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ABSTRACT

We present the generalized hybrid averaging (GHA) operator. It is a new
aggregation operator that generalizes the hybrid averaging (HA) operator
by using the generalized mean. Thus, we are able to generalize a wide range
of mean operators such as the HA, the hybrid geometric averaging (HGA),
the hybrid quadratic averaging (HQA), the generalized ordered weighted
averaging (GOWA) operator and the weighted generalized mean (WGM).
A key feature in this aggregation operator is that it is able to deal with
the weighted average and the ordered weighted averaging (OWA) operator
in the same formulation. We further generalize the GHA by using quasi-
arithmetic means obtaining the quasi-arithmetic hybrid averaging (Quasi-
HA) operator. We conclude the paper with an example of the new approach
in a financial decision making problem.

Keywords: aggregation operator; OWA operator; generalized mean;
weighted average; decision making.
JEL classification: C44; C49; D81; D89.
MSC2010: 90B50.

Art́ıculo recibido el 13 de marzo de 2010 y aceptado el 31 de mayo de 2010.

69



La media generalizada h́ıbrida
y su aplicación en la toma de decisiones

RESUMEN

En este art́ıculo se presenta el operador de medias generalizadas h́ıbridas. Es
un nuevo operador de agregación que generaliza la media h́ıbrida utilizando
la media generalizada. Debido a esto, se puede generalizar una amplia
gama de operadores de medias, como la media h́ıbrida, la media geométrica
h́ıbrida, la media cuadrática h́ıbrida, la media ponderada ordenada genera-
lizada y la media ponderada generalizada. Un aspecto fundamental en este
operador de agregación es la posibilidad de utilizar medias ponderadas y
medias ponderadas ordenadas en la misma formulación. A continuación, se
presenta una generalización mayor mediante la utilización de medias cuasi-
aritméticas, obteniendo aśı la media cuasi-aritmética h́ıbrida. El trabajo
termina con un ejemplo de aplicación del nuevo modelo en un problema de
toma de decisiones financieras.

Palabras clave: operador de agregación; operador OWA; media generali-
zada; media ponderada; toma de decisiones.
Clasificación JEL: C44; C49; D81; D89.
MSC2010: 90B50.
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1. INTRODUCTION 

Different types of aggregation operators are found in the literature for aggregating the information. A 

very common aggregation method is the ordered weighted averaging (OWA) operator (Yager, 1988). 

It provides a parameterized family of aggregation operators that includes as special cases the 

maximum, the minimum and the average criteria. Since its appearance, the OWA operator has been 

used in a wide range of applications (Beliakov et al., 2007; Calvo et al. 2002; Canós and Liern, 2008; 

Merigó, 2008; Xu, 2005; Xu and Da, 2002; Yager, 1993; 1996a; 2002; 2008; Yager and Kacprzyk, 1997). 

In 2003, Xu and Da introduced the hybrid averaging (HA) operator. It is an aggregation 

operator that uses the weighted average (WA) and the OWA operator in the same formulation. Then, it 

is possible to consider in the same problem the attitudinal character of the decision maker and the 

subjective probablity. For further research on the HA operator, see Merigó, 2008; Wei, 2009; Xu, 

2004; 2009; Zhao et al., 2010.  

Another interesting aggregation operator is the generalized OWA (GOWA) operator 

(Karayiannis, 2000; Yager, 2004). It generalizes the OWA operator by using generalized means 

(Dyckhoff and Pedrycz, 1984). Then, it includes as special cases, the maximum, the minimum and the 

average criteria, and a wide range of other means such as the OWA operator itself, the ordered 

weighted geometric (OWG) operator (Herrera et al., 2003), the ordered weighted quadratic averaging 

(OWQA) operator, etc. The GOWA operator has been further generalized by using quasi-arithmetic 

means (Beliakov, 2005) obtaining the Quasi-OWA operator (Fodor et al., 1995). For further research 

on the GOWA operator, see Beliakov et al., 2007; Calvo et al., 2002; Merigó, 2008; Merigó and 

Casanovas, 2010, Merigó and Gil-Lafuente, 2008; 2009a; 2009b; Zhao et al., 2010. 

