOCATABLE :: eh            ! energy of holes
  REAL*8, DIMENSION(:), ALLOCATABLE :: wte           ! hopping time of electrons      
  REAL*8, DIMENSION(:), ALLOCATABLE :: wth           ! hopping time of holes      
  REAL*8, DIMENSION(:,:), ALLOCATABLE :: rt          ! recombination times
  INTEGER, DIMENSION(:), ALLOCATABLE :: ijumph       ! hopping-to trap of holes 
  INTEGER, DIMENSION(:), ALLOCATABLE :: itraph       ! trap number of holes
  INTEGER, DIMENSION(:), ALLOCATABLE :: ijumpe       ! hopping-to trap of electrons 
  INTEGER, DIMENSION(:), ALLOCATABLE :: itrape       ! trap number of electrons
  LOGICAL, DIMENSION(:), ALLOCATABLE :: otrape       ! if .true. trap is occupied by an electron
  LOGICAL, DIMENSION(:), ALLOCATABLE :: otraph       ! if .true. trap is occupied by a hole 
  LOGICAL, DIMENSION(:), ALLOCATABLE :: oexist       ! if .true. electron "exists"
  LOGICAL, DIMENSION(:), ALLOCATABLE :: oexisth      ! if .true. hole "exists"
  REAL*8, DIMENSION(:), ALLOCATABLE :: etrape        ! trap energy (for electron ditribution)
  REAL*8, DIMENSION(:), ALLOCATABLE :: etraph        ! trap energy (for hole ditribution)
  REAL*8, DIMENSION(:), ALLOCATABLE :: xtrap         ! trap x-coordinate
  REAL*8, DIMENSION(:), ALLOCATABLE :: ytrap         ! trap y-coordinate
  REAL*8, DIMENSION(:), ALLOCATABLE :: ztrap         ! trap z-coordinate
  REAL*8, DIMENSION(:), ALLOCATABLE :: svoltage      ! surface photovoltage (in Vm-2)
  INTEGER, DIMENSION(:,:), ALLOCATABLE :: ivec       ! neighbour list
  INTEGER, DIMENSION(:), ALLOCATABLE :: iv           ! number of neighbours
  REAL*8 :: tev         ! kT (temperature) in eV
  REAL*8 :: tev01       ! kT0 (characteristic temperature) in eV for electrons for sem.1
  REAL*8 :: tev02       ! kT0 (characteristic temperature) in eV for electrons for sem.2
  REAL*8 :: tev0h1      ! kT0 (characteristic temperature) in eV for holes for sem.1
  REAL*8 :: tev0h2      ! kT0 (characteristic temperature) in eV for holes for sem.2
  REAL*8 :: time        ! elapsed time 
  REAL*8 :: emean       ! centre of gaussian DOS
  INTEGER :: nbins      ! number of time bins in total simulation time per sample
  REAL*8 :: ener        ! compute total energy of electrons
  REAL*8 :: dist        ! square displacement
  INTEGER, DIMENSION(:), ALLOCATABLE :: nalive
  INTEGER, DIMENSION(:), ALLOCATABLE :: halive
  INTEGER, DIMENSION(:), ALLOCATABLE :: nalive1
  INTEGER, DIMENSION(:), ALLOCATABLE :: nalive2
  INTEGER, DIMENSION(:), ALLOCATABLE :: halive1
  INTEGER, DIMENSION(:), ALLOCATABLE :: halive2
!
! output parameters
!
  INTEGER :: initbin1   ! initial point in "nofe" and "gofe" histograms
  INTEGER :: initbin2   ! initial point in "nofe" and "gofe" histograms
  INTEGER :: initbinh1  ! initial point in "nofe" and "gofe" histograms
  INTEGER :: initbinh2  ! initial point in "nofe" and "gofe" histograms
  INTEGER :: ehistbin1  ! number of points in "nofe" and "gofe" histograms
  INTEGER :: ehistbin2  ! number of points in "nofe" and "gofe" histograms
  INTEGER :: ehistbinh1 ! number of points in "nofe" and "gofe" histograms
  INTEGER :: ehistbinh2 ! number of points in "nofe" and "gofe" histograms
  REAL*8, DIMENSION(:), ALLOCATABLE :: nofe1    ! energy level population (for electrons)
  REAL*8, DIMENSION(:), ALLOCATABLE :: nofe2    ! energy level population (for electrons)
  REAL*8, DIMENSION(:), ALLOCATABLE :: nofeh1   ! energy level population (for holes)
  REAL*8, DIMENSION(:), ALLOCATABLE :: nofeh2   ! energy level population (for holes)
  REAL*8, DIMENSION(:), ALLOCATABLE :: gofe1    ! density of states (for electrons)
  REAL*8, DIMENSION(:), ALLOCATABLE :: gofe2    ! density of states (for electrons)
  REAL*8, DIMENSION(:), ALLOCATABLE :: gofeh1   ! density of states (for holes)
  REAL*8, DIMENSION(:), ALLOCATABLE :: gofeh2   ! density of states (for holes)
!
! others
!
  INTEGER :: i,j,k,isx,isy,isz,i1,i2,nn,nyz,p,l,m
  REAL*8 :: r,tr,t1,t2,rt1,re,rh,delta,ti,rdist,rdisth,xtr,it1
  INTEGER :: ixsr,isxl,isyr,isyl,iszr,iszl,idir,idir1
  INTEGER :: ik,it,is,iis,index,index0,npulse 
  REAL*8 :: isample
  REAL*8 :: imoves,imovess
  REAL*8 :: ekk1,ekk2,ekkh1,ekkh2,ngofe,nnofe,sumae,sumah  
  REAL*8 :: xtrapi,ytrapi,ztrapi,xtrapih,ytrapih,ztrapih
  REAL*8 :: djx,djy,djz,jump2,rcut2,rcut2x
  REAL*8 :: xmean,xmeanh,sep 
  INTEGER :: ive,ike         
  REAL*8 :: dxq,dyq,dzq,qdist,dxr,dyr,dzr,recd
  REAL*8 :: renorm
  INTEGER :: ap,ah,ap1,ap2,ah1,ah2
  LOGICAL :: einjected,hinjected
! 
  OPEN(14,file="hjunc.in")
  OPEN(15,file="hjunc.out")
!  OPEN(20,file="recomb.dat")
!
! read input parameters
!
  READ(14,*) np
  READ(14,*) nh



  READ(14,*) d,dyz
  READ(14,*) d1
  READ(14,*) rcut
  READ(14,*) maxmoves
  READ(14,*) nsample
  READ(14,*) temp
  READ(14,*) maxtime
  READ(14,*) tbin
  READ(14,*) tunit
  READ(14,*) tunith
  READ(14,*) ec1
  READ(14,*) ec2
  READ(14,*) ev1
  READ(14,*) ev2
  READ(14,*) ecut1
  READ(14,*) ecut2
  READ(14,*) ecuth1
  READ(14,*) ecuth2
  READ(14,*) temp01
  READ(14,*) temp02
  READ(14,*) temp0h1
  READ(14,*) temp0h2
  READ(14,*) alfa
  READ(14,*) alfah
  READ(14,*) alat
  READ(14,*) effmfac
  READ(14,*) r0
  READ(14,*) tt0
  READ(14,*) epsilonr
  READ(14,*) dt1
!
! convert to internal units
!
  tev = temp*temp2kt
  tev01 = -temp01*temp2kt
  tev02 = -temp02*temp2kt
  tev0h1 = -temp0h1*temp2kt
  tev0h2 = -temp0h2*temp2kt
  nbins = nint(maxtime/tbin)
  renorm =1d9*((dyz*1d-9)**2)*epsilon0*epsilonr/echarge ! for SPV in V
!
  ALLOCATE (x(400),y(400),z(400),e(400),wte(400),itrape(400),ijumpe(400),oexist(400))        
  ALLOCATE (x0(400),y0(400),z0(400))
  ALLOCATE (xr(400),yr(400),zr(400))
  ALLOCATE (xh(400),yh(400),zh(400),eh(400),wth(400),itraph(400),ijumph(400),oexisth(400))        
  ALLOCATE (x0h(400),y0h(400),z0h(400))
  ALLOCATE (xrh(400),yrh(400),zrh(400))
  ALLOCATE (svoltage(nbins))
  initbin1 = int(ec1/ebin)-1
  initbin2 = int(ec2/ebin)-1
  initbinh1 = int(ev1/ebin)
  initbinh2 = int(ev2/ebin)
  ehistbin1 = int((-ecut1+ec1)/ebin)
  ehistbin2 = int((-ecut2+ec2)/ebin)
  ehistbinh1 = int((ecuth1+ev1)/ebin)-1
  ehistbinh2 = int((ecuth2+ev2)/ebin)-1
  ALLOCATE (nofe1(ehistbin1:initbin1),nofe2(ehistbin2:initbin2),nofeh1(initbinh1:ehistbinh1),nofeh2(initbinh2:ehistb
inh2))
  ALLOCATE (gofe1(ehistbin1:initbin1),gofe2(ehistbin2:initbin2),gofeh1(initbinh1:ehistbinh1),gofeh2(initbinh2:ehistb
inh2))
  ALLOCATE (rt(400,400))
  ALLOCATE (nalive(nbins),nalive1(nbins),nalive2(nbins))
  ALLOCATE (halive(nbins),halive1(nbins),halive2(nbins))
!
  nu0 = 1./tunit
!
  WRITE(*,'(/10x," program HJUNC "/)')
  WRITE(*,'(" sample size (x, and yz) = ",f10.5,1x,f10.5" nm")') d,dyz
  WRITE(*,'(" semiconductor 1 size (x, and yz) = ",f10.5,1x,f10.5" nm")') d1,dyz
  WRITE(*,'(" semiconductor 2 size (x, and yz) = ",f10.5,1x,f10.5" nm")') d-d1,dyz
  WRITE(*,'(" Trap attempt frequency = ",es15.5," secs-1")') nu0
  WRITE(*,'(" Time unit = ",es15.5," secs")') tunit
  WRITE(*,'(" number of electrons = ",i4)') np
  WRITE(*,'(" number of holes = ",i4)') nh
  WRITE(*,'(" Maximum time of simulation = ",es15.5," tunit(s)")') 10**maxtime
!  WRITE(*,'(" Maximum time of simulation = ",es15.5," tunit(s)")') maxtime
  WRITE(*,'(" Temperature = ",f7.2," K")') temp
  WRITE(*,'(" Semiconductor 1 conduction band = ",f7.2," eV")') ec1
  WRITE(*,'(" Semiconductor 2 conduction band = ",f7.2," eV")') ec2
  WRITE(*,'(" Semiconductor 1 valence band = ",f7.2," eV")') ev1
  WRITE(*,'(" Semiconductor 2 valence band = ",f7.2," eV")') ev2
  WRITE(*,'(" Band gap of sem.1 = ",f7.2," eV")') abs(ev1-ec1)
  WRITE(*,'(" Band gap of sem.2 = ",f7.2," eV")') abs(ev2-ec2)

