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ABSTRACT

Leybourne et al. (1998) have proved the possibility of a ‘converse Perron
phenomenon’ when conventional Dickey-Fuller tests are applied to deter-
mine the order of integration of a time series. That is, if the true generating
process is I(1) but with a break, frequent spurious rejections of the null
hypothesis can occur. Although Leybourne et al. (1998) suggest it would
be appropriate to use procedures in which the break date was treated as en-
dogenous, they consider it as exogenous. Thus, this paper analyses whether
their results change when the structural break is identified endogenously,
that is, if the break point is gleaned from the data. In this sense, applying
a recursive tDF test to a unit root process which has a break in its level,
there is no virtually evidence of the ‘converse Perron phenomenon’. For
the rest of the endogeneization procedures (i.e., rolling and sequential) and
for the two types of breaks considered (in level or in drift), we find, in line
with Leybourne et al. (1998), some distortion in the Dickey-Fuller tDF test
size, which depends on the break size, the location of the break point in the
sample and the sample size.
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Rechazos espurios de los test de Dickey-Fuller
en presencia de una ruptura bajo la hipótesis nula

endógenamente determinada

RESUMEN

Leybourne et al. (1998) muestran el cumplimiento del denominado “fenóme-
no inverso de Perron” cuando se aplican los test convencionales de Dickey-
Fuller para determinar el orden de integración de una serie temporal. Este
fenómeno consiste en que, si el verdadero proceso generador es I(1) pero con
una ruptura, pueden producirse rechazos espurios frecuentes de la hipótesis
nula. Aunque Leybourne et al. (1998) sugieren que seŕıa apropiado utilizar
procedimientos en los que la ruptura sea tratada como endógena, ellos la
consideran como exógena. Aśı, este trabajo analiza si sus resultados cambian
cuando la ruptura estructural se determina endógenamente, es decir, a partir
de los datos. En este sentido, aplicando el procedimiento tDF recursivo a
un proceso de ráız unitaria con una ruptura en el nivel, no encontramos
prácticamente evidencia del “fenómeno inverso de Perron”. Para el resto
de procedimientos de endogeneización (rolling y secuencial) y para los dos
tipos de rupturas considerados (en nivel o en deriva) encontramos, en ĺınea
con Leybourne et al. (1998), alguna distorsión en el tamaño del test tDF de
Dickey-Fuller, la cual depende de la magnitud de la ruptura, de su ubicación
en la muestra y del tamaño de la misma.

Palabras clave: ráıces unitarias; cambios estructurales; test Dickey-Fuller.
Clasificación JEL: C12; C15; C22.
MSC2010: 62P20.
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I. INTRODUCTION 
 

Much conventional asymptotic theory for least-squares estimation assumes stationarity, I(0), of 

the explanatory variables. However, Nelson and Plosser (1982) argue that almost all 

macroeconomic time series are non-stationary, and typically do have a unit root (I(1) series). 

The presence or absence of unit roots helps to identify some features of the underlying data 

generating process of a series. If the series is stationary, it tends to return to its mean value and 

fluctuate around it within a more-or-less constant range (i.e., it has a finite variance which does 

not depend on time). On the other hand, non-stationary series have a mean and/or variance 

depending on time and thus have no tendency to return to long-run deterministic path.  
 

The method of estimation of the standard regression model, Ordinary Least Square (OLS) 

method, is based on the assumption that the means and variances of these variables being tested 

are constant over the time. One illustration of the difficulties that can arise when performing an 

OLS regression with clearly non-stationary series is the problem of nonsense regression, so 

named by Yule (1926), or spurious regression in the terminology of Granger and Newbold 

(1974). That is, given two completely unrelated but integrated series, regression of one on the 

other will tend to produce statistically significant relationships between the variables when the 

fact all that is obtained is evidence of contemporaneous correlations rather than meaningful 

causal relations. Instead, if variables are non-stationary, the estimation of long-run relationship 

between those variables should be based on the cointegration method. Since the testing of the 

unit roots of a series is a precondition to the existence of cointegration relationship, Dickey and 

