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ABSTRACT

In this paper, several identities concerning expectation, variance, covari-
ance, cumulative distribution functions, the coefficient of variation, and the
Lorenz curve are obtained and they are used in establishing theoretical re-
sults. Furthermore, a graphical representation of the variance is proposed
which, together with the aforementioned identities, enables the square of the
coefficient of variation to be considered as an equality measure in the same
way as is the Gini index. A study of the similarities between the theoretical
expression of the Gini index and the square of the coefficient of variation is
also carried out in this paper.
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Similitud entre el cuadrado
del coeficiente de variación

y el ı́ndice de Gini
en una variable aleatoria general

RESUMEN

En este trabajo se obtienen diversas identidades relativas a la espezanza,
varianza, covarianza, función de distribución acumulada, coeficiente de va-
riación y curva de Lorenz que se usarán para obtener resultados teóricos in-
teresantes. Se construye, además, una representación gráfica de la varianza,
la cual, utilizando las propiedades obtenidas, nos indica que el cuadrado del
coeficiente de variación se puede considerar como una medida de igualdad,
de igual forma que se considera al ı́ndice de Gini. En este art́ıculo también
se lleva a cabo un estudio de las similitudes entre la expresión teórica del
ı́ndice de Gini y el cuadrado del coeficiente de variación.

Palabras clave: medidas de concentración; función de distribución; curva
de Lorenz; diferencia media.
Clasificación JEL: C100; C190.
MSC2010: 62-09; 62P20; 91B02.
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1 INTRODUCTION

Powerful tools, which are specifically designed for certain increasingly difficult problems,
are currently under development. Nevertheless, it is not always necessary to design new
tools, but to give a new interpretation to other known tools. Thus, there are easy rela-
tionships between the main characteristics of a random variable which are widely known
but remained unused. In this paper, several identities are obtained from a very simple
but powerful result. One particular result leads us to study the square of the coefficient
of variation and the Gini index.

The Gini index or Gini coefficient (Gini 1912) is perhaps one of the main inequality
measures in the discipline of Economics and it has been applied in many studies. Fur-
thermore, this index can be used to measure the dispersion of a distribution of income,
or consumption, or wealth, or a distribution of any other kind (Xu 2004) since, from the
statistical point of view, it is a function of the mean difference. Its attractiveness to many
economists is that it has an intuitive geometric interpretation, that is, it can be defined
as twice a ratio of two regions defined by the line of perfect equality (45-degree line) and
the Lorenz curve in the unit box. Furthermore, it is an important component of the Sen
index of poverty intensity (Xu and Osberg 2002).

There are two main different approaches for analyzing theoretical results of the Gini
index: the one is based on discrete distributions; the other on continuous distributions.
Both approaches can be unified (Dorfman 1979), but for some purposes the continuous
formulation is more convenient, yielding insights that are not as accessible when the ran-
dom variable is discrete (Yitzhaki and Schechtman 2005). For this reason, a continuous
formulation is considered in this paper.

The major drawback when the Gini index is used is that two very different distributions
can have the same value of this index and, therefore, it is not possible to declare which
distribution is more equitable. This problem has been faced in the literature by means
of stochastic dominance (Fishburn 1980) and inverse stochastic dominance (Muliere and
Scarsini 1989). It is worth noting that a more general study is carried out in (Núñez 2006),
where several approaches are presented. In this paper, to avoid this situation, it is proved
that the square of the coefficient of variation can be thought of as the ratio of the area that
lies between the curve of equality and the Lorenz curve in the same way as can the Gini
index and, therefore, it can be used as “the most natural” measure to discriminate between
two distributions when their Gini indices are the same. Let us note that the square of
the coefficient of variation1 was firstly proposed as a transfer measure in (Shorrocks and
Foster 1987) and later in (Davies and Hoy 1994), another possibilities were set up in
(Ramos and Sordo 2003). Furthermore, it will also be shown that both coefficients have

1The main drawback of this coefficient is that it is very sensitive to extreme values (Bartels 1977).