  WRITE(*,'(" Ecut1 = ",f7.2," eV")') ecut1
  WRITE(*,'(" Ecut2 = ",f7.2," eV")') ecut2
  WRITE(*,'(" Ecuth1 = ",f7.2," eV")') ecuth1
  WRITE(*,'(" Ecuth2 = ",f7.2," eV")') ecuth2
  WRITE(*,'(" Rate between effective masses = ",f7.2," eV")') effmfac
  WRITE(*,'(" alpha1 = ",f7.4)') -tev/tev01
  WRITE(*,'(" alpha2 = ",f7.4)') -tev/tev02
  WRITE(*,'(" alphah1 = ",f7.4)') -tev/tev0h1
  WRITE(*,'(" alphah2 = ",f7.4)') -tev/tev0h2
  WRITE(*,'(/2x,"( kT = ",f10.7,", E (= -dV/dx) = ",f10.7, " eV )"/)') &
       tev
  WRITE(15,'(/10x," program HJUNC "/)')
  WRITE(15,'(" sample size (x, and yz) = ",f10.5,1x,f10.5" nm")') d,dyz
  WRITE(15,'(" semiconductor 1 size (x, and yz) = ",f10.5,1x,f10.5" nm")') d1,dyz
  WRITE(15,'(" semiconductor 2 size (x, and yz) = ",f10.5,1x,f10.5" nm")') d-d1,dyz
  WRITE(15,'(" Trap attempt frequency = ",es15.5," secs-1")') nu0
  WRITE(15,'(" Time unit = ",es15.5," secs")') tunit
  WRITE(15,'(" number of electrons = ",i4)') np
  WRITE(15,'(" number of holes = ",i4)') nh
  WRITE(15,'(" Maximum time of simulation = ",es15.5," tunit(s)")') 10**maxtime
!  WRITE(15,'(" Maximum time of simulation = ",es15.5," tunit(s)")') maxtime
  WRITE(15,'(" Temperature = ",f7.2," K")') temp
  WRITE(15,'(" Semiconductor 1 conduction band = ",f7.2," eV")') ec1
  WRITE(15,'(" Semiconductor 2 conduction band = ",f7.2," eV")') ec2
  WRITE(15,'(" Semiconductor 1 valence band = ",f7.2," eV")') ev1
  WRITE(15,'(" Semiconductor 2 valence band = ",f7.2," eV")') ev2
  WRITE(15,'(" Band gap of sem.1 = ",f7.2," eV")') abs(ev1-ec1)
  WRITE(15,'(" Band gap of sem.2 = ",f7.2," eV")') abs(ev2-ec2)
  WRITE(15,'(" Ecut1 = ",f7.2," eV")') ecut1
  WRITE(15,'(" Ecut2 = ",f7.2," eV")') ecut2
  WRITE(15,'(" Ecuth1 = ",f7.2," eV")') ecuth1
  WRITE(15,'(" Ecuth2 = ",f7.2," eV")') ecuth2
  WRITE(15,'(" Rate between effective masses = ",f7.2," eV")') effmfac
  WRITE(15,'(" alpha1 = ",f7.4)') -tev/tev01
  WRITE(15,'(" alpha2 = ",f7.4)') -tev/tev02
  WRITE(15,'(" alphah1 = ",f7.4)') -tev/tev0h1
  WRITE(15,'(" alphah2 = ",f7.4)') -tev/tev0h2
  WRITE(15,'(/2x,"( kT = ",f10.7,", E (= -dV/dx) = ",f10.7, " eV )"/)') &
       tev
!
! **** Build up trap network ****************************************
!
  nn = nint(d/alat)
  nyz = nint(dyz/alat)
  ntrap = nn*nyz**2
 
  ALLOCATE (otrape(ntrap),otraph(ntrap),etrape(ntrap),etraph(ntrap),xtrap(ntrap),ytrap(ntrap),ztrap(ntrap))
  ALLOCATE (ivec(ntrap,700),iv(ntrap))
!
! CREATE random lattice 
!
  call random_seed
  DO ik=1,ntrap
     call random_number(r)
     xtrap(ik) = r*d
     call random_number(r)
     ytrap(ik) = r*dyz
     call random_number(r)
     ztrap(ik) = r*dyz
  ENDDO
!
! computing neighbour list
!
  WRITE(*,'(" Computing neighbour list... ")') 
  ivec = 0
  iv = 0
  rcut2 = rcut*rcut
  DO ik=1,ntrap
     rcut2x = rcut2
111  DO it = ik+1,ntrap
        djx = xtrap(ik)-xtrap(it) 
        djy = ytrap(ik)-ytrap(it) 
        djz = ztrap(ik)-ztrap(it)
!       P.B.C here: (Not for x-coordinate...)
!        djx = djx - d*nint(djx/d)
        djy = djy - dyz*nint(djy/dyz)
        djz = djz - dyz*nint(djz/dyz)
!
        jump2 = djx**2 + djy**2 + djz**2
        IF (jump2.lt.rcut2x) THEN
           iv(ik) = iv(ik) + 1
           iv(it) = iv(it) + 1
           ivec(ik,iv(ik)) = it



           ivec(it,iv(it)) = ik
        ENDIF
     ENDDO
!
     IF (iv(ik).le.1) THEN
        rcut2x = rcut2x + 1
        WRITE(*,'("changing cut-off -->",f10.5," nm")') sqrt(rcut2x)
        WRITE(15,'("changing cut-off -->",f10.5," nm")') sqrt(rcut2x)
        GOTO 111
     ENDIF
     IF (mod(ik,1000).eq.0) print *, 'ik = ',ik
     WRITE(56,*) ik,iv(ik)
   ENDDO
!        
! *******************************************************************
! ***** loop over different trap energy realizations ****************
! *******************************************************************
!
  nofe1 = 0
  nofe2 = 0
  nofeh1 = 0
  nofeh2 = 0
  gofe1 = 0
  gofe2 = 0
  gofeh1 = 0
  gofeh2 = 0
  svoltage = 0.0
  imoves = 0.0
  nalive = 0
  halive = 0
  nalive1 = 0
  nalive2 = 0
  halive1 = 0
  halive2 = 0
!
  DO isample=1,nsample
!
     WRITE(*,'(/" --> Simulation for sample = ",es15.4/40("*"))') isample
     WRITE(15,'(/" --> Simulation for sample = ",es15.4/40("*"))') isample
!
     x = 0
     y = 0
     z = 0
     e = 0
     xh = 0
     yh = 0
     zh = 0
     eh = 0
     otrape = .false.
     otraph = .false.
     oexist = .false.
     oexisth = .false.
     ener = 0.0
     dist = 0.0
     imovess = 0.0
     sep = 0
     index0 = 0
     index = 0
     npulse = 0
     DO j=1,np
        oexist(j) = .true.
     ENDDO
     DO j=1,nh
        oexisth(j) = .true.
     ENDDO
! 
!    allocate energies to trap sites (for electron distribution)
!
     DO ik = 1,ntrap
        IF (xtrap(ik).lt.d1) THEN
           ekk1 = edist1()
           etrape(ik) = -ekk1+ec1
           gofe1(int((-ekk1+ec1)/ebin)-1) = gofe1(int((-ekk1+ec1)/ebin)-1) + 1
        ELSE
           ekk2 = edist2()
           etrape(ik) = -ekk2+ec2
           gofe2(int((-ekk2+ec2)/ebin)-1) = gofe2(int((-ekk2+ec2)/ebin)-1) + 1
        ENDIF
     ENDDO
! 
!    allocate energies to trap sites (for hole distribution)
!
     DO ik = 1,ntrap

         IF (xtrap(ik).lt.d1) THEN
            ekkh1 = edisth1()
            etraph(ik) = ekkh1+ev1
            gofeh1(int((ekkh1+ev1)/ebin)-1) = gofeh1(int((ekkh1+ev1)/ebin)-1) + 1
         ELSE
            ekkh2 = edisth2()
            etraph(ik) = ekkh2+ev2
            gofeh2(int((ekkh2+ev2)/ebin)-1) = gofeh2(int((ekkh2+ev2)/ebin)-1) + 1
         ENDIF   
     ENDDO
!
     OPEN(31,file='enerhist1.dat',status='unknown')
     DO i=int(ec1/ebin)-1,ehistbin1,-1
        ngofe = gofe1(i)/sum(gofe1)/ebin
        IF (ngofe.ne.0) THEN
          WRITE(31,'(4(e12.5,1x))') real(i)*ebin,ngofe
        ENDIF
     ENDDO
     CLOSE(31)
!
     OPEN(33,file='enerhist2.dat',status='unknown')
     DO i=int(ec2/ebin)-1,ehistbin2,-1
        ngofe = gofe2(i)/sum(gofe2)/ebin
        IF (ngofe.ne.0) THEN
          WRITE(33,'(4(e12.5,1x))') real(i)*ebin,ngofe
        ENDIF
     ENDDO
     CLOSE(33)
!
     OPEN(35,file='enerhisth1.dat',status='unknown')
     DO i=int(ev1/ebin),ehistbinh1
        ngofe = gofeh1(i)/sum(gofeh1)/ebin
        IF (ngofe.ne.0) THEN
          WRITE(35,'(4(e12.5,1x))') real(i)*ebin,ngofe
        ENDIF
     ENDDO
     CLOSE(35)
!
     OPEN(37,file='enerhisth2.dat',status='unknown')
     DO i=int(ev2/ebin),ehistbinh2
        ngofe = gofeh2(i)/sum(gofeh2)/ebin
        IF (ngofe.ne.0) THEN
          WRITE(37,'(4(e12.5,1x))') real(i)*ebin,ngofe
        ENDIF
     ENDDO
     CLOSE(37)
!
!    Total simulation time
!
     WRITE(*,'(" Total simulation time = ",e15.5," secs")') 10**maxtime
!    WRITE(*,'(" Total simulation time = ",e15.5," secs")') maxtime
     WRITE(*,'(" Time window = ",e15.5," secs")') tbin
     WRITE(15,'(" Total simulation time = ",e15.5," secs")') 10**maxtime
!    WRITE(15,'(" Total simulation time = ",e15.5," secs")') maxtime
     WRITE(15,'(" Time window = ",e15.5," secs")') tbin
     WRITE(*,*)'total number of traps', ntrap  
     WRITE(15,*)'total number of traps', ntrap
!
     WRITE(*,*) 'distribute electrons throughout sample...'
     WRITE(15,*) 'distribute electrons throughout sample...'
!  
!    distribute electrons throughout sample
!
     DO j=1,np ! loop over number of particles
!
! random distribution of electrons...
!
21      CONTINUE
        call random_number(r)
        ik=int(r*ntrap+1)
        IF (otrape(ik)) GOTO 21    ! trap already occupied
        IF (xtrap(ik).lt.d1) GOTO 21
!
        e(j) = etrape(ik)
        x(j) = xtrap(ik)
        y(j) = ytrap(ik)
        z(j) = ztrap(ik)
        itrape(j) = ik
        otrape(ik) = .true.   ! trap occupied
     ENDDO
!
     WRITE(*,*) 'compute waiting times and jumps for each electron...'
     WRITE(15,*) 'compute waiting times and jumps for each electron...'