In this paper, we introduce the generalized hybrid averaging (GHA) operator. It generalizes 

the HA operator by using generalized means. Then, it includes in the same formulation all the cases 

coming from the generalized mean such as the arithmetic mean, the geometric mean, the quadratic 

mean, etc, and a lot of other cases such as the weighted generalized mean (WGM) and the generalized 

ordered weighted averaging (GOWA) operator. We also obtain new aggregation operators such as the 

hybrid geometric averaging (HGA) operator, the hybrid quadratic averaging (HQA) operator, the 

hybrid harmonic averaging (HHA) operator, etc. We further generalize the GHA operator by using 

quasi-arithmetic means, obtaining the quasi-HA operator.  

Moreover, we present an example of the application of the new approach in a financial 

decision making problem where we can see how it can be implemented in the real life. The main 

advantage of using the GHA is that it gives a more complete view of the problem to the decision 

maker because it generalizes a wide range of mean operators allowing the decision maker to select the 

particular type that it is in closest accordance with his interests.. 

In order to do so, this paper is organized as follows. In Section 2, we briefly review some 

basic aggregation operators. In Section 3, we present the GHA operator. Section 4 studies different 

families of GHA operators. In Section 5, we introduce the Quasi-HA operator. Section 6 develops an 
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application of the new approach in a financial decision making problem. Finally, in Section 7 we 

summarize the main conclusions found in the paper. 
 

2. PRELIMINARIES  

In this Section we briefly describe the hybrid averaging (HA) operator and the generalized OWA 

(GOWA) operator. 
 

2.1 The Hybrid Averaging Operator 

The HA operator (Xu and Da, 2003) is an aggregation operator that uses the WA and the OWA 

operator in the same formulation. Then, it is possible to consider in the same problem, the attitudinal 

character of the decision maker and its subjective probability. One of its main characteristics is that it 

provides a parameterized family of aggregation operators that includes the maximum, the minimum, 

the arithmetic mean (AM), the WA and the OWA operator. It can be defined as follows. 
 

Definition 1. An HA operator of dimension n is a mapping HA: Rn → R that has an associated 

weighting vector W of dimension n with  
n
j jw1 1 and wj  [0, 1], such that:                                      

HA (a1, a2, …, an) =  


n

j
jjbw

1
,                                                              (1) 

where bj is the jth largest of the âi (âi = niai, i = 1,2,…,n),  = (1, 2, …, n)
T is the weighting vector 

of the ai, with i  [0, 1] and the sum of the weights is 1. 

From a generalized perspective of the reordering step, we can distinguish between the 

descending HA (DHA) operator and the ascending HA (AHA) operator. The weights of these 

operators are related by wj = w*nj+1, where wj is the jth weight of the DHA and w*nj+1 the jth weight 

of the AHA operator.  

Note that different families of HA operators are found by using a different manifestation in the 

weighting vector such as the step-HA operator, the window-HA operator, the median-HA operator, the 

centered-HA operator, etc (Merigó, 2008). 
 

2.2 The Generalized OWA Operator 

The GOWA operator (Karayiannis, 2000; Yager, 2004) is a generalization of the OWA operator by 

using generalized means. It includes a wide range of means such as the arithmetic mean (AM), the 

OWG operator, etc. It can be defined as follows. 
 