Fuller (1979) devised a procedure to formally test for non-stationarity (DF test). The simplest 

form of the DF test amounts to estimating: 
 

1t t ty yρ ε−= + , (1) 
 

with the null being H0: ρ=1 (unit root) against the alternative H1: 1ρ < . The standard approach 

to testing such a hypothesis is to construct a t-test, however, under non-stationarity, the statistic 

computed does not follow a standard t-distribution but, rather, a Dickey-Fuller distribution. This 

fact justifies the use of Monte Carlo techniques1, which are developed in Sections II, III and IV 

of the paper. 
 

                                                 
1 These Monte Carlo techniques involve taking (1) as the underlying data generating process (DGP), imposing the null 
hypothesis by fixing ρ=1, and randomly drawing samples of the εt from the normal distribution; this then generates thousands 
of samples of yt, all of which are consistent with the DGP (1). Then for each of the yt a regression based on (1) is undertaken, 
with ρ now free to vary, in order to compute (on the basis of thousands of replications) the percentage of times the model will 
reject the null hypothesis of a unit root when the null is true. These are the critical values for rejecting the null of a unit root at 
various significance levels based on the DF distribution of ( ρ̂ -1)/ ρ̂σ , been ρ̂σ  the standard deviation of ρ̂ . 
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Following the work of Perron (1989), it is well known, however, that the usual DF test of 

the unit root null hypothesis can have low power when the true generating process is stationary 

around a broken linear trend. Perron (1989)’s study was criticized on the grounds that he treated 

the date of the break as known. Subsequent works used a variety of tests endogenizing the break 

point (Christiano, 1992; Zivot and Andrews, 1992; Banerjee et al., 1992; Lumsdaine and Stock, 

1992; Perron and Vogelsang, 1992; Perron, 1994, 1997 and Vogelsang and Perron, 1998, inter 

alia). The summary picture one gets from these studies is that endogenizing the break point 

reverses the conclusions arrived at by Perron (1989). 
 

 

Leybourne et al. (1998) have also proved the possibility of the so-called ‘converse Perron 

phenomenon’, that is, if the true generating process is I(1) but with a break, frequent spurious 

rejections of the null hypothesis can occur. They also proved that this phenomenon can lead to a 

very serious problem of spurious rejections of the unit root null hypothesis, especially if the 

break occurs early in the series. Leybourne et al. (1998) also point out that the practice of using 

data further back in time to enlarge the series, presumably in search of additional power and 

more precise estimates, could easily lead to erroneous conclusions if incorporating the 

additional data introduces a break. These authors consider, as in Perron (1989), the date of the 

break as known, that is, as an exogenous event.  
 

 

In this context, the main goal of this paper is to re-examine the Monte Carlo analysis of 

Leybourne et al. (1998) in order to analyse whether the ‘converse Perron phenomenon’ also 

holds when the break point is chosen endogenously. In other words, we focus our attention in 

analysing if endogenizing the break point reverses the conclusions arrived at by Leybourne et 

al. (1998). Therefore, this article considers the presumption that, if there is a break, its date is 

not known a priori but rather is gleaned from the data, as it would be appropriate if there was no 

strong exogenous reason to suspect a break at a particular time.  
 

 

Following Banerjee et al. (1992), we carry out in this paper a set of tDF tests that control 

endogenously for structural breaks. These are known as recursive, rolling and sequential tests. 

Not surprisingly, we obtain that the empirical critical values are well below the full-sample 

standard tDF test. In addition, we obtain, in some cases, proportions of rejections of the unit root 

null hypothesis, when it is true, lower than those obtained by Leybourne et al. (1998) when the 

break date is treated as exogeneous. One of these cases is when a break in level is occurred 

under the null and a recursive tDF  test is applied. In this case, the spurious rejection of the null is 

so low that we can consider that there is virtually no evidence of the ‘converse Perron 

phenomenon’. For the rest of the endogeneization procedures (i.e., rolling and sequential) and 

for the two types of breaks considered (in level or in drift), we find, in line with Leybourne et 
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al. (1998), some distortion in the Dickey-Fuller DFt  test size, which depends on the break size, 

the location of the break point in the sample and the sample size.  
 