!
     DO j=1,np ! compute waiting times and jumps for each electron using hopping model 
!
        call settime(j) ! this sets up wte(j) and ijumpe(j) using hopping model
!
!       Note: along the simulation, every electron should have a waiting time 
!             and a most probable jump (specified by the trap number of the trap
!             it jumps to)
!
     ENDDO
!
     WRITE(*,*) 'distribute holes throughout sample...'
     WRITE(15,*) 'distribute holes throughout sample...'
!
!    distribute holes throughout sample
!
     DO j=1,nh ! loop over number of particles
!
     ive = iv(itrape(j))
!
22      CONTINUE
        call random_number(r)
        ike = int(r*ive+1.0)
        ik = ivec(itrape(j),ike)   ! choose randomly an electron neighbour
!       
        IF (otraph(ik)) GOTO 22    ! trap already occupied by a hole
        IF (xtrap(ik).lt.d1) GOTO 22
!       
        eh(j) = etraph(ik)
        xh(j) = xtrap(ik)
        yh(j) = ytrap(ik)
        zh(j) = ztrap(ik)
        itraph(j) = ik
        otraph(ik) = .true.   ! trap occupied
     ENDDO
!
     WRITE(*,*) 'compute waiting times and jumps for each hole...'
     WRITE(15,*) 'compute waiting times and jumps for each hole...'
!
     DO j=1,nh ! compute waiting times and jumps for each hole 
!
        call settimeh(j) ! this sets up wth(j) and ijumph(j) using hopping model
!
!       Note: along the simulation, every hole should have a waiting time 
!             and a most probable jump (specified by the trap number of the trap
!             it jumps to)
!
     ENDDO
!
     DO i=1,np ! compute recombination times 
!
        call recombt(i)
!
     ENDDO
!
!    initial positions
!
     x0 = x
     y0 = y
     z0 = z
     xr = x
     yr = y
     zr = z
     x0h = xh
     y0h = yh
     z0h = zh
     xrh = xh
     yrh = yh
     zrh = zh
!
!    --------------------------------------------------------
!    begin simulation run
!    --------------------------------------------------------
!
     einjected = 0
     hinjected = 0
     time = 0
     it1 = 0
!
     WRITE(*,*) 'begin simulation run...'
     WRITE(15,*) 'begin simulation run...'
!     WRITE(20,*) 'begin simulation run...'
!
     DO WHILE(.true.)

!
        IF (imoves.ge.maxmoves) THEN
                WRITE(*,*) 'maximum number of moves about to be exceed', maxmoves
                WRITE(15,*) 'maximum number of moves about to be exceed', maxmoves
                STOP 
        ENDIF
 
!       Electron injection after an arbitrary amount of time...
 
        IF (int(time/dt1).gt.npulse) THEN
           npulse = npulse + 1
           einjected = .false.
           hinjected = .false.
!           WRITE (*,*) 'new injection of an electron hole pair'
 
23         CONTINUE
           call random_number(r)
           l = int(r*ntrap)+1
           IF (otrape(l)) GOTO 23
           IF (xtrap(l).lt.d1) GOTO 23
           DO j = 1,np
              IF (l.eq.ijumpe(j)) GOTO 23
           ENDDO
           otrape(l) = .true.
 
24         CONTINUE
           call random_number(r)
           m = int(r*ntrap)+1
           IF (otraph(m)) GOTO 24
           IF (xtrap(m).lt.d1) GOTO 24
           DO j = 1,nh
              IF (m.eq.ijumph(j)) GOTO 24
           ENDDO
           otraph(m) = .true.
!
           DO j=1,np
              IF (.NOT.oexist(j)) THEN
                 oexist(j)=.true.    
                 itrape(j) = l
                 e(j) = etrape(l)
                 x(j) = xtrap(l)
                 y(j) = ytrap(l)
                 z(j) = ztrap(l)
                 call settime(j) ! this sets up wte and ijumpe
                 call recombt(j)
                 einjected = .true.
!                 WRITE(*,*) 'an old electron reborns',j
                 EXIT   
              ENDIF
           ENDDO
           IF (.NOT.einjected) THEN
              np = np + 1
              oexist(np)=.true.    
              itrape(np) = l
              e(np) = etrape(l)
              x(np) = xtrap(l)
              y(np) = ytrap(l)
              z(np) = ztrap(l)
              call settime(np) ! this sets up wte and ijumpe
              call recombt(np)
!              WRITE(*,*) 'a new electron is injected',j
              einjected = .true.
           ENDIF
           DO j=1,nh
              IF (.NOT.oexisth(j)) THEN   
                 oexisth(j)=.true.   
                 itraph(j) = m
                 eh(j) = etraph(m)
                 xh(j) = xtrap(m)
                 yh(j) = ytrap(m)
                 zh(j) = ztrap(m)
                 call settimeh(j) ! this sets up wth and ijumph
                 call recombth(j)
                 hinjected = .true.
!                 WRITE(*,*) 'an old hole reborns',j
                 EXIT   
              ENDIF
           ENDDO
           IF (.NOT.hinjected) THEN
              nh = nh + 1
              oexisth(nh)=.true.   
              itraph(nh) = m
              eh(nh) = etraph(m)



              xh(nh) = xtrap(m)
              yh(nh) = ytrap(m)
              zh(nh) = ztrap(m)
              call settimeh(nh) ! this sets up wth and ijumph
              call recombth(nh)
!              WRITE(*,*) 'a new hole is injected',j
              hinjected = .true.
           ENDIF
 
        ENDIF
!
!       search for minimum electron hopping time (t1)
!
        t1 = 1d80
        DO i=1,np
          IF (wte(i).lt.t1) THEN
              IF (oexist(i)) THEN 
                     IF (.not.otrape(ijumpe(i))) THEN ! ... to a non-occupied trap 
                       t1 = wte(i)
                       i1 = i
                     ENDIF
              ENDIF
          ENDIF        
        ENDDO
!
!       search for minimum hole hopping time (t2) 
!
        t2 = 1d80
        DO i=1,nh
          IF (wth(i).lt.t2) THEN
              IF (oexisth(i)) THEN  
                     IF (.not.otraph(ijumph(i))) THEN ! ... to a non-occupied trap 
                       t2 = wth(i)
                       i2 = i
                     ENDIF
              ENDIF
          ENDIF
        ENDDO
!
!       minimum recombination time is selected
!
        rt1 = 1d80
        DO i=1,np
           IF (.not.oexist(i)) CYCLE
           DO j=1,nh
              IF (.not.oexisth(j)) CYCLE
              IF (rt(i,j).lt.rt1) THEN
                 rt1 = rt(i,j)
                 re = i
                 rh = j
              ENDIF
           ENDDO
        ENDDO
!
!       move particle with the minimum time or tunneling recombination event occurs 
!
        IF ((rt1.lt.t1).AND.(rt1.lt.t2)) THEN
 
           oexist(re)=.false.    ! remove electron
           otrape(itrape(re)) = .false.
           oexisth(rh)=.false.   ! remove hole
           otraph(itraph(rh)) = .false.
!
           dxr = xtrap(itrape(re))-xtrap(itraph(rh))
           dyr = ytrap(itrape(re))-ytrap(itraph(rh)) 
           dzr = ztrap(itrape(re))-ztrap(itraph(rh))
!
!           dxr = dxr - d*nint(dxr/d)
           dyr = dyr - dyz*nint(dyr/dyz)
           dzr = dzr - dyz*nint(dzr/dyz)
 
           recd = sqrt((dxr**2) + (dyr**2) + (dzr**2))
 
           WRITE(20,*) recd
           IF (xtrap(itrape(re)).ge.d1) THEN
              IF (xtrap(itraph(rh)).gt.d1) THEN
                 WRITE(*,*) 'recombination event occurs at the absorber...'
                 WRITE(20,*) 'recombination event occurs at the absorber...'
              ELSE IF (xtrap(itraph(rh)).le.d1) THEN
                 WRITE(*,*) 'recombination event occurs at the interface...'
                 WRITE(20,*) 'recombination event occurs at the interface...'
              ENDIF
           ELSE

              IF (xtrap(itraph(rh)).le.d1) THEN
                 WRITE(*,*) 'recombination event occurs at the first semiconductor...'
                 WRITE(20,*) 'recombination event occurs at the fist semiconductor...'
              ELSE IF (xtrap(itraph(rh)).gt.d1) THEN
                 WRITE(*,*) 'recombination event occurs at the interface...'
                 WRITE(20,*) 'recombination event occurs at the interface...'
              ENDIF
           ENDIF
!          
        ELSE
 
           IF (t1.le.t2) THEN 
              IF (oexist(i1)) call move(i1)     ! move an electron
           ELSE
              IF (oexisth(i2)) call moveh(i2)   ! move a hole
           ENDIF
 
        ENDIF
!
!       set new hopping time  
!
        IF ((rt1.gt.t1).OR.(rt1.gt.t2)) THEN
 
           IF (t1.le.t2)  THEN
              IF (oexist(i1)) call settime(i1) ! this sets up wte(i1) and ijumpe(i1) using hopping model
              IF (oexist(i1)) call recombt(i1) ! new recombination times
           ELSE   
              IF (oexisth(i2)) call settimeh(i2) ! this sets up wth(i2) and ijumph(i2) using hopping model
              IF (oexisth(i2)) call recombth(i2) ! new recombination times
           ENDIF
 
        ENDIF
!
!       record move 
!
        imoves = imoves + 1
        imovess = imovess + 1
!
!       reduce hopping times by "t1", "rt" or "t2" and advance time
!
        IF ((rt1.lt.t1).AND.(rt1.lt.t2)) THEN
 
           DO i=1,np
              IF (.not.oexist(i)) CYCLE
              wte(i) = wte(i) - rt1
           ENDDO
 
           DO i=1,nh
              IF (.not.oexisth(i)) CYCLE
              wth(i) = wth(i) - rt1
           ENDDO
 
           time = time + rt1   ! advance time
 
        ELSE
 
          IF (t1.le.t2) THEN
 
              DO i=1,np
                 IF (.not.oexist(i)) CYCLE
                 IF (i.ne.i1) wte(i) = wte(i) - t1
              ENDDO
 
              DO i=1,nh
                 IF (.not.oexisth(i)) CYCLE
                 wth(i) = wth(i) - t1
              ENDDO
 
              DO i=1,np
                 IF (.not.oexist(i)) CYCLE
                 DO j=1,nh
                    IF (.not.oexisth(j)) CYCLE
                    rt(i,j) = rt(i,j) - t1
                 ENDDO
              ENDDO
 
              time = time + t1   ! advance time
 
           ELSE 
 
              DO i=1,np
                 IF (.not.oexist(i)) CYCLE
                 wte(i) = wte(i) - t2