Definition 2. A GOWA operator of dimension n is a mapping GOWA: Rn → R that has an associated 

weighting vector W of dimension n with  
n
j jw1 1 and wj  [0, 1], such that: 

GOWA (a1, a2,…, an) = 




/1

1











n

j
jjbw ,                                                      (2) 

where bj is the jth largest of the ai, and  is a parameter such that   (, ). 
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From a generalized perspective of the reordering step, it is possible to distinguish between the 

descending generalized OWA (DGOWA) operator and the ascending generalized OWA (AGOWA) 

operator. The weights of these operators are related by wj = w*nj+1, where wj is the jth weight of the 

DGOWA and w*nj+1 the jth weight of the AGOWA operator.  

As it is explained by Yager (2004), the GOWA operator is monotonic, commutative, bounded 

and idempotent. It can also be demonstrated that the GOWA operator has as special cases the 

maximum, the minimum, the generalized mean and the weighted generalized mean, among others. 

Other families of GOWA operators are found in Merigó, 2008; Merigó and Gil-Lafuente, 2009b, such 

as the step-GOWA operator, the olympic-GOWA and the S-GOWA operator. 

If we analyze different values of the parameter , we can also obtain other special cases of 

GOWA operators such as the usual OWA operator, the OWG operator, the ordered weighted harmonic 

averaging (OWHA) operator and the ordered weighted quadratic averaging (OWQA) operator. When 

 = 1, we obtain the usual OWA operator. When  = 0, we get the OWG operator. When  = 1, the 

OWHA operator. When  = 2, the OWQA operator. 

If we replace b with a general continuous strictly monotone function g(b), then, the GOWA 

operator becomes the Quasi-OWA operator (Fodor et al., 1995). It can be formulated as follows. 
 

Definition 3. A Quasi-OWA operator of dimension n is a mapping QOWA: Rn  R that has an 

associated weighting vector W of dimension n such that the sum of the weights is 1 and wj  [0, 1], 

then: 

      QOWA (a1, a2, …, an) =  













 n

j
jj bgwg

1

1 ,                                               (3) 

where bj is the jth largest of the ai. 

 

3. THE GENERALIZED HYBRID AVERAGING OPERATOR 

The GHA operator is a generalization of the HA operator by using generalized means. It includes in 

the same formulation the weighted generalized mean and the GOWA operator. Then, this operator 

includes the WA, the OWA and the OWG operator as special cases. It is defined as follows. 
 

Definition 4. A GHA operator of dimension n is a mapping GHA: Rn → R that has an associated 

weighting vector W of dimension n with  
n
j jw1 1 and wj  [0, 1], such that: 

                          GHA (a1, a2, …, an) = 




/1

1 












n

j
jjbw ,                                                    (4) 

where bj is the jth largest of the âi (âi = niai, i = 1,2,…,n),  = (1, …, n)
T is the weighting vector of 

the ai, with i  [0, 1] and the sum of the weights is 1, and λ is a parameter such that λ  (∞, ∞). 



 
74

Note that if   0, we can only use positive numbers R+, in order to get consistent results. 

From a generalized perspective of the reordering step, we can distinguish between the descending 

GHA (DGHA) operator and the ascending GHA (AGHA) operator. Note that they can be used in 

situations where the highest value is the best result and in situations where the lowest value is the best 

result. But in a more efficient context, it is better to use one of them for one situation and the other one 

for the other situation. The weights of these operators are related by wj = w*nj+1, where wj is the jth 

weight of the DGHA and w*nj+1 the jth weight of the AGHA operator. As we can see, the main 

difference is that in the AGHA operator, the elements bj (j= 1, 2, …, n) are ordered in an increasing 

way: b1  b2 …  bn while in the DGHA (or GHA) they are ordered in a decreasing way.  

If B is a vector corresponding to the ordered arguments bj
, we shall call this the ordered 

argument vector and WT is the transpose of the weighting vector, then, the GHA operator can be 

expressed as: 

     GHA (a1, a2, …, an) =   /1
BW T .                                                    (5) 

Note that if the weighting vector is not normalized, i.e., W = 
n
j jw1 1, then, the GHA 

operator can be expressed as: 

      GHA (a1, a2, …, an) = 




/1

1

1













n

j
jjbw

W
.                                           (6) 

The GHA operator is monotonic, commutative and idempotent. These properties can be 

proved with the following theorems. 
 