 

The rest of the paper is organized as follows. Section II reviews a variety of tests, based 

on the standard tDF statistics, which treat the break date as unknown a priori. Section III reports 

finite critical values calculated by Monte Carlo experiments for these tests. In Section IV and V 

we analyse the possibility of spurious rejection of the unit root null hypothesis when an I(1) 

time series presents a structural change in either its level or its drift and when the tests analysed 

in Section II are applied. In Section VI the data of Leybourne et al. (1998) are re-examined to 

empirically illustrate the simulation results. Section VII concludes. 

 

II. THE MODELS AND STATISTICS 
 

We begin with a briefly review about the statistical procedures used to test for a unit root 

allowing for the presence of a structural change in the I(1) generated process. Three classes of 

standard DF statistics that control endogenously for structural breaks are considered. These are 

known as recursive, rolling and sequential tests2.  
 

 

A traditional DF regression, like this: 
 

 

1              1,..., ,t t ty t y t Tμ β ρ ε−= + + + =   (2) 
 

 

is estimated in this paper. We take subsamples t =1,…,κ, where κ=κ0, κ0+1,…,T, and using as 

criteria the minimum values3 of the t-ratio evaluating 1ρ = . κ0 is the starting value of the 

recursive estimation and T is the size of the full sample. This test is known as the recursive min
DFt  

test ( min
D̂Ft  test).  

 

The rolling min
DFt  test ( min

DFt ) is based on subsamples of fixed size Ts, rolling through the 

sample. We choose the min
DFt  statistic between all subsamples.  

 

Finally, the sequential test statistic ( *min
DFt  test) is computed using the full sample and 

sequentially incrementing the date of the hypothetical break using a dummy variable and 

                                                 
2 For more details, see Banerjee et al. (1992). 
3 We consider the minimal t-statistic criteria in all tDF tests that control endogenously for structural breaks due to the fact that 
we are interested in obtaining the highest spurious rejection frequency. It is clear that the use of other criteria used in Banerjee 
et al. (1992), such as the maximum Dickey Fuller t-statistic or a t-statistic based on the difference between its maximum and 
minimum values, would result in lower spurious rejection frequencies. 
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choosing the lowest value of the statistic. We consider a shift in mean, which is referred by 

Perron (1989, 1990) as the ‘crash’ model: 
 

1( ) ,    1,...,t t t ty dD t y t Tμ τ β ρ ε−= + + + + =              (3) 
 

where: 

1,       if t> T
( )   (0,1)

0,    otherwisetD
τ

τ τ
⎧

= ∈⎨
⎩

   (4) 

 

and the break fraction is denoted as τ=κ/T. The t-stastistic testing d=0 provides information 

about whether there has been a break or jump in the mean. The DFt  test evaluating 1ρ =  is 

used to test for the order of integration of the series.  

 

III. CRITICAL VALUES FOR THE RECURSIVE, ROLLING AND 

SEQUENTIAL TESTS 
 

This section reports finite critical values of recursive, rolling and sequential min
DFt  tests. All the 

calculations have been programmed in Ox 4.1 (http://www.doornik.com). The critical values are 

computed using data generated for the null model   (0 1)=t t ty , iid N ,Δ ε ε  and are based on 

10,000 Monte Carlo replications4 for the following finite sample sizes5: T=100, 75 and 50 (see 

Table 1). The recursive statistic, min
D̂Ft , is computed by estimating (2), under both assumptions: 

β=0 or β≠0 (see in Table 1 break in level or break in drift columns, respectively), over t=1,…,κ, 

for 0 ,...,Tκ κ= , with the following trimming parameter: τ0=0.25. The rolling statistic, min
DFt , is 

computed by estimating (2), also under both assumptions: β=0 or β≠0, over t=κ-[Tτ0]+1,…,κ, 