7



a similar definition. Hence, by using the definition of the coefficient of variation, the Gini
index can be defined for any random variable with a non-zero expectation and not only
for non-negative expectations.

The rest of the paper is organized as follows: Section 2 presents a result which forms
the basis of later developments since it provides identities on probability theory. Notes
on mean difference, independence, covariance, and variance are given in Section 3. In
Section 4, two equality measures of a non-negative random variable, the Gini index, and
the square of the covariation coefficient, are obtained from the previous identities and a
relationship between variance, expectation, the cumulative distribution function and the
Lorenz curve is given, which provides us with a graphical interpretation of the variance.
The identities are generalized and the Gini index is considered for any random variable.
Finally, conclusions are drawn.

2 MAIN RESULT

Let us see a simple but important result:

Theorem 1 Let g(x) be a function such that
∫∞
−∞ |x|r |g(x)| dx < ∞ for r = 0, 1. Hence

∫ ∞

−∞
x g(x)dx =

∫ ∞

0
(G∗(x) + G∗(−x)) dx (1)

where
G∗(x) = G∗

g(·)(x) = I(x)
∫ ∞

x
g(u) du− I(−x)

∫ x

−∞
g(u) du, (2)

and I(x) = I(0,+∞)(x) is the indicator function of the interval (0,+∞).

Proof . It is straightforward by integration by parts. ¥

Its generalization to two variables is an immediate consequence of this result.

Corollary 2 Let g(x, y) be a function such that
∫∞
−∞

∫∞
−∞ |x|r|y|s |g(x, y)| dxdy < ∞, for

r, s = 0, 1. Hence
∫ ∞

−∞

∫ ∞

−∞
xyg(x, y)dxdy =

∫ ∞

0

∫ ∞

0
(G∗(x, y) + G∗(x,−y) + G∗(−x, y) + G∗(−x,−y)) dxdy (3)

where G∗(x, y) = G∗
G∗

g(x,·)(y)(x). ¥

The expression of G∗(x) is useful to simplify the thesis of Corollary 2; nevertheless
an even simpler expression can be used. If G =

∫∞
−∞ g(u)du and G(x) =

∫ x
−∞ g(u)du are

defined, then (1) can be written as:
∫ ∞

−∞
x g(x)dx =

∫ ∞

0
(G−G(x)−G(−x)) dx. (4)
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Let g(x) and g(x, y) be the marginal probability density function (pdf) of a random
variable X and the joint pdf of a continuous random vector (X, Y ), respectively. Hence,
from (2) and (3):

G∗(x) =

{
−FX(x) if x < 0
1− FX(x) if x > 0

(5)

and
G∗(x, y) = F (x, y)− I(x)FY (y)− I(y)FX(x) + I(x)I(y), (6)

where F (x, y) is the a joint cumulative distribution function (cdf) of (X, Y ), and FX(x)
and FY (y) are marginal cdfs of X and Y , respectively. Therefore, since E(X) is the
expectation of X and σXY is the covariance of (X,Y), the following result can be stated:

Lemma 3 Let (X, Y ) be a continuous random vector with σXY < ∞. Hence

E(X) =
∫ ∞

0
(1− FX(x)− FX(−x)) dx, (7)

E(XY ) =
∫ ∞

0

∫ ∞

0
(1− FX(x)− FY (y)− FX(−x)− FY (−y) + · · ·

· · ·+ F (x, y) + F (−x, y) + F (x,−y) + F (−x,−y)) dx dy, (8)

σXY =
∫ ∞

−∞

∫ ∞

−∞
(F (x, y)− FX(x)FY (y)) dx dy. (9)

Proof . Identity (7) is obtained from identities (1) and (5). Identity (8) is given by identities
(3) and (6). Identity (7) implies

E(X)·E(Y ) =
∫ ∞

0

∫ ∞

0
(1− FX(x)− FY (y)− FX(−x)− FY (−y) + FX(x)FY (y) + · · ·
· · ·+ FX(−x)FY (y) + FX(x)FY (−y) + FX(−x)FY (−y)) dx dy

and, therefore

E(XY )−E(X)·E(Y ) =
∫ ∞

0

∫ ∞

0
((F (x, y)− FX(x)FY (y)) + (F (−x, y)− FX(−x)FY (y)) +· · ·

· · ·+ (F (x,−y)− FX(x)FY (−y)) + (F (−x,−y)− FX(−x)FY (−y))) dx dy

and taking into account that:

∫∞
0

∫∞
0 (F (x,−y)− FX(x)FY (−y))dydx =

∫∞
0

∫ 0
−∞(F (x, y)− FX(x)FY (y))dydx,

∫∞
0

∫∞
0 (F (−x, y)− FX(−x)FY (y))dxdy =

∫ 0
−∞

∫∞
0 (F (x, y)− FX(x)FY (y))dxdy,

∫∞
0

∫∞
0 (F (−x,−y)− FX(−x)FY (−y))dxdy =

∫ 0
−∞

∫ 0
−∞(F (x, y)− FX(x)FY (y))dxdy,

then (9) is obtained. ¥

Let us see, in the next section, how Lemma 3 is useful in establishing theoretical results.
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3 NOTES ON RANGE, MEAN DIFFERENCE, INDEPEN-

DENCE, AND COVARIANCE OF RANDOM VARIABLES

Note 4 In fact, result (7) can easily be generalized as follows:

E(X2r+1) = (2r + 1)
∫ ∞

0
x2r · (1− FX(x)− FX(−x)) dx, ∀r = 0, 1, 2, ...

and, if X is non-negative, then

E(Xr+1) = (r + 1)
∫ ∞

0
xr · (1− FX(x)) dx, ∀r = 0, 1, 2, ...

That is, the r-th moment about the origin of a non-negative random variable can be ob-
tained from the cdf F (x) directly instead of from the pdf f(x). N

Note 5 Let X1, X2, . . . , Xn be independent and identically distributed (iid) random vari-
ables with the same distribution as X. If the transformations given by Un = max{X1,

X2, . . . , Xn} and Vn = min {X1, X2, . . . , Xn} are considered, then their cdfs are: FUn(u) =
Fn(u) and FVn(v) = 1− (1− F (v))n.

By using (7), E(Vn) =
∫∞
0 (−1 + (1− F (x))n + (1− F (−x))n) dx, and E(Un) =

∫∞
0 (1−

Fn(x)− Fn(−x))dx. Hence,

E(Un − Vn) =
∫ ∞

−∞
(1− Fn(x)− (1− F (x))n)dx.

Furthermore, as a particular case, the mean difference of two iid random variables, ∆ =
E(|X1 −X2|), can be written as:

∆ = E(U2 − V2) =
∫ ∞

−∞
(1− F 2(x)− (1− F (x))2)dx = 2

∫ ∞

−∞
F (x)(1− F (x))dx.

N

Note 6 Usually, the covariance is defined as Cov(X, Y )=E [(X−E(X))·(Y −E(Y ))] and
an interpretation of its meaning with respect to the independence or dependence between
X and Y is given a posteriori. From (9), it is possible to give a new introduction to
covariance as follows: Given a random vector (X,Y ), the variables X and Y are said to
be independent if F (x, y) = FX(x) FY (y), for every x, y ∈ R. Hence, there is dependence
between X and Y if any x, y ∈ R exist such that F (x, y)−FX(x) FY (y) 6= 0. Therefore, a
first measure of dependence or covariation between two random variables can be considered
as: ∫ ∞

−∞

∫ ∞

−∞
(F (x, y)− FX(x) FY (y)) dx dy,

which is named “covariance” between X and Y , and denoted by Cov(X,Y ). Once the
moments of a random vector are defined, then it can be proved that Cov(X,Y ) = E [(X−
E(X)) · (Y − E(Y ))]. Thus, covariance is introduced from the concept of independence.

N
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Note 7 From (9), V ar(X) =
∫∞
−∞

∫∞
−∞ (F (x, y)− FX(x)FX(y)) dxdy, where V ar(X) de-

notes the variance of X, and as F (x, y) = P [X ≤ x,X ≤ y] = P [