Theorem 1 (Monotonicity). Assume f is the GHA operator, if ai ≥ ui, for all ai, then 

f (a1, a2, …, an) ≥ f (u1, u2, …, un).                                                      (7) 
 

Proof. Let 

f (a1, a2, …, an) = 




/1

1 












n

j
jjbw ,                                                      (8) 

f (u1, u2, …, un) = 




/1

1 












n

j
jjvw .                                                      (9) 

Since ai ≥ ui, for all ai, it follows that, bi ≥ vi, and then:  

f (a1, a2, …, an) ≥ f (u1, u2, …, un).                                                         ■ 

 

Theorem 2 (Commutativity). Assume f is the GHA operator, then 

f (a1, a2, …, an) = f (u1, u2, …, un).                                                      (10) 

where (u1, u2…, un) is any permutation of the arguments (a1, a2…, an). 
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Proof. Let 

f (a1, a2, …, an) = 




/1

1 












n

j
jjbw ,                                                     (11) 

f (u1, u2, …, un) = 




/1

1 












n

j
jjvw .                                                      (12) 

Since (u1, u2, …, un) is a permutation of (a1, a2, …, an), we have bj = vj, for all j, and then 

f (a1, a2, …, an) = f (u1, u2, …, un).                                                          ■ 
 

Theorem 3 (Idempotency). Assume f is the GHA operator, if ai = a, for all ai, then 

f (a1, a2, …, an) = a.                                                                  (13) 

Proof. Since ai = a, for all ai, we have 

f (a1, a2, …, an) = 




/1

1 












n

j
jjbw = 




/1

1 












n

j
jaw  = 




/1

1 












n

j
jwa .               (14) 

Since   n
j jw1 1, we get  f (a1, a2, …, an) = a.                                                                             ■ 

 

Note that this operator is not bounded by the maximum and the minimum because for some 

special situations it can be higher and lower than the maximum and the minimum, respectively. 

Mainly, this problem is found when using the hybrid maximum and minimum in the aggregation and 

in similar situations. 

Another interesting issue to consider are the measures for characterizing the weighting vector 

W = (w1, w2, …, wn) of the GHA operator such as the attitudinal character, the entropy of dispersion, 

the divergence of W and the balance operator. Note that these measures follow the same methodology 

as the original version developed for the OWA operator (Yager, 1988; 1996b; 2002).  

Using a similar methodology as it was used by Yager (2004) for the GOWA operator we can 

define the attitudinal character as follows: 

(W) = 

 /1

1 1 












 













n

j
j n

jn
w .                                                         (15) 

For the entropy of dispersion, we get: 

H(W) = 


n

j
jj ww

1
)ln( .                                                                (16) 

For the divergence of W: 

DIV (W) =  





 






n

j
j W

n

jn
w

1

2

)(
1

 .                                                       (17) 
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And for the balance operator: 

BAL (W) =  












n

j
jw

n

jn

1 1

21
.                                                           (18) 

Note that in this case, we could also distinguish between descending and ascending orders. 

 

4. FAMILIES OF GHA OPERATORS 

In the GHA operator we find different families of aggregation operators. Mainly, we can classify them 

in two types. The first type represents all the families found in the weighting vector W and the second 

type, the families found in the parameter λ. 
 

4.1 Analyzing the Weighting Vector W 

By choosing a different manifestation of the weighting vector in the GHA operator, we are able to 

obtain different types of aggregation operators. For example, we can obtain the hybrid maximum, the 

hybrid minimum, the generalized mean (GM), the weighted generalized mean (WGM) and the GOWA 

operator.  