κ=[Tτ0],…,T, being the trimming parameter:τ0=1/3. The sequential statistic, *min
DFt , is computed 

by estimating (3) sequentially, for 0 0,...,Tκ κ κ= − , under both assumptions: β=0 or β≠0, with 

( )tD τ  given by (4). For the *min
DFt statistic the trimming parameter is τ0=0.01. As pointed out by 

Banerjee et al. (1992), the choice of τ0  for the previous statistics implies a trade-off between 

needing enough observations in the shortest regression and wanting to capture possible breaks 

early and late in the sample. As shown in Table 1, recursive, rolling and sequential critical 

values are, not surprisingly, well below the full-sample standard DF critical values6.  

 

                                                 
4 The use of Monte Carlo method is justified in the Introduction of the paper. 
5 We consider T= 50 and T=75 because a great number of annual macroeconomic time series have small sample sizes. T=100 
is also chosen to compare our results with those obtained by Leybourne et al. (1998).  
6 See Fuller (1976). 
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Table 1. Recursive, Rolling and Sequential min

DFt  Statistics: Critical Values. 
 

 Break in level 
T Percentile Recursive 

min
DFt̂  

Rolling 
min

DFt  
Sequential 

*min
DFt  

0.010 -4.2865 -5.2763 -4.9464 
0.025 -3.9356 -4.8736 -4.6571 
0.050 -3.6393 -4.5247 -4.3866 

100 

0.100 -3.3446 -4.2341 -4.0984 
 

0.010 -4.3915 -5.3762 -5.0532 
0.025 -3.9982 -4.9242 -4.7051 
0.050 -3.7039 -4.5907 -4.4135 

75 

0.100 -3.3678 -4.2551 -4.1251 
 

0.010 -4.5631 -6.0037 -5.1457 
0.025 -4.1142 -5.3701 -4.7674 
0.050 -3.7624 -4.9114 -4.4688 

50 

0.100 -3.4080 -4.4835 -4.1421 
 

 

IV. UNIT ROOT WITH A BREAK IN LEVEL 
 

We next analyse the possibility of spurious rejection of the unit root null hypothesis when 

recursive, rolling and sequential tests are applied, and when there is a break in an I(1) generating 

process. In line with Perron (1989) and Leybourne et al. (1998), we permit just a single break 

and we shall concentrate on additive outlier models, implying that the break in trend is abrupt. 

Particularly, we discuss in this section the simplest possible case, where monotonic trend or 

drift is assumed to be absent. In that case the alternative would be stationarity about a fixed 

mean, and the null would be I(1) with zero mean change.  
 

 

The experimental design of Leybourne et al. (1998) was employed. Thus, we consider a 

time series ty  with the following data generation process (DGP): 
 

1( ) ,     ,    1,...,t t t t t ty s t Tα τ ν ν ν ε−= + = + = ,  (6) 
 

where εt∼i.i.d.N(0,1). In Eq. (6): 
 

0,    t T
( )   (0,1)

1,    t> T, ts
τ

τ τ
τ
≤⎧

= ∈⎨
⎩

    (7) 

 

All simulations are based on 5,000 replications using sample sizes of 100 observations7. 

An additional initial 100 observations were discarded to remove the influence of the initial 

                                                 
7 Due to space restrictions, we report only the results for T=100. Results for T=75 and T=50 are available from the authors 
upon request. 

 Break in drift 
T Percentile Recursive 

min
DFt̂  

Rolling 
min

DFt  
Sequential 

*min
DFt  

0.010 -4.9516 -5.8392 -5.4076 
0.025 -4.6063 -5.4476 -5.1584 
0.050 -4.3453 -5.1752 -4.9072 

100 

0.100 -4.0021 -4.8272 -4.6183 
 

0.010 -5.1104 -6.1137 -5.4617 
0.025 -4.7386 -5.6565 -5.1791 
0.050 -4.4036 -5.2671 -4.9080 

75 

0.100 -4.0559 -4.8914 -4.6110 
 

0.010 -5.4902 -6.9147 -5.6003 
0.025 -4.8853 -6.2614 -5.2342 
0.050 -4.5261 -5.7501 -4.9747 

50 

0.100 -4.1104 -5.2707 -4.6490 
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condition 0 0y = . In order to compare our results with those of Leybourne et al. (1998), the 

values α ∈ {2.5, 5, 10} were chosen for the break size. The break in level was therefore imposed 

after observation τT=κ.  
 