              ENDDO
 
              DO i=1,nh
                 IF (.not.oexisth(i)) CYCLE
                 IF (i.ne.i2) wth(i) = wth(i) - t2
              ENDDO
 
              DO i=1,np
                 IF (.not.oexist(i)) CYCLE
                 DO j=1,nh
                    IF (.not.oexisth(j)) CYCLE
                    rt(i,j) = rt(i,j) - t2
                 ENDDO
              ENDDO
 
              time = time + t2   ! advance time 
 
           ENDIF
 
        ENDIF
!
!       If maximum time exceeded finish calculation
!
        IF (log10(time).gt.maxtime) THEN  ! Maximum time about to be exceed: Finish simulation
           svoltage(index0+1:nbins) = svoltage(index0+1:nbins) + sep
           WRITE(*,*) 'finish simulation---> maxtime about to be exceed = ', log10(time),maxtime
           WRITE(15,*) 'finish simulation---> maxtime about to be exceed = ', log10(time),maxtime
!           WRITE(20,*) 'finish simulation---> maxtime about to be exceed = ', log10(time),maxtime
           EXIT
        ENDIF
!
!       If electrons run out finish calculation
!
        IF (count(oexist).eq.0) THEN
           index = int(log10(time)/tbin)+1
           svoltage(index0+1:index) = svoltage(index0+1:index) + sep
           WRITE(*,*) 'finish simulation---> number of "alive" electrons = ',count(oexist)
           WRITE(15,*) 'finish simulation---> number of "alive" electrons = ',count(oexist)
!           WRITE(20,*) 'finish simulation---> number of "alive" electrons = ',count(oexist)
           EXIT
        ENDIF
!
!       compute mean position of electrons and holes
!
        xmean = 0
        xmeanh = 0
        DO j=1,np
           IF (oexist(j)) xmean = xmean + x(j)
           IF (oexisth(j)) xmeanh = xmeanh + xh(j)
        ENDDO
        xmean = xmean/count(oexist)
        xmeanh = xmeanh/count(oexisth)
!
!       compute mean separation between surviving electrons and holes
!
        sep = (xmeanh-xmean)*count(oexist)/renorm
        IF (int(log10(time)/tbin)+1.gt.index0) THEN
           WRITE(*,*) 'isample = ',isample,index,time !,x,y,z
           WRITE(15,*) 'isample = ',isample,index,time !,x,y,z
        ENDIF
!
! compute surface photovoltage (logarithmic computation)
!
        IF (int(log10(time)/tbin)+1.gt.0) THEN
           index = int(log10(time)/tbin)+1
           svoltage(index0+1:index) = svoltage(index0+1:index) + sep
!
           ap=0
           ah=0
           ap1=0
           ap2=0
           ah1=0
           ah2=0
           DO j=1,np
              IF (oexist(j)) THEN
                 ap = ap + 1
                 IF (x(np).lt.d1) THEN
                    ap1 = ap1 + 1
                 ELSE 
                    ap2 = ap2 + 1
                 ENDIF
              ENDIF
          ENDDO

           DO j=1,nh
              IF (oexisth(j)) THEN
                 ah = ah + 1
                 IF (xh(nh).lt.d1) THEN
                    ah1 = ah1 + 1
                 ELSE 
                    ah2 = ah2 + 1
                 ENDIF
              ENDIF
           ENDDO
           nalive(index0+1:index) = nalive(index0+1:index) + ap
           halive(index0+1:index) = halive(index0+1:index) + ah
           nalive1(index0+1:index) = nalive1(index0+1:index) + ap1
           nalive2(index0+1:index) = nalive2(index0+1:index) + ap2
           halive1(index0+1:index) = halive1(index0+1:index) + ah1
           halive2(index0+1:index) = halive2(index0+1:index) + ah2
!
           index0 = index
        ENDIF
!
!       compute occupancy histograms
!    
        DO i=1,np
           IF (oexist(i)) THEN
              IF (xtrap(itrape(i)).lt.d1) THEN
                 nofe1(int(e(i)/ebin)-1) = nofe1(int(e(i)/ebin)-1) + 1
              ELSE
                 nofe2(int(e(i)/ebin)-1) = nofe2(int(e(i)/ebin)-1) + 1
              ENDIF
           ENDIF
        ENDDO
!
        DO i=1,nh
           IF (oexisth(i)) THEN
              IF (xtrap(itraph(i)).lt.d1) THEN
                 nofeh1(int(eh(i)/ebin)-1) = nofeh1(int(eh(i)/ebin)-1) + 1
              ELSE
                 nofeh2(int(eh(i)/ebin)-1) = nofeh2(int(eh(i)/ebin)-1) + 1
              ENDIF
           ENDIF
        ENDDO
!
     ENDDO
!
!    -------------------------------------------------
!    simulation ends
!    -------------------------------------------------
!
     WRITE(15,'(5x," number of moves = ",es15.5)') imovess
     WRITE(*,'(5x," number of moves = ",es15.5)') imovess
     WRITE(15,'(5x," total number of moves = ",es15.5)') imoves
     WRITE(*,'(5x," total number of moves = ",es15.5)') imoves
!
!    Compute number of samples to average 
!
     OPEN(17,file="isamples.dat")
     WRITE(17,*) isample
     CLOSE(17)
!
!    Compute surface photovoltage
!
     OPEN(27,file='spv.dat',status='unknown')
     OPEN(29,file='spv2.dat',status='unknown')
     DO i=1,nbins
        WRITE(27,*) real(i)*tbin,svoltage(i)/real(isample)
! WRITE(27,*) (real(i)*tbin)+log10(tunit),svoltage(i)/real(isample)
        WRITE(29,*) (10**(i*tbin))*tunit,svoltage(i)/real(isample)
     ENDDO
     CLOSE(27)
     CLOSE(29)
!
     OPEN(47,file='nalive.dat',status='unknown')
     OPEN(49,file='halive.dat',status='unknown')
     DO i=1,nbins
        WRITE(47,*) real(i)*tbin,nalive(i)/real(isample),nalive1(i)/real(isample),nalive2(i)/real(isample)
        WRITE(49,*) real(i)*tbin,halive(i)/real(isample),halive1(i)/real(isample),halive2(i)/real(isample)
     ENDDO
     CLOSE(47)
     CLOSE(49)
!
!    compute energy distribution of particles
!
     OPEN(39,file='distr1.dat',status='unknown')



     DO i=int(ec1/ebin)-1,ehistbin1,-1
        ngofe = gofe1(i)/sum(gofe1)/ebin
        nnofe = nofe1(i)/sum(nofe1)*ap1/(ntrap*(d1/d))/ebin
        IF (ngofe.ne.0) THEN
          WRITE(39,'(4(e12.5,1x))')  real(i)*ebin,nnofe/ngofe
        ENDIF
     ENDDO
     CLOSE(39)
!
     OPEN(41,file='distr2.dat',status='unknown')
     DO i=int(ec2/ebin)-1,ehistbin2,-1
        ngofe = gofe2(i)/sum(gofe2)/ebin
        nnofe = nofe2(i)/sum(nofe2)*ap2/(ntrap*((d-d1)/d))/ebin
        IF (ngofe.ne.0) THEN
          WRITE(41,'(4(e12.5,1x))')  real(i)*ebin,nnofe/ngofe  
        ENDIF
     ENDDO
     CLOSE(41)
!
     OPEN(43,file='distrh1.dat',status='unknown')
     DO i=int(ev1/ebin),ehistbinh1
        ngofe = gofeh1(i)/sum(gofeh1)/ebin
        nnofe = nofeh1(i)/sum(nofeh1)*ah1/(ntrap*(d1/d))/ebin
        IF (ngofe.ne.0) THEN
          WRITE(43,'(4(e12.5,1x))')  real(i)*ebin,nnofe/ngofe
    ENDIF
     ENDDO
     CLOSE(43)
!
     OPEN(45,file='distrh2.dat',status='unknown')
     DO i=int(ev2/ebin),ehistbinh2
        ngofe = gofeh2(i)/sum(gofeh2)/ebin
        nnofe = nofeh2(i)/sum(nofeh2)*ah2/(ntrap*((d-d1)/d))/ebin
        IF (ngofe.ne.0) THEN
          WRITE(45,'(4(e12.5,1x))')  real(i)*ebin,nnofe/ngofe   
        ENDIF
     ENDDO
     CLOSE(45)
!
  ENDDO
!
! **********************************************************************
! ***** END loop over different trap energy realizations ***************
! **********************************************************************
! 
  WRITE(*,'(/"End of sample"/)')
  WRITE(15,'(/"End of sample"/)')
!  WRITE(20,'(/"End of sample"/)')
  CLOSE(14)
  CLOSE(15)
!  CLOSE(20)
!
  CONTAINS
!
  SUBROUTINE settime(i)
!
!    this subroutine computes the minimum hopping time for electron "i"
!    and the neighbouring trap for which that time corresponds
!    using hopping transport model    
!
    IMPLICIT NONE  
    INTEGER, INTENT(IN) :: i
    INTEGER :: ik,ivh,ikh,j,k
    REAL*8 :: rdist,ti,dxe,dye,dze
    REAL*8, DIMENSION(:), ALLOCATABLE :: wti           
    INTEGER, DIMENSION(:), ALLOCATABLE :: wi    
 
    ALLOCATE (wti(700),wi(700)) 
   
    IF (.NOT.otrape(itrape(i))) STOP 'electron is not occuping its own trap!!'
 
    ivh = iv(itrape(i)) 
 
    DO ikh = 1,ivh
 
       ik = ivec(itrape(i),ikh)
       
       dxe = xtrap(ik)-x(i)
       dye = ytrap(ik)-y(i) 
       dze = ztrap(ik)-z(i)
       
!       dxe = dxe - d*nint(dxe/d)
       dye = dye - dyz*nint(dye/dyz)

       dze = dze - dyz*nint(dze/dyz)
 
       rdist = sqrt((dxe**2) + (dye**2) + (dze**2))
  
!    hopping times for each neighbour are calculated using hopping model
 
       IF  ((ik.gt.ntrap).OR.(ik.eq.itrape(i))) THEN   ! trap does not exist, trap occupied or same trap  
          
          wti(ikh) = 1d80
 
       ELSE IF (otrape(ik)) THEN   ! trap already occupied by an electron
          
          wti(ikh) = 1d80
        
       ELSE   
        
          call random_number(r)
          wti(ikh) = -log(r)*exp((2*rdist)/alfa)*exp(((etrape(ik)-e(i))+abs(etrape(ik)-e(i)))/(2*tev))    
       
       ENDIF
 
       wi(ikh) = ik 
 
    ENDDO
!
!   The minimum hopping time for electron i is calculated
!
54  ti = 1d80
    DO ikh = 1,ivh
       IF (wti(ikh).lt.ti) THEN
          wte(i) = wti(ikh)
          ti = wti(ikh)
          ijumpe(i) = wi(ikh)
          k = ikh
       ENDIF
    ENDDO
 