The hybrid maximum is obtained if w1 = 1 and wj = 0, for all j  1. The hybrid minimum is 

obtained if wn = 1 and wj = 0, for all j  n. More generally, if wk = 1 and wj = 0, for all j  k, we get for 

any , GHA(a1, a2, …, an) = bk, where bk is the kth largest argument ai. The GM is found when wj = 

1/n, and ωi = 1/n, for all ai. The WGM is obtained when wj = 1/n, for all ai. The GOWA is found when 

ωi = 1/n, for all ai.  

Following a similar methodology as it has been developed in Ahn, 2009; Ahn and Park, 2008; 

Emrouznejad, 2008; Liu, 2008; Merigó, 2008; Merigó and Casanovas, 2009; Merigó and Gil-

Lafuente, 2009b; 2010; Wang and Parkan, 2007; Xu, 2005; Xu, 2008a; Yager, 1993; Yager, 1996a; 

Yager, 2003; Yager, 2007; Yager and Filev, 1994, we could study other particular cases of the GHA 

operator such as the step-GHA, the window-GHA, the olympic-GHA, the centered-GHA operator, the 

S-GHA operator, the median-GHA, the E-Z GHA, the maximal entropy GHA weights, the minimal 

variability GHA, the minimax disparity GHA weights, the nonmonotonic GHA operator, etc.  

For example, when wj* = 1/m for k  j*  k + m  1 and wj* = 0 for j* > k + m and j* < k, we 

are using the window-GHA operator. Note that k and m must be positive integers such that k + m  1  

n. Also note that if m = k = 1, the window-GHA is transformed in the hybrid maximum. If m = 1, k = 

n, the window-GHA becomes the hybrid minimum. And if m = n and k = 1, the window-GHA is 

transformed in the GM. 

The olympic-GHA, based on the olympic average (Yager, 1993), is found when w1 = wn = 0, 

and for all others wj* = 1/(n  2). Note that if n = 3 or n = 4, the olympic-GHA is transformed in the 

median-GHA and if m = n  2 and k = 2, the window-GHA is transformed in the olympic-GHA.  
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Note that the median can also be used as GHA operators. For the median-GHA, if n is odd we 

assign w(n + 1)/2 = 1 and wj* = 0 for all others. If n is even we assign for example, wn/2 = w(n/2) + 1 = 0.5 

and wj* = 0 for all others.  

For the weighted median-GHA, we select the argument bk that has the kth largest argument 

such that the sum of the weights from 1 to k is equal or higher than 0.5 and the sum of the weights 

from 1 to k  1 is less than 0.5. 

Another type of aggregation that could be used is the E-Z GHA weights that it is based on the 

E-Z OWA weights (Yager, 2003). In this case, we should distinguish between two classes. In the first 

class, we assign wj* = (1/q) for j* = 1 to q and wj* = 0 for j* > q, and in the second class, we assign wj* 

= 0 for j* = 1 to n  q and wj* = (1/q) for j* = n  q + 1 to n. If q = 1 for the first class, the E-Z GHA 

becomes the hybrid maximum. And if q = 1 for the second class, the E-Z GHA becomes the hybrid 

minimum.  

A further interesting family is the S-GHA operator. It can be subdivided in three classes: the 

“orlike”, the “andlike” and the generalized S-GHA operator. The generalized S-GHA operator is 

obtained when  w1 = (1/n)(1  ( + )) + , wn = (1/n)(1  ( + )) + , and wj = (1/n)(1  ( + )) for 

j = 2 to n  1 where ,   [0, 1] and  +   1. Note that if  = 0, the generalized S-GHA operator 

becomes the “andlike” S-GHA operator and if  = 0, it becomes the “orlike” S-GHA operator. Also 

note that if  +  = 1, we get the generalized hybrid Hurwicz criteria. 

Another family of aggregation operator that could be used is the centered-GHA operator. 