 

For each replication, the min
D̂Ft  and min

DFt  tests are estimated using regression (2), under the 

assumption β=0, and the *min
DFt statistic is estimated using regression (3), under the same 

assumption and for D t (τ) defined in Eq. (4). 
 

 

The (false) rejections of the unit root hypothesis are noted at the 5% level of significance 

using the critical values calculated in Section III (see Table 1, break in level columns). The 

resulting empirical rejection frequencies are presented in Tables 2 to 4 for T=100 in level-break 

columns. It can be seen that, using min
D̂Ft test, the spurious rejection of the null hypothesis is 

below the nominal size, and is independent of the location of the break and its magnitude, but 

not of the sample size, as the higher is T the lower is the spurious rejection rate of the null 

hypothesis. However, in the case of the min
DFt  and *min

DFt tests, ignoring the possibility of a break 

produces many rejections of the null, especially when α increases and when T decreases. For 

these two tests, the break location also influences on the spurious rejection rate. For example, in 

the case of the min
DFt  test, the spurious rejection rate is lower when 0T Tτ τ> − , since only the 

subsample from the 0T Tτ−  observation to the last observation is the one capturing the break8. 

Regarding the *min
DFt test, there is a higher rejection rate when the break point is closer to the 

middle of the sample.  
 

 

Comparing our results with those obtained in Leybourne et al. (1998) where the break 

point is considered as exogenous, we obtain a lower proportion of rejections of the unit root null 

hypothesis only when using the min
D̂Ft test, and this lower rejection frecuency is occurred for all 

magnitudes of the break and for the different τ values considered in our study. In this case, the 

spurious rejection of the null is so low that we can consider that there is virtually no evidence of 

the ‘converse Perron phenomenon’. This finding suggests the use of the min
D̂Ft  test when there is 

a break in the level of the series ty  and when its DGP could be given by expression (6). 

 

 

 

                                                 
8  This phenomenon is inherent to this procedure, which is based on subsamples of fixed size rolling through the sample. 
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Table 2. Proportion of rejections (at the nominal 5% level) of the unit root null hypothesis when 
it is true, but there is a break. T=100 (Recursive tDF test). 
 

  Level-break Drift-break 
τ α=2.5 α=5.0 α=10.0 α=0.5 α=1.0 α=2.0 
0.01 0.0040 0.0044 0.0034 0.0558 0.0742 0.1546 
0.05 0.0034 0.0032 0.0012 0.0620 0.1388 0.5604 
0.10 0.0018 0.0012 0.0004 0.0502 0.1214 0.7320 
0.15 0.0024 0.0016 0.0002 0.0344 0.0824 0.7218 
0.20 0.0026 0.0024 0.0014 0.0304 0.0420 0.5712 
0.25 0.0034 0.0038 0.0040 0.0326 0.0322 0.3322 
0.30 0.0030 0.0038 0.0038 0.0350 0.0304 0.1134 
0.35 0.0034 0.0038 0.0032 0.0364 0.0306 0.0400 
0.40 0.0032 0.0034 0.0028 0.0376 0.0316 0.0304 
0.45 0.0032 0.0028 0.0034 0.0386 0.0346 0.0334 
0.50 0.0026 0.0028 0.0038 0.0396 0.0362 0.0354 
0.55 0.0030 0.0028 0.0028 0.0416 0.0386 0.0376 
0.60 0.0032 0.0028 0.0028 0.0416 0.0398 0.0394 
0.65 0.0028 0.0026 0.0028 0.0446 0.0418 0.0414 
0.70 0.0026 0.0032 0.0028 0.0458 0.0428 0.0426 
0.75 0.0028 0.0030 0.0030 0.0464 0.0450 0.0454 
0.80 0.0028 0.0032 0.0036 0.0462 0.0458 0.0454 
0.85 0.0032 0.0036 0.0044 0.0474 0.0468 0.0466 
0.90 0.0030 0.0032 0.0042 0.0482 0.0478 0.0474 
0.95 0.0028 0.0034 0.0036 0.0490 0.0484 0.0484 
0.99 0.0030 0.0034 0.0036 0.0490 0.0492 0.0492 