    DO j=1,np                    
       IF (.not.oexist(j)) CYCLE
       IF ((j.ne.i).AND.(ijumpe(i).eq.ijumpe(j))) THEN   ! same "ijump" trap; problems in future!!    
          wti(k) = 1d80 
          GOTO 54   
       ENDIF
    ENDDO
 
    DEALLOCATE (wti,wi)
!
!   controls:
!
   IF (itrape(i).eq.ijumpe(i)) THEN    
       print *, i,itrape(i),ivh,ikh,ik,ijumpe(i),wte(i)
       STOP 'SETTIME: jumping to the same trap!!!'            
   ENDIF
   IF (otrape(ijumpe(i))) THEN
      print *, i,itrape(i),ivh,ikh,ik,ijumpe(i),wte(i)
      STOP 'SETTIME: jumping to an occupied trap!!!'
   ENDIF
!
  END SUBROUTINE settime      
!
  SUBROUTINE settimeh(i)
!
!   this subroutine computes the minimum hopping time for hole "i"
!   and the neighbouring trap for which that time corresponds using hopping transport model    
!
    IMPLICIT NONE  
    INTEGER, INTENT(IN) :: i
    INTEGER :: ik,ivh,ikh,j,k
    REAL*8 :: rdisth,ti,dxh,dyh,dzh
    REAL*8, DIMENSION(:), ALLOCATABLE :: wti           
    INTEGER, DIMENSION(:), ALLOCATABLE :: wi    
 
    ALLOCATE (wti(700),wi(700)) 
   
    IF (.NOT.otraph(itraph(i))) STOP 'electron is not occuping its own trap!!'
 
    ivh = iv(itraph(i)) 
 
    DO ikh = 1,ivh
 
       ik = ivec(itraph(i),ikh)
  
!       dxh = xtrap(ik)-xh(i)



       dyh = ytrap(ik)-yh(i) 
       dzh = ztrap(ik)-zh(i)
  
       dxh = dxh - d*nint(dxh/d)
       dyh = dyh - dyz*nint(dyh/dyz)
       dzh = dzh - dyz*nint(dzh/dyz)
 
       rdisth = sqrt((dxh**2) + (dyh**2) + (dzh**2))
  
!   hopping times for each neighbour are calculated using hopping model
 
       IF  ((ik.gt.ntrap).OR.(ik.eq.itraph(i))) THEN   ! trap does not exist, trap occupied or same trap  
          
          wti(ikh) = 1d80
          
       ELSE IF (otraph(ik)) THEN   ! trap already occupied by a hole
          
          wti(ikh) = 1d80
          
       ELSE   
 
          call random_number(r)
          wti(ikh) = -log(r)*effmfac*exp((2*rdisth)/alfah)*exp(((eh(i)-etraph(ik))+abs(etraph(ik)-eh(i)))/(2*te
v))    
          
       ENDIF
       
       wi(ikh) = ik 
 
    ENDDO
!
!   The minimum hopping time for hole i is calculated
!
55  ti = 1d80
    DO ikh = 1,ivh
       IF (wti(ikh).lt.ti) THEN
          wth(i) = wti(ikh)
          ti = wti(ikh)
          ijumph(i) = wi(ikh)
          k = ikh
       ENDIF
    ENDDO
!
    DO j=1,nh                    
       IF (.not.oexisth(j)) CYCLE
       IF ((j.ne.i).AND.(ijumph(i).eq.ijumph(j))) THEN   ! same "ijump" trap; problems in future!!    
          wti(k) = 1d80 
          GOTO 55   
       ENDIF
    ENDDO
 
    DEALLOCATE (wti,wi)
!
!   controls:
!
   IF (itraph(i).eq.ijumph(i)) THEN    
      print *, i,itraph(i),ivh,ikh,ik,ijumph(i),wth(i)
      STOP 'SETTIMEH: jumping to the same trap!!!'            
   ENDIF
   IF (otraph(ijumph(i))) THEN
      print *, i,itraph(i),ivh,ikh,ik,ijumph(i),wth(i)
      STOP 'SETTIMEH: jumping to an occupied trap!!!'
   ENDIF
!
  END SUBROUTINE settimeh
!
  SUBROUTINE recombt(i)
!
!   this subroutine computes the recombination time between particles
!
    IMPLICIT NONE  
    INTEGER, INTENT(IN) :: i
    INTEGER :: j,k
    REAL*8 :: qdist,dxq,dyq,dzq
!
!   tunneling recombination times are computed
!
       DO j=1,nh
          IF (.not.oexisth(j)) CYCLE
          dxq = x(i)-xh(j)
          dyq = y(i)-yh(j) 
          dzq = z(i)-zh(j)
!  

!          dxq = dxq - d*nint(dxq/d)
          dyq = dyq - dyz*nint(dyq/dyz)
          dzq = dzq - dyz*nint(dzq/dyz)
! 
          qdist = sqrt((dxq**2) + (dyq**2) + (dzq**2))
!
          call random_number(r)
!          rt(i,j) = -log(r)*tt0*exp(abs(qdist)/r0)*exp(abs(e(i)-eh(j))/tev)
          rt(i,j) = -log(r)*tt0*exp(2*abs(qdist)/r0)
       ENDDO
!
  END SUBROUTINE recombt
!
  SUBROUTINE recombth(j)
!
!   this subroutine computes the recombination time between particles
!
    IMPLICIT NONE  
    INTEGER, INTENT(IN) :: j
    INTEGER :: i,k
    REAL*8 :: qdist,dxq,dyq,dzq
!
!   tunneling recombination times are computed
!
       DO i=1,np
          IF (.not.oexist(i)) CYCLE
          dxq = x(i)-xh(j)
          dyq = y(i)-yh(j) 
          dzq = z(i)-zh(j)
!  
!          dxq = dxq - d*nint(dxq/d)
          dyq = dyq - dyz*nint(dyq/dyz)
          dzq = dzq - dyz*nint(dzq/dyz)
! 
          qdist = sqrt((dxq**2) + (dyq**2) + (dzq**2))
!
          call random_number(r)
!          rt(i,j) = -log(r)*tt0*exp(abs(qdist)/r0)*exp(abs(e(i)-eh(j))/tev)
          rt(i,j) = -log(r)*tt0*exp(abs(qdist)/r0)
       ENDDO
!
  END SUBROUTINE recombth
!
  SUBROUTINE move(i)
!
!   this subroutine moves electron i to trap ijump(i)
!
    IMPLICIT NONE
    INTEGER, INTENT(IN) :: i
    REAL*8 :: xtrapi,ytrapi,ztrapi,dx,dy,dz
!
!   controls:
!
    IF (itrape(i).eq.ijumpe(i)) STOP 'MOVE: electron jumping to the same trap!!!'
    IF (otrape(ijumpe(i))) STOP 'MOVE: electron jumping to an occupied trap!!!'
!
!     occupancy policy
!
            otrape(itrape(i)) = .false. ! leave old trap free
            otrape(ijumpe(i)) = .true.  ! make new trap occupied
!
            xtrapi = xtrap(ijumpe(i))
            ytrapi = ytrap(ijumpe(i))
            ztrapi = ztrap(ijumpe(i))
!
!     real coordinates
!  
            dx = xtrapi-x(i)
            dy = ytrapi-y(i)
            dz = ztrapi-z(i)
!     dx = dx - d*nint(dx/d)
            dy = dy - dyz*nint(dy/dyz)
            dz = dz - dyz*nint(dz/dyz)
            xr(i) = xr(i) + dx
            yr(i) = yr(i) + dy
            zr(i) = zr(i) + dz
!
!     electron jumps to trap "ijump(i)"
!
            itrape(i) = ijumpe(i)
            e(i) = etrape(ijumpe(i))
            x(i) = xtrapi
            y(i) = ytrapi
            z(i) = ztrapi



 
!   
  END SUBROUTINE move
!
  SUBROUTINE moveh(i)
!
!   this subroutine moves hole i to trap ijump(i)
!
    IMPLICIT NONE
    INTEGER, INTENT(IN) :: i
    REAL*8 :: xtrapih,ytrapih,ztrapih,dxh,dyh,dzh
 
!
!   controls:
!
    IF (itraph(i).eq.ijumph(i)) STOP 'MOVEH: hole jumping to the same trap!!!'
    IF (otraph(ijumph(i))) STOP 'MOVEH: hole jumping to an occupied trap!!!'
!
!     occupancy policy
!
            otraph(itraph(i)) = .false. ! leave old trap free
            otraph(ijumph(i)) = .true.  ! make new trap occupied
!
            xtrapih = xtrap(ijumph(i))
            ytrapih = ytrap(ijumph(i))
            ztrapih = ztrap(ijumph(i))
!
!     real coordinates
!  
            dxh = xtrapih-xh(i)
            dyh = ytrapih-yh(i)
            dzh = ztrapih-zh(i)
!     dxh = dxh - d*nint(dxh/d)
            dyh = dyh - dyz*nint(dyh/dyz)
            dzh = dzh - dyz*nint(dzh/dyz)
            xrh(i) = xrh(i) + dxh
            yrh(i) = yrh(i) + dyh
            zrh(i) = zrh(i) + dzh
!
!     hole jumps to trap "ijump(i)"
!
            itraph(i) = ijumph(i)
            eh(i) = etraph(ijumph(i))
            xh(i) = xtrapih
            yh(i) = ytrapih
            zh(i) = ztrapih
!   
  END SUBROUTINE moveh
!
  FUNCTION edist1()
!
!  uses DOS to set the energy of a site 
!
   IMPLICIT NONE
   INTEGER :: j
   REAL*8 :: edist1
   REAL*8 :: r,delta
   REAL*8 :: a1,a2,a3
 
! use exponential DOS :
   DO WHILE(.true.)
      call random_number(r)
      edist1 = tev01*log(1-r)
      IF (edist1.lt.0) CYCLE
      IF (edist1.lt.ecut1) EXIT
   ENDDO
!   
 END FUNCTION edist1
!
  FUNCTION edist2()
!
!  uses DOS to set the energy of a site 
!
   IMPLICIT NONE
   INTEGER :: j
   REAL*8 :: edist2
   REAL*8 :: r,delta
   REAL*8 :: a1,a2,a3
 
! use exponential DOS :
   DO WHILE(.true.)
      call random_number(r)
      edist2 = tev02*log(1-r)

      IF (edist2.lt.0) CYCLE
      IF (edist2.lt.ecut2) EXIT
   ENDDO
!
 END FUNCTION edist2
!
  FUNCTION edisth1()
!
!  uses DOS to set the energy of a site 
!
   IMPLICIT NONE
   INTEGER :: j
   REAL*8 :: edisth1
   REAL*8 :: r,delta
   REAL*8 :: a1,a2,a3
!
! (2) use exponential DOS :
   DO WHILE(.true.)
      call random_number(r)
      edisth1 = tev0h1*log(1-r)
      IF (edisth1.lt.0) CYCLE
      IF (edisth1.lt.ecuth1) EXIT
   ENDDO
!   
 END FUNCTION edisth1
!
  FUNCTION edisth2()
!
!  uses DOS to set the energy of a site 
!
   IMPLICIT NONE
   INTEGER :: j
   REAL*8 :: edisth2
   REAL*8 :: r,delta
   REAL*8 :: a1,a2,a3
!
! (2) use exponential DOS :
   DO WHILE(.true.)
      call random_number(r)
      edisth2 = tev0h2*log(1-r)
      IF (edisth2.lt.0) CYCLE
      IF (edisth2.lt.ecuth2) EXIT
   ENDDO
!   
 END FUNCTION edisth2
 