Following the same methodology than Yager, 2007, we could define a GHA operator as a centered 

aggregation operator if it is symmetric, strongly decaying and inclusive. Note that these properties 

have to be accomplished for the weighting vector w of the OWA operator but not necessarily for the 

weighting vector ω of the WA. It is symmetric if wj = wj+n1. It is strongly decaying when i < j  (n + 

1)/2 then wi < wj and when i > j  (n + 1)/2 then wi < wj. It is inclusive if wj > 0. Note that it is possible 

to consider a softening of the second condition by using wi  wj instead of wi < wj. We shall refer to 

this as softly decaying centered-GHA operator. Another particular situation of the centered-GHA 

operator appears if we remove the third condition. We shall refer to it as a non-inclusive centered-

GHA operator. 
 

4.2 Analyzing the Parameter  

If we analyze different values of the parameter , we obtain another group of particular cases such as 

the usual HA operator, the hybrid geometric averaging (HGA) operator, the hybrid harmonic 

averaging (HHA) operator and the hybrid quadratic averaging (HQA) operator. 

When  = 1, we get the HA operator.  

HA (a1, a2, …, an) = 


n

j
jjbw

1
.                                                           (19) 
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Note that if wj = 1/n, for all ai, we get the WA and if ωj = 1/n, for all ai, we get the OWA 

operator. If wj = 1/n, and ωj = 1/n, for all ai, then, we get the arithmetic mean (AM). From a 

generalized perspective of the reordering step we can distinguish between the DHA operator and the 

AHA operator. 

When  = 0, the GHA operator becomes the HGA operator.  

HGA (a1, a2, …, an) = 


n

j

w
j

jb
1

.                                                           (20) 

If wj = 1/n, for all ai, we get the WGM and if ωj = 1/n, for all ai, we get the OWG operator. If 

wj = 1/n, and ωj = 1/n, for all ai, then, we get the geometric mean (GM). In this case, we can also 

distinguish between descending (DHGA) and ascending (AHGA). 

When  = 1, we get the HHA operator. 

HHA (a1, a2, …, an) = 




n

j j

j

b

w

1

1
.                                                             (21) 

In this case, we get the descending HHA (DHHA) operator and the ascending HHA (AHHA) 

operator. Note that if wj = 1/n, for all ai, we get the weighted harmonic mean (WHM) and if ωj = 1/n, 

for all ai, we get the ordered weighted harmonic averaging (OWHA) operator. If wj = 1/n, and ωj = 

1/n, for all ai, then, we get the harmonic mean (HM). 

When  = 2, we get the HQA operator. 

HQA (a1, a2, …, an) = 

2/1

1

2













n

j
jjbw .                                                   (22) 

In this case, we can also distinguish between the descending HQA (DHQA) operator and the 

ascending HQA (AHQA) operator. If wj = 1/n, for all ai, we get the WQM and if ωj = 1/n, for all ai, we 

get the OWQA operator. If wj = 1/n, and ωj = 1/n, for all ai, then, we get the quadratic mean (QM). 

Note that we could analyze other families by using different values in the parameter λ. Also 

note that it is possible to study these families individually. Then, we could develop for each case, a 

similar analysis as it has been developed in Sections 3 and 4.1, where we study different properties 

and families of the aggregation operator. 

 

5. THE QUASI-HA OPERATOR 

Going a step further, it is possible to generalize the GHA operator by using quasi-arithmetic means in 

a similar way as it was done for the GOWA operator (Beliakov, 2005). The result is the Quasi-HA 

operator which is a hybrid version of the Quasi-OWA operator (Fodor et al., 1995). It can be defined 

as follows.  
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Definition 4. A Quasi-HA operator of dimension n is a mapping Quasi-HA: Rn  R that has an 

associated weighting vector W of dimension n with  
n
j jw1 1 and wj  [0, 1], such that: 

Quasi-HA (a1, …, an) =  













 n

j
jj bgwg

1

1 ,                                              (23) 

where bj is the jth largest of the âi (âi = niai, i = 1,2,…,n),  = (1, 2, …, n)
T is the weighting vector 

of the ai, with i  [0, 1] and the sum of the weights is 1.  