 
Table 3. Proportion of rejections (at the nominal 5% level) of the unit root null hypothesis when 

it is true, but there is a break. T=100 (Rolling tDF test). 
 

  Level-break Drift-break 
τ α=2.5 α=5.0 α=10.0 α=0.5 α=1.0 α=2.0 
0.01 0.0706 0.1998 0.6492 0.0492 0.0500 0.0590 
0.05 0.0718 0.1974 0.6424 0.0512 0.0596 0.1360 
0.10 0.0688 0.1978 0.6462 0.0512 0.0608 0.1464 
0.15 0.0686 0.2040 0.6498 0.0486 0.0574 0.1378 
0.20 0.0668 0.1948 0.6476 0.0466 0.0566 0.1410 
0.25 0.0662 0.1906 0.6580 0.0460 0.0530 0.1334 
0.30 0.0626 0.1956 0.6512 0.0462 0.0490 0.1356 
0.35 0.0608 0.1952 0.6446 0.0456 0.0540 0.1324 
0.40 0.0602 0.1918 0.6370 0.0442 0.0504 0.1354 
0.45 0.0644 0.1878 0.6388 0.0478 0.0488 0.1368 
0.50 0.0624 0.1898 0.6372 0.0484 0.0500 0.1396 
0.55 0.0656 0.1980 0.6262 0.0434 0.0528 0.1326 
0.60 0.0662 0.1908 0.6306 0.0458 0.0472 0.1328 
0.65 0.0618 0.1934 0.6386 0.0466 0.0514 0.1330 
0.70 0.0638 0.1914 0.6344 0.0462 0.0506 0.1366 
0.75 0.0412 0.0360 0.0342 0.0472 0.0432 0.0676 
0.80 0.0466 0.0386 0.0372 0.0448 0.0392 0.0372 
0.85 0.0472 0.0420 0.0410 0.0450 0.0424 0.0414 
0.90 0.0474 0.0454 0.0442 0.0466 0.0452 0.0434 
0.95 0.0496 0.0480 0.0480 0.0484 0.0484 0.0462 
0.99 0.0512 0.0510 0.0516 0.0490 0.0490 0.0490 
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Table 4. Proportion of rejections (at the nominal 5% level) of the unit root null hypothesis when 
it is true, but there is a break. T=100 (Sequential tDF test). 

 
  Level-break Drift-break 

τ α=2.5 α=5.0 α=10.0 α=0.5 α=1.0 α=2.0 
0.01 0.0860 0.2210 0.6678 0.0446 0.0540 0.0834 
0.05 0.0540 0.0868 0.3074 0.0646 0.1418 0.5588 
0.10 0.0526 0.0748 0.2988 0.0646 0.1746 0.7700 
0.15 0.0550 0.0906 0.3488 0.0570 0.1512 0.7978 
0.20 0.0578 0.0944 0.3716 0.0478 0.1150 0.7838 
0.25 0.0596 0.1024 0.3802 0.0400 0.0760 0.6802 
0.30 0.0558 0.1062 0.3999 0.0272 0.0454 0.4492 
0.35 0.0558 0.1044 0.4104 0.0226 0.0210 0.1932 
0.40 0.0550 0.1048 0.4124 0.0172 0.0072 0.0520 
0.45 0.0556 0.0992 0.4128 0.0120 0.0032 0.0054 
0.50 0.0544 0.1008 0.4104 0.0096 0.0008 0.0002 
0.55 0.0508 0.0958 0.4018 0.0088 0.0000 0.0000 
0.60 0.0512 0.0978 0.4012 0.0096 0.0002 0.0000 
0.65 0.0498 0.0892 0.3822 0.0116 0.0004 0.0000 
0.70 0.0496 0.0812 0.3594 0.0110 0.0006 0.0000 
0.75 0.0510 0.0818 0.3336 0.0116 0.0004 0.0002 
0.80 0.0488 0.0716 0.3044 0.0112 0.0006 0.0002 
0.85 0.0484 0.0584 0.2682 0.0166 0.0016 0.0000 
0.90 0.0462 0.0472 0.2220 0.0234 0.0032 0.0006 
0.95 0.0448 0.0332 0.1522 0.0348 0.0162 0.0016 
0.99 0.0462 0.0312 0.0092 0.0434 0.0436 0.0420 