END PROGRAM hjunc



Program nanowalk
!
!        -------------------------------------------------------------------------
!        ---> NANOWALK: Random Walk in media with Spacial and Energy Disorder <----
!        ------------------------------------------------------------------------
!
!     This is an...
!
!           ACTIVATED HOPPING CONTINUOUS TIME RANDOM WALK method
!                   WITH PERIODIC BOUNDARY CONDITIONS
!           AIM: CURRENT-VOLTAGE CHARACTERISTICS+MOBILITIES
!           AIM: DIFFUSSION COEFFICIENTS (2006)
!
!                   Original N Quirke september 1998
!                   Modified by J.A. Anta, May-August 1999
!                   Modified by J.A. Anta, September 2006 (diff coef.)
!                   Modified by J.A. Anta, November 2006 (spatial disorder)
!                   Modified by J.A. Anta, May 2007 (spatial disorder: improved)
!                   Modified by J.P. Gonzalez, May 2010 (recombination features)
!                   
  IMPLICIT NONE
!
! fixed parameters:
!
  REAL*8, PARAMETER :: pi = 3.1415926535898, half = 1./2., third = 1./3.
  REAL*8, PARAMETER :: h = 6.6260755e-34
  REAL*8, PARAMETER :: hbar = h/(2*pi)
  REAL*8, PARAMETER :: echarge = 1.60217733d-19 ! elementary charge 
  !REAL*8, PARAMETER :: echarge = 1.0 ! elementary charge 
  REAL*8, PARAMETER :: melec = 9.1093897d-31  ! electron mass
  REAL*8, PARAMETER :: m2nm = 1d9 ! nanometers to meter
  !REAL*8, PARAMETER :: m2nm = 1 ! angstroms to meters
  REAL*8, PARAMETER :: temp2kt = 8.617366d-05 ! kelvins to eV (kT)
  INTEGER, PARAMETER :: spr = 1 ! multiplies the number of sites on x-direc. 
  REAL*8, PARAMETER :: ebin = 0.005 ! energy grid in nofe and gofe histograms
!
! trap attempt frequency and time unit 
!
  REAL*8 :: nu0 ! = h/(8*melec*aa**2) or 1/tunit
  REAL*8 :: e0  ! h*nu0
  REAL*8 :: const ! = sqrt(2*melec*echarge)/hbar
!
! input parameters (file="nanowalk.in")
!
  INTEGER :: np       ! number of particles
  REAL*8  :: d,dyz    ! size length of simulation box in nm (d --> x-coordinate)
  REAL*8  :: dsurf    ! surface trap density (nm**-2)
  REAL*8  :: rcut     ! cut-off for hopping between neighbouring traps
  INTEGER :: nsample  ! number of samples
  REAL*8  :: temp     ! temperature in K
  REAL*8  :: appfield ! applied field in Vm-1
  REAL*8  :: maxmoves ! maximum number of moves
  INTEGER :: nbins    ! number of time bins in total simulation time per sample
  REAL*8  :: tbin     ! bin size for time histograms in units of tunit
  INTEGER :: iebins   ! number of initial time bins neglected on average
  REAL*8  :: tunit    ! time unit (t0)
  REAL*8  :: ec       ! energy of conduction band edge (0 by default) (eV)
  REAL*8  :: ecut     ! energy cutoff for exponential DOS (eV)
  REAL*8  :: temp0    ! characteristic temperature in K for exponential DOLS
  REAL*8  :: alfa     ! localization radius (nm)
  REAL*8  :: rprob    ! recombination probability (number between 0 and 1)
  REAL*8  :: lambda,eredox  ! Marcus: reorg. energy (eV), redox pair eq. energy (eV)
  REAL*8  :: kcb,tss  ! Marcus: prefactors for probs and times
  LOGICAL*2 :: multtrap ! if .true. waiting times are computed using multiple trapping model
  LOGICAL*2 :: onelec   ! if .true. single electron aproximation is used 
  REAL*8  :: ef       ! Fermi energy when using single electron aproximation
  REAL*8  :: alat     ! distance between traps
!
! input parameters (file="etraps.in","rtraps.in")
!
  INTEGER :: ndist   ! number of grid points in distribution of trap energies
  REAL*8, DIMENSION(:), ALLOCATABLE :: epiege,pcum
  INTEGER :: nspheres ! number of nanospheres in input sample
  REAL*8 :: dsphere ! diameter of nanosphere in nm
!
! main variables
!
  INTEGER :: ntrap    ! number of traps
  REAL*8, DIMENSION(:), ALLOCATABLE :: x,y,z       ! coordinates of electrons
  REAL*8, DIMENSION(:), ALLOCATABLE :: x0,y0,z0   ! initial coordinates of electrons
  REAL*8, DIMENSION(:), ALLOCATABLE :: xr,yr,zr   ! real coordinates of electrons
  REAL*8, DIMENSION(:), ALLOCATABLE :: x0e,y0e,z0e   ! initial coordinates of electrons
  REAL*8, DIMENSION(:), ALLOCATABLE :: xre,yre,zre   ! real coordinates of electrons

  REAL*8, DIMENSION(:), ALLOCATABLE :: e           ! energy of electrons
  REAL*8, DIMENSION(:), ALLOCATABLE :: wt          ! hopping time of electrons      
  REAL*8, DIMENSION(:), ALLOCATABLE :: rt          ! recombination times
  INTEGER, DIMENSION(:), ALLOCATABLE :: ijump      ! hopping-to trap of electrons 
  INTEGER, DIMENSION(:), ALLOCATABLE :: itrap      ! trap number of electrons
  INTEGER, DIMENSION(:), ALLOCATABLE :: iback      ! "previous" trap of electrons
  LOGICAL, DIMENSION(:), ALLOCATABLE :: otrap  ! if .true. trap is occupied
  LOGICAL, DIMENSION(:), ALLOCATABLE :: rtrap  ! if .true. recombinable trap
  REAL*8, DIMENSION(:), ALLOCATABLE :: etrap   ! trap energy
  REAL*8, DIMENSION(:), ALLOCATABLE :: xtrap   ! trap x-coordinate
  REAL*8, DIMENSION(:), ALLOCATABLE :: ytrap   ! trap y-coordinate
  REAL*8, DIMENSION(:), ALLOCATABLE :: ztrap   ! trap z-coordinate
  REAL*8, DIMENSION(:), ALLOCATABLE :: xss   ! sphere x-coordinate
  REAL*8, DIMENSION(:), ALLOCATABLE :: yss   ! sphere y-coordinate
  REAL*8, DIMENSION(:), ALLOCATABLE :: zss   ! sphere z-coordinate
  REAL*8, DIMENSION(:), ALLOCATABLE :: ibytime     ! current histogram
  REAL*8, DIMENSION(:), ALLOCATABLE :: msd         ! mean square displacement
  REAL*8, DIMENSION(:), ALLOCATABLE :: aener       ! average energy of electrons
  REAL*8, DIMENSION(:), ALLOCATABLE :: nldiff       ! diffusion length
  REAL*8, DIMENSION(:), ALLOCATABLE :: ntlife       ! lifetime
  REAL*8, DIMENSION(:), ALLOCATABLE :: adist        ! average square displacemente
  INTEGER, DIMENSION(:,:), ALLOCATABLE :: ivec      ! neighbour list
  INTEGER, DIMENSION(:), ALLOCATABLE :: iv      ! number of neighbours
  REAL*8 :: tev      ! kT (temperature) in eV
  REAL*8 :: tev0     ! kT0 (characteristic temperature) in eV
  REAL*8 :: delapp   ! force in eV/AA (potential gradient) 
  REAL*8 :: time    ! elapsed time 
  REAL*8 :: emean   ! centre of gaussian DOS
  REAL*8 :: facnorm ! normalization factor for intensities
  REAL*8 :: rho     ! carriers density
  REAL*8 :: maxtime  ! maximum time of simulation in units of tunit
  REAL*8 :: ener  ! compute total energy of electrons
  REAL*8 :: ldiff     ! diffusion length of electrons
  REAL*8 :: tlife     ! half life of electrons
  REAL*8 :: dist      ! square displacement
  INTEGER :: nsurf    ! number of traps per nanosphere
  REAL*8 :: rsphere   ! radius of nanosphere in nm
  LOGICAL*2 :: esite    ! if .true. upward jump
  LOGICAL*2 :: forward  ! if .true. "forward" jump
!
! output parameters
!
  REAL*8 :: jcurt   ! current density
  REAL*8 :: umob    ! mobility
  INTEGER :: ehistbin ! number of points in "nofe" and "gofe" histograms
  REAL*8, DIMENSION(:), ALLOCATABLE :: nofe  ! energy level population
  REAL*8, DIMENSION(:), ALLOCATABLE :: gofe  ! density of states
  REAL*8, DIMENSION(:), ALLOCATABLE :: tgofe  
  REAL*8, DIMENSION(:), ALLOCATABLE :: sgofe ! density of surface states
  REAL*8, DIMENSION(:), ALLOCATABLE :: emov  ! target energies for upward jumps
  REAL*8, DIMENSION(:), ALLOCATABLE :: aemov ! target energies for all the jumps  
  REAL*8, DIMENSION(:), ALLOCATABLE :: etrans ! "effective transport energy" 
!
! others
!
  INTEGER :: i,j,k,l,isx,isy,isz,istep,i1,ir,ioutput,nn,nyz
  REAL*8 :: r,tr,t1,rt1,delta,sigma,xs,ys,zs,ti,rdist
  INTEGER :: ixsr,isxl,isyr,isyl,iszr,iszl,idir,idir1
  INTEGER :: ik,it,is,iis,nrem,ndatos,contt
  INTEGER :: isample
  REAL*8 :: nrecomb,nrecomb1,nrecomb2
  REAL*8 :: imoves,imovest
  REAL*8 :: jcurtsum,mjcurt,ekk,ngofe,nsgofe,nnofe,suma,nemov,naemov,netrans  
  REAL*8 :: theta,phi
  REAL*8 :: advance,xtrapi,ytrapi,ztrapi,rtrap2
  REAL*8 :: djx,djy,djz,jump2,rcut2,rcut2x
  REAL*8, DIMENSION(:), ALLOCATABLE :: idisp
  REAL*8, DIMENSION(:), ALLOCATABLE :: te    
!
  const = sqrt(2*melec*echarge)/hbar
! 
  OPEN(14,file="nanowalk.in")
  OPEN(15,file="nanowalk.out")
  !OPEN(16,file="etraps.in")
  CALL system("rm -f msdata")
!
! read input parameters
!
  READ(14,*) np
  READ(14,*) d,dyz
  READ(14,*) dsurf
  READ(14,*) rcut
  READ(14,*) maxmoves