As we can see, we replace b with a general continuous strictly monotone function g(b). In this 

case, the weights of the ascending and descending versions are also related by wj = w*nj+1, where wj is 

the jth weight of the Quasi-DHA and w*nj+1 the jth weight of the Quasi-AHA operator.  

Note that all the properties and particular cases commented in the GHA operator, are also 

included in this generalization. For example, we could study different families of Quasi-HA operators 

such as the Quasi-OWA, the Quasi-WA, the Quasi-step-HA, the Quasi-window-HA, the Quasi-

median-HA, the Quasi-olympic-HA, the Quasi-centered-HA, etc.  

Another interesting issue to consider is the attitudinal character of the Quasi-HA operator. 

Following a similar methodology than Beliakov, 2005, we can define the following measure: 

(W) = 









 













 n

j
j n

jn
gwg

1

1

1
.                                                      (24) 

Note that in this case it is also possible to consider other measures such as the entropy of 

dispersion, the divergence of W or the balance operator. Their formulation is practically the same as it 

has been explained in the end of Section 3 for the GHA operator. 

A further interesting aspect is that the Quasi-HA operator includes a lot of other particular 

cases that are not included in the GHA operator. For example, we could mention the trigonometric HA 

operator, the exponential HA operator and the radical HA operator. 

The trigonometric HA is found when g1(t) = sin((/2) t), g2(t) = cos((/2) t) and g3(t) = 

tan((/2) t) are the generating functions. Then, the trigonometric HA functions are: 

HA (a1, …, an) = 



















n

j
jj bw

1 2
sinarcsin

2 


,                                         (25) 

HA (a1, …, an) = 















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1 2
cosarccos
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,                                         (26) 

HA (a1, …, an) = 















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tanarctan
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The exponential HA is found when g(t) = t , if   1, and g(t) = t, if  = 1. Then, the 

exponential HA operator is: 




 

n
j

b
j

jw1log  , if   1; and the HA if  = 1. 

The radical HA is found if  > 0,   1, and the generating function is g(t) = 1/t. Then, the 

radical IOWA operator is: 

HA (a1, …, an) = 

1

1

/1
log



 














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


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




n

j

b
j

jw  .                                          (28) 

Finally, note that in these cases it is also possible to study their properties and different 

particular cases as it has been explained in Sections 3 and 4.1. 

 

6. NUMERICAL EXAMPLE 

Now, we are going to develop an application of the new approach in a decision making problem. We 

will analyze an investment selection problem where an investor is looking for an optimal investment. 

Note that other decision making applications could be developed (Alonso et al., 09; Herrera et al., 

2003; Xu, 2008b) such as the selection of financial products, the selection of strategies, the selection 

of human resources, etc. 

We will develop the analysis considering a wide range of particular cases of the GHA operator 

such as the maximum, the minimum, the arithmetic mean (AM), the WA, the OWA, the OWQA, the 

HA, the AHA, the HQA and the HGA. Note that we do not consider the hybrid maximum and the 

hybrid minimum because sometimes its results are inconsistent. This inconsistency happens because 

the results may be higher than the maximum and lower than the minimum. Due to this, we will not use 

them in this example. The hybrid maximum and minimum are useful for taking decisions but they do 

not correctly aggregate the information in the sense that they are not always bounded by the maximum 

and minimum arguments. 

Assume an investor wants to invest some money in an enterprise in order to obtain high 

benefits. Initially, he considers five possible alternatives. 

 A1 is a computer company. 

 A2 is a food company. 

 A3 is a TV company. 

 A4 is a chemical company. 

 A5 is a car company. 