 

 

V. UNIT ROOT WITH A BREAK IN DRIFT 

In this section we examine the behaviour of the previous tests assuming a different case, i.e., the 

trend is permitted under the alternative hypothesis and a drift is allowed under the null. 

Specifically, we generate data from an I(1) process where the mean experiences a single abrupt 

shift, corresponding under the alternative to the two segments of the trend function joined at the 

break point. Thus, as Leybourne et al. (1998), we consider a time series ty  with the following 

DGP9: 

1( ) ,    1,...,t t t ty s y t Tα τ ε−= + + = ,   (8) 
 

where εt∼i.i.d.N(0,1) and ( )ts τ  is defined as in Eq. (7) 
 

Again, as Leybourne et al. (1998), the sizes of the drift break considered are α ∈ {0.5, 1, 2}. 

For each replication, the min
D̂Ft , min

DFt and *min
DFt  tests are estimated under the assumption β≠0 in 

equation (2) for the min
D̂Ft , min

DFt  tests and the same assumption in equation (3) for the *min
DFt test.  

 

The (false) rejections of the unit root hypothesis are noted at the 5% level of significance 

using the critical values calculated in Section III (see Table 1, break in drift columns). The 

                                                 
9 The treatment of initial conditions, sample size, number of replications and discarding observations for the break in drift 
experiments are the same as for the previous level break experiments. 
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resulting empirical rejection frequencies are presented in Tables 2 to 4 for T=100 in the drift-

break columns10. It can be seen that, when the break size is low ( 0.5α = ), the three tests ( min
D̂Ft , 

min
DFt and *min

DFt ) obtain, in general, spurious rejection rates below the significance level. 

However, for min
D̂Ft and *min

DFt  tests, a severe phenomenon of spurious rejection of the null 

emerges when α increases and, contrary to the above section, when T increases. For both tests, 

the size distortion is higher for a break relatively early in the time series, evaporating this 

problem as τ  increases, especially for the *min
DFt  test. Comparing our results with those obtained 

in Leybourne et al. (1998) where the break point is considered exogenous, we obtain a lower 

proportion of rejections of the unit root null hypothesis when using the three tests ( min
D̂Ft , 

min
DFt and *min

DFt ), for all magnitudes of the break and when the break occurs early in the series. 

For the rest of τ values, the proportion of rejections of the null hypothesis is below the nominal 

size. This finding suggests the use of these tests that endogeneize structural breaks when there is 

a break in the drift of the series ty  and when its DGP could be given by expression (8).  