  READ(14,*) nsample
  READ(14,*) temp
  READ(14,*) appfield
  READ(14,*) nbins
  READ(14,*) tbin
  READ(14,*) iebins
  READ(14,*) tunit
  READ(14,*) ec
  READ(14,*) ecut
  READ(14,*) temp0
  READ(14,*) dsphere
  READ(14,*) alfa
  READ(14,*) lambda,eredox
  READ(14,*) kcb,tss
  READ(14,*) multtrap
  READ(14,*) onelec
  READ(14,*) ef
  READ(14,*) alat
!
! convert to internal units
!
  tev = temp*temp2kt
  tev0 = -temp0*temp2kt
  delapp = appfield/m2nm
!
  ALLOCATE (x(np),y(np),z(np),e(np),wt(np),itrap(np),ijump(np),iback(np))        
  ALLOCATE (x0(np),y0(np),z0(np))
  ALLOCATE (xr(np),yr(np),zr(np))
  ALLOCATE (x0e(np),y0e(np),z0e(np))
  ALLOCATE (xre(np),yre(np),zre(np))
  ALLOCATE (ibytime(nbins))
  ALLOCATE (msd(nbins),nldiff(nbins),ntlife(nbins),aener(nbins),adist(nbins))
  ehistbin = int((ecut-ec)/ebin)+1
  ALLOCATE (nofe(ehistbin),gofe(ehistbin),tgofe(ehistbin),sgofe(ehistbin),emov(ehistbin),aemov(ehistbin),etrans(ehis
tbin))
  ALLOCATE (idisp(np),te(np))   
  ALLOCATE (rt(np))
!
  nu0 = 1./tunit
  maxtime = nbins*tbin  
!
  WRITE(*,'(/10x," program NANOWALK HOPPING  "/)')
  WRITE(*,'(" sample size (x, and yz) = ",f10.5,1x,f10.5" nm")') d,dyz
  WRITE(*,'(" Trap attempt frequency = ",e15.5," secs-1")') nu0
  WRITE(*,'(" Time unit = ",e15.5," secs")') tunit
  WRITE(*,'(" number of electrons = ",i4)') np
  WRITE(*,'(" Maximum time of simulation = ",e15.5," tunit(s)")') maxtime
  WRITE(*,'(" Temperature = ",f7.2," K")') temp
  WRITE(*,'(" Ec = ",f7.2," eV")') ec
  WRITE(*,'(" Ecut = ",f7.2," eV")') ecut
  WRITE(*,'(" alpha = ",f7.4)') -tev/tev0
  WRITE(*,'(" Applied field = ",d9.3," Vm-1")') appfield
  WRITE(*,'(/2x,"( kT = ",f10.7,", E (= -dV/dx) = ",f10.7, " eV )"/)') &
       tev,delapp
  WRITE(15,'(/10x," program NANOWALK HOPPING "/)')
  WRITE(15,'(" sample size (x, and yz) = ",f10.5,1x,f10.5" nm")') d,dyz
  WRITE(15,'(" Trap attempt frequency = ",e15.5," secs-1")') nu0
  WRITE(15,'(" Time unit = ",e15.5," secs")') tunit
  WRITE(15,'(" number of electrons = ",i4)') np
  WRITE(15,'(" Maximum time of simulation = ",e15.5," tunit(s)")') maxtime
  WRITE(15,'(" Temperature = ",f7.2," K")') temp
  WRITE(15,'(" Ec = ",f7.2," eV")') ec
  WRITE(15,'(" Ecut = ",f7.2," eV")') ecut
  WRITE(15,'(" alpha = ",f7.2)') -tev/tev0
  WRITE(15,'(" Applied field = ",d9.3," Vm-1")') appfield
  WRITE(15,'(/2x,"( kT = ",f10.7,", E (= -dV/dx) = ",f10.7, " eV )"/)') &
       tev,delapp
!
!  nn = 18
!  alat = 1.0   
  nn = nint(d/alat)
  nyz = nint(dyz/alat)
  ntrap = nn*nyz**2
!  d = alat*nn
!  dyz = alat*nn
 
  ALLOCATE (otrap(ntrap),rtrap(ntrap),etrap(ntrap),xtrap(ntrap),ytrap(ntrap),ztrap(ntrap))
  ALLOCATE (ivec(ntrap,700),iv(ntrap))
 
! JUST TO CHECK: simple cubic lattice
!
!  ik = 0
!  DO isx=1,nn

!     DO isy=1,nyz
!        DO isz=1,nyz
!           ik = ik + 1
!           xtrap(ik) = (isx-1)*alat
!           ytrap(ik) = (isy-1)*alat
!           ztrap(ik) = (isz-1)*alat
!        ENDDO
!     ENDDO
!  ENDDO
!  
! CREATE random lattice 
!
  call random_seed
  ik = 1
  DO ik=1,ntrap
     call random_number(r)
     xtrap(ik) = r*d
     call random_number(r)
     ytrap(ik) = r*dyz
     call random_number(r)
     ztrap(ik) = r*dyz
  ENDDO
  
  DO ik=1,ntrap
     WRITE (25,*) ik,xtrap(ik),ytrap(ik),ztrap(ik)
  ENDDO
!
! computing neighbour list
!
  WRITE(*,'(" Computing neighbour list... ")') 
  ivec = 0
  iv = 0
  rcut2 = rcut*rcut
  DO ik=1,ntrap
     rcut2x = rcut2
111  DO it = ik+1,ntrap
!       
        djx = xtrap(ik)-xtrap(it) 
        djy = ytrap(ik)-ytrap(it) 
        djz = ztrap(ik)-ztrap(it)
!       P.B.C here:
        djx = djx - d*nint(djx/d)
        djy = djy - dyz*nint(djy/dyz)
        djz = djz - dyz*nint(djz/dyz)
!
        jump2 = djx**2 + djy**2 + djz**2
        IF (jump2.lt.rcut2x) THEN
           iv(ik) = iv(ik) + 1
           iv(it) = iv(it) + 1
           ivec(ik,iv(ik)) = it
           ivec(it,iv(it)) = ik
        ENDIF
     ENDDO
     IF (iv(ik).le.1) THEN
        rcut2x = rcut2x + 1
        write(*,'("changing cut-off -->",f10.5," nm")') sqrt(rcut2x)
        write(15,'("changing cut-off -->",f10.5," nm")') sqrt(rcut2x)
        GOTO 111
     ENDIF
     IF (mod(ik,1000).eq.0) print *, 'ik = ',ik
     WRITE(56,*) ik,iv(ik)
  ENDDO
!        
! *******************************************************************
! ***** loop over different trap energy realizations ****************
! *******************************************************************
!
  jcurtsum = 0
  nofe = 0
  gofe = 0
  tgofe = 0
  sgofe = 0
  emov = 0
  aemov = 0
  etrans = 0
  msd = 0 
  nldiff = 0.0
  ntlife = 0.0
  aener = 0.0
  adist = 0.0
  imovest = 0.0
!
  DO isample=1,nsample
!



     WRITE(*,'(/" --> Simulation for sample = ",i6/40("*"))') isample
     WRITE(15,'(/" --> Simulation for sample = ",i6/40("*"))') isample
!
     x = 0
     y = 0
     z = 0
     e = 0
     ndatos = 0
     ldiff = 0.0
     tlife = 0.0
     idisp = 0
     otrap = .false.
     rtrap = .false.
     ener = 0.0
     dist = 0.0
     nrecomb = 0.0
     nrecomb1 = 0.0
     nrecomb2 = 0.0
! 
!    allocate energies to trap sites
!
     DO ik = 1,ntrap
        ekk = edist()
        etrap(ik) = ekk
        IF ((onelec).AND.(ekk.ge.ef))  otrap(ik) = .true. ! if .true. one electron aprox. is used.
        IF (.NOT.otrap(ik)) THEN
           gofe(int(ekk/ebin)+1) = gofe(int(ekk/ebin)+1) + 1
        ENDIF
        tgofe(int(ekk/ebin)+1) = tgofe(int(ekk/ebin)+1) + 1
     ENDDO
!
     WRITE(*,'(" Total simulation time = ",e15.5," secs")') maxtime
     WRITE(*,'(" Time window = ",e15.5," secs")') tbin
     WRITE(15,'(" Total simulation time = ",e15.5," secs")') maxtime
     WRITE(15,'(" Time window = ",e15.5," secs")') tbin
!
     WRITE(*,*)'total number of traps', ntrap  
     WRITE(15,*)'total number of traps', ntrap
!  
!    distribute particles randomly throughout sample
!
     DO j=1,np ! loop over number of particles
 
22      CONTINUE
        call random_number(r)
        ik=int(r*ntrap+1)
        IF (otrap(ik)) GOTO 22    ! trap already occupied
        e(j) = etrap(ik)
        x(j) = xtrap(ik)
        y(j) = ytrap(ik)
        z(j) = ztrap(ik)
        itrap(j) = ik
        otrap(ik) = .true.   ! trap occupied

iback(j) = ik
 
     ENDDO
!
     DO j=1,np ! compute waiting times and jumps for each electron 
!
        IF (multtrap)  THEN
 
           call settime1(j) ! this sets up wt(j) and ijump(j)
 
        ELSE   
          
           call settime2(j) ! this sets up wt(j) and ijump(j)
 

ENDIF
!
     ENDDO
!
     DO i=1,np ! compute recombination times 
!
        call recombt(i)
!
     ENDDO
!
!    initial positions
!
     x0 = x
     y0 = y
     z0 = z
     xr = x

     yr = y
     zr = z
     x0e = x
     y0e = y
     z0e = z
     xre = x
     yre = y
     zre = z
!
!    --------------------------------------------------------
!    begin simulation run
!    --------------------------------------------------------
!
     time = 0
     te = 0
     ioutput = 0
     imoves = 0.0
 
     DO WHILE(.true.)
!

IF (imovest.ge.maxmoves) THEN
           WRITE(*,*) 'maximum number of moves about to be exceed', maxmoves
           WRITE(15,*) 'maximum number of moves about to be exceed', maxmoves
           STOP 
        ENDIF
!
!       security: if two electrons in the same trap or tend to jump to the same trap, stop
!
        DO i=1,np-1
           DO j=i+1,np
              IF (itrap(i).eq.itrap(j)) THEN  ! TWO ELECTRONS SHARE THE SAME BED!
                 WRITE(*,*) 'TWO electrons share the same bed!',i,j,itrap(i)
                 WRITE(*,*) 'INMORAL --> FORBIDDEN'
                 STOP
              ENDIF
              IF (ijump(i).eq.ijump(j)) THEN  ! TWO ELECTRONS WANT THE SAME BED!  
                 WRITE(*,*) 'TWO electrons tend to jump to the same trap!',i,j,ijump(i)
                 WRITE(*,*) 'PROBLEMS IN FUTURE --> FORBIDDEN'
                 STOP
              ENDIF
           ENDDO
        ENDDO
!
        IF ((count(otrap).ne.np).AND.(.NOT.onelec)) THEN     
           WRITE(*,*) &
                'occupied traps does not coincide with total number of particles'
           WRITE(*,*) 'count, np -->',count(otrap),np

   STOP
        ENDIF
!
!       search for minimum hopping time...
!
        t1 = 1d50
        DO i=1,np
          IF (wt(i).lt.t1) THEN
             IF (.not.otrap(ijump(i))) THEN ! ... to a non-occupied trap 
               t1 = wt(i)
               i1 = i
             ENDIF
          ENDIF
 
        ENDDO
!
!       more controls
!

IF (t1.eq.1d50) stop 'problems on minimum hopping time searching --> possible problems on settime subroutine'
IF (itrap(i1).eq.ijump(i1)) stop 'electron is moving to its own trap!!'
DO i=1,np 

IF (wt(i).lt.0) stop 'negative hopping times!!'
ENDDO

!
!       minimum recombination time is selected
!
        rt1 = 1d50
        DO i=1,np
           IF (rt(i).lt.rt1) THEN
              rt1 = rt(i)
              ir = i
           ENDIF
        ENDDO
!
!       recombination or hops
!



        IF (rt1.le.t1) THEN
!
! compute diffusion length and lifetime
!
           ndatos = ndatos + 1
           ldiff = ldiff + idisp(ir)
           tlife = tlife + te(ir)
           x0e(ir) = xre(ir)
           y0e(ir) = yre(ir)
           z0e(ir) = zre(ir)
           te(ir) = 0.0
           otrap(itrap(ir)) = .false.
           nrecomb = nrecomb + 1
           nrecomb2 = nrecomb2 + 1
           sgofe(int(e(ir)/ebin)+1) = sgofe(int(e(ir)/ebin)+1) + 1  ! distribution of surface states
21         call random_number(r)
           l = int(r*ntrap)+1
           IF (otrap(l)) GOTO 21
           DO j = 1,np
              IF (j.eq.ir) CYCLE
              IF (l.eq.ijump(j)) GOTO 21
           ENDDO
           itrap(ir) = l   
           otrap(itrap(ir)) = .true.
           e(ir) = etrap(l)
           x(ir) = xtrap(l)
           y(ir) = ytrap(l)
           z(ir) = ztrap(l)
!
           IF (multtrap)  THEN
              call settime1(ir) ! this sets up wt(i1) and ijump(i1)
           ELSE   
              call settime2(ir) ! this sets up wt(i1) and ijump(i1)
           ENDIF
           call recombt(ir)
!        
           DO i=1,np
              IF (i.ne.ir) THEN
                 wt(i) = wt(i) - rt1
                 rt(i) = rt(i) - rt1
              ENDIF
              te(i) = te(i) + rt1
           ENDDO
 
           time = time + rt1   ! advance time
 
        ELSE
!
!       move electron "i1" to trap ijump(i1).  
!
           call move(i1)
           imoves = imoves + 1        ! record moves
           imovest = imovest + 1
!
           DO i=1,np
              IF (i.ne.i1) THEN 
                 wt(i) = wt(i) - t1
                 rt(i) = rt(i) - t1
              ENDIF
              te(i) = te(i) + t1
          ENDDO
 
           time = time + t1   ! advance time
!
           idisp(i1) = sqrt((xre(i1)-x0e(i1))**2 + (yre(i1)-y0e(i1))**2 + (zre(i1)-z0e(i1))**2)
           call random_number(r)
           rprob = kcb*sqrt(tev/(4*pi*lambda))*exp(-(eredox-e(i1)-lambda)**2/(4*lambda*tev))
           IF (r.lt.rprob) THEN
              ndatos = ndatos + 1
              ldiff = ldiff + idisp(i1)
              tlife = tlife + te(i1)
              x0e(i1) = xre(i1)
              y0e(i1) = yre(i1)
              z0e(i1) = zre(i1)
              te(i1) = 0.0
              otrap(itrap(i1)) = .false.
              nrecomb = nrecomb + 1
              nrecomb1 = nrecomb1 + 1
              sgofe(int(e(i1)/ebin)+1) = sgofe(int(e(i1)/ebin)+1) + 1  ! surface states distribution
23            call random_number(r)
              l = int(r*ntrap)+1
              IF (otrap(l)) GOTO 23
              DO j = 1,np

                 IF (j.eq.i1) CYCLE
                 IF (l.eq.ijump(j)) GOTO 23
              ENDDO
              itrap(i1) = l   
!        otrap(itrap(i1)) = .true.
              otrap(l) = .true.
              e(i1) = etrap(l)
              x(i1) = xtrap(l)
              y(i1) = ytrap(l)
              z(i1) = ztrap(l)
           ENDIF
 
           IF (multtrap)  THEN
              call settime1(i1) ! this sets up wt(i1) and ijump(i1)
              call recombt(i1)  ! it sets up a new recombination time
           ELSE   
              call settime2(i1) ! this sets up wt(i1) and ijump(i1)
              call recombt(i1)  ! it sets up a new recombination time
           ENDIF
!
        ENDIF
!
!       If maximum time exceeded finish calculation
!
        IF (time.gt.maxtime) EXIT
!
! compute energy of electrons
!

ener = ener + sum(e)
!
!       film maker...
!
!       write(33,'(e10.5,1x,f10.5,1x,f10.5,1x,f10.5)') time,x(1),y(1),z(1)  
!
!       output after ~tbin
!
        IF (nint(time/tbin).gt.ioutput) THEN
           ioutput = ioutput + 1
           WRITE(*,*) 'isample = ',isample,ioutput,time !,x,y,z
           WRITE(*,*) maxval(e),minval(e),maxloc(e),minloc(e)
!
! compute average square displacement
!

   adist(nint(time/tbin)) = adist(nint(time/tbin)) + dist/imoves
!
! compute diffusion length and lifetime
!
        IF (nrecomb.gt.0) THEN

   nldiff(nint(time/tbin)) = nldiff(nint(time/tbin)) + ldiff/ndatos
   ntlife(nint(time/tbin)) = ntlife(nint(time/tbin)) + tlife/ndatos

        ENDIF
!
!       compute occupancy histogram
!    

   DO i=1,np
     nofe(int(e(i)/ebin)+1) = nofe(int(e(i)/ebin)+1) + 1

           ENDDO
!
! compute average energy of electrons
!

   aener(nint(time/tbin)) = aener(nint(time/tbin))+ ener/imoves/np
!
!       compute mean square displacement    
!
           suma = 0.0
           DO i=1,np
              suma = suma + (xr(i)-x0(i))**2 + (yr(i)-y0(i))**2 + (zr(i)-z0(i))**2
           ENDDO
           suma = suma/real(np)
           msd(nint(time/tbin)) = msd(nint(time/tbin)) + suma
        ENDIF
!
     ENDDO
!
!    -------------------------------------------------
!    simulation ends
!    -------------------------------------------------
!
     facnorm = (dyz/m2nm)**2*tbin*tunit/echarge*imoves
!
!    multiply current density histogram by number of particles
!
     facnorm = facnorm/real(np)
!



     WRITE(15,'(5x," number of recombination events for low energy traps = ",es15.5)') nrecomb1
     WRITE(*,'(5x," number of recombination events for low energy traps  = ",es15.5)') nrecomb1
     WRITE(15,'(5x," number of recombination events for deep traps = ",es15.5)') nrecomb2
     WRITE(*,'(5x," number of recombination events for deep traps  = ",es15.5)') nrecomb2
     WRITE(15,'(5x," number of total recombination events = ",es15.5)') nrecomb
     WRITE(*,'(5x," number of total recombination events = ",es15.5)') nrecomb
     WRITE(15,'(5x," number of moves = ",es15.5)') imoves
     WRITE(*,'(5x," number of moves = ",es15.5)') imoves
     WRITE(15,'(5x," total number of moves = ",es15.5)') imovest
     WRITE(*,'(5x," total number of moves = ",es15.5)') imovest
!
!    Compute number of samples to average 
!
     OPEN(17,file="isamples.dat")
     WRITE(17,*) isample
     CLOSE(17)
!
     OPEN(22,file='msdata',status='unknown',access='append')
     WRITE(22,*) isample,umob,mjcurt/appfield
7    CLOSE(22)
!
     OPEN(26,file='enerhist.dat',status='unknown')
     OPEN(28,file='sdist.dat',status='unknown')
     OPEN(30,file='efermi.dat',status='unknown')
!     DO i=1,ehistbin
     DO i=int(ec/ebin)+1,ehistbin
        ngofe = gofe(i)/sum(tgofe)/ebin
!        ngofe = gofe(i)/ntrap/ebin
        nsgofe = sgofe(i)/sum(tgofe)/ebin
!        nsgofe = sgofe(i)/ntrap/ebin
        nnofe = nofe(i)/sum(nofe)*np/ntrap/ebin

nemov = emov(i)/sum(emov)*np/ebin
naemov = aemov(i)/sum(aemov)*np/ebin        
netrans = etrans(i)/sum(etrans)*np/ebin

!        nnofe = nnofe/tev
IF (ngofe.ne.0) THEN

           WRITE(26,'(4(e12.5,1x))') real(i)*ebin,ngofe     
           WRITE(28,'(4(e12.5,1x))') real(i)*ebin,nsgofe     
           WRITE(30,'(4(e12.5,1x))') real(i)*ebin,nnofe/ngofe     
        ENDIF
     ENDDO
     CLOSE(26)
     CLOSE(28)
     CLOSE(30)
!
     msd = msd/real(isample)
     OPEN(24,file='msd.dat',status='unknown')
     DO i=1,nbins
       WRITE(24,*) i*tbin*tunit,msd(i)*1d-14   ! Jump Diffusion (cm-3)
     ENDDO
     CLOSE(24)
!
     OPEN(70,status='unknown',file='difflng.dat')
     OPEN(71,status='unknown',file='lifetime.dat')
     OPEN(72,status='unknown',file='avgener.dat')
     DO i=1,nbins

WRITE(70,*) i*tbin*tunit,nldiff(i)/real(isample)
WRITE(71,*) i*tbin*tunit,ntlife(i)*tunit/real(isample)
WRITE(72,*) i*tbin*tunit,aener(i)/real(isample),adist(i)/real(isample)

     ENDDO
     CLOSE(70)
     CLOSE(71)
     CLOSE(72)
!
  ENDDO
!
! **********************************************************************
! ***** END loop over different trap energy realizations ***************
! **********************************************************************
! 
  facnorm = (dyz/m2nm)**2*tbin*tunit/echarge*imoves
!
  WRITE(*,'(/"Final results:"/)')
  WRITE(15,'(/"Final results:"/)')
!
  CLOSE(14)
  CLOSE(15)
! CLOSE(16)
!
  CONTAINS
! subroutines and functions are the same as those of the previous code
 
END PROGRAM nanowalk
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