In order to evaluate these investments, the investor uses a group of experts. This group of 

experts considers that the key factor is the economic environment of the economy. After detailed 

analysis, they consider five possible situations for the economic environment: S1 = Very bad, S2 = Bad, 

S3 = Normal, S4 = Good, S5 = Very good. The expected results depending on the state of nature Si and 

the alternative Ak are shown in Table 1. 
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Table 1. Payoff matrix 

 S1 S2 S3 S4 S5 

A1 30 60 50 80 20 

A2 30 30 90 60 40 

A3 70 40 50 20 60 

A4 50 70 30 40 50 

A5 90 10 10 70 70 

 

In this example, we assume that the group of experts assumes the following weighting vector 

for all the cases of the WA and the OWA operator: W = (0.1, 0.1, 0.2, 0.3, 0.3). With this information, 

it is possible to aggregate it in order to take a decision. First, we consider the results obtained with 

some basic aggregation operators. The results are shown in Table 2. 
 

Table 2. Aggregated results 1 

 Max Min AM WA OWA 

A1 80 20 48 49 39 

A2 90 30 50 54 44 

A3 70 20 48 45 41 

A4 70 30 48 45 40 

A5 90 10 50 54 36 

 

As we can see, the optimal investment is different depending on the aggregation operator used. 

In the following, we consider other particular cases of the GHA operator with more complexity. The 

results are shown in Table 3. 

Table 3. Aggregated results 2 

 OWQA HA AHA HQA HGA 

A1 43.4 36.5 61.5 46.9 29.4 

A2 45.0 39 69 49.7 28.3 

A3 44.1 36 54 41.1 32.1 

A4 44.6 37 53 40.3 34.4 

A5 48.3 34.5 73.5 51.4 17.5 

 

Again, we can see that the optimal investment is not the same for all the aggregations used. 

Note that other types of GHA operators may be used in the analysis such as the ones explained in 

Section 4. Note that the selection of the particular type of GHA operator in the decision process will 

depend on the particular interests of the decision maker in the specific problem considered. For 

example, if the decision maker is optimistic, he will go for a particular case of the GHA close to the 

maximum (or optimistic criteria) and if he is pessimistic, he will go to a specific case close to the 

minimum. A further interesting issue is to establish an ordering of the investments.  
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This is very useful when the investor wants to consider more than one alternative. The results 

are shown in Table 4. 

Table 4: Ordering of the investments 

 Ordering  Ordering 

Max A5A3A4A1=A2 
OWQA A5A2A4A3A1 

Min A2=A4A1=A3A5 HA A2A4A1A3A5 

AM A2=A5A1=A3=A4 AHA A5A2A1A3A4 

WA A2=A5A1A3=A4 HQA A5A2A1A3A4 

OWA A2A3A4A1A5 HGA A4A3A1A2A5 

 

As we can see, we get different orderings of the investments depending on the aggregation 

operator used. 

  

7. CONCLUSIONS 

We introduced a new type of aggregation operator: the generalized hybrid averaging (GHA) operator. 

It is a generalization of the hybrid averaging (HA) operator by using generalized means. We saw that 

it is very useful when we want to consider subjective probabilities and the attitudinal character of the 

decision maker in the same problem. With this generalization we found different special cases such as 

the hybrid geometric averaging (HGA), the hybrid quadratic averaging (HQA), the WA, the OWA 

operator, the WGM, the OWG operator, the WQM, the OWQA operator, etc. We further generalized 

the GHA operator by using quasi-arithmetic means, obtaining the quasi-HA operator.  

We ended the paper with an application of the new approach in a decision making problem. 

We focussed on a financial problem where we saw the usefulness of the new approach in the selection 

of investments. The main advantage of using the GHA operator is that it gives a complete view of the 

decision problem because it includes a lot of particular cases that can be used in the aggregation of the 

information according to the interests of the decision maker. 

In future research, we expect to develop further extensions of the GHA operator by adding 

new characteristics in the problem such as the use of order inducing variables, interval numbers, fuzzy 

numbers, linguistic variables, etc. We will also consider other decision making applications. 
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