 

VI. APPLICATION TO GDP 

In order to analyze the behaviour of the DFt  statistic under the presence of structural breaks, 

Leybourne et al. (1998) study the convergence phenomenon in the economies of a group of 

west European countries. In particular, they focus on the series of the natural logarithm of the 

ratio of real output per capita (in U.S. dollars) of Denmark and Germany over the period 1950-

1994. Both in levels and first differences (see Figures 1 and 2), it can be observed the possibility 

of an abrupt break early in the series. With the purpose of re-examining the sensitivity of the 

findings of Leybourne et al. (1998) to the endogeneization of the break through the tests 

analyzed in this paper, the min
D̂Ft and min

DFt  statistics are obtained when the following augmented 

DF testing equation was applied: 

1
1

p

t t i t i t
i

y t y yμ β ρ γ ε− −
=

= + + + Δ +∑      (9) 

In order to compute the *min
DFt  statistic, we additionally include in (9) the regressor ( )tD τ , 

defined in equation (4). As Leybourne et al. (1998), the value for the lag truncation parameter p 

chosen for the above equation is zero (p=0), using the general-to specific approach of Ng and 

Perron (1995) testing at the 5% level (with a maximum possible value of five). Application of 

                                                 
10 Due to space restrictions, we report only the results for T=100. Results for T=75 and T=50 are available from the authors 
upon request. 
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the minimum recursive, rolling and sequential tDF tests ( min
D̂Ft , min

DFt and *min
DFt ) to the series of 

levels of ty  yields the statistics values -5,96,   -4,58 and -5,99, respectively. Compared with the 

critical values shown in Table 5 corresponding to our sample size of 45 observations, there is an 

general indication of trend stationarity on the series11, as in Leybourne et al. (1998), except for 

the rolling test ( min
DFt ) where the unit root null hypothesis is not rejected, even at the significance 

level of 10%. This test behaves better for this particular example in which the series have an 

abrupt break in drift located early in the sample. Visual inspection of Figures 1 and 2 reveals 

that this can be effectively the case, supporting the simulation results of the previous sections. 

This suggests that the procedures in which the break date is treated as endogenous can, in some 

of the cases shown in this paper, obtain lower spurious rejection rates of the unit root null 

hypothesis than for the case where the break date is treated as exogenous.  
 

Figure 1. Log ratio of real output p.c. of Denmark and Germany (yt). 
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Figure 2. Differences of log ratio of real output p.c. of Denmark and Germany. 
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11 Leybourne et al. (1998) find the same result for the case of an exogeneous break. 



 15

 
Table 5. Recursive, Rolling and Sequential min

DFt  Statistics: Critical Values. 
 

 Break in drift 
T Percentile Recursive 

min
DFt̂  

Rolling 
min

DFt  
Sequential 

*min
DFt  

0.010 -5.7908 -6.8872 -5.6501 
0.025 -5.0958 -6.3216 -5.2675 
0.050 -4.6367 -5.8401 -4.9687 

 
45 

0.100 -4.2020 -5.3210 -4.6357 
 

 

VII. CONCLUSIONS 

Leybourne et al. (1998) have proved the possibility of a ‘converse Perron phenomenon’ when 

conventional Dickey-Fuller tests are applied to determine the order of integration of a time 

series. That is, if the true generating process is I(1) but with a break, frequent spurious rejections 

of the null hypothesis can occur. However, they suggest it would be appropriate to use 

procedures in which the break date was treated as endogenous. Thus, the main goal of this paper 

is to analyse whether their results change when the structural break is identified endogenously, 

that is, if the break point is related to the data. Applying recursive, rolling and sequential DF 

type tests that control endogenously for structural breaks, we find no evidence of the ‘converse 

Perron phenomenon’ when there is a break in level under the unit root null hypothesis and the 

recursive procedure is used, contrary to Leybourne et al. (1998). However, in line with them, we 

find some distortion in the DFt  test size when using both rolling and sequential procedures for 

the two types of breaks (in level or in drift) and even when we apply the recursive tests when 

there is a drift-break in a unit root time series. In those cases in which we find some size 

distortion, the spurious rejection of the null depends on the break type (in level or in drift), the 

break size, the location of the break point in the sample (τ ) and the sample size. It is noted, 

however, that, when there is a break in drift of a unit root process, we obtain a lower proportion 

of rejections of the unit root null hypothesis than Leybourne et al. (1998) when the break occurs 

early in the series and proportions of rejections of the null below the nominal size for the rest of 

τ values. These findings suggest, in general, the use of these tests that endogeneize structural 

breaks.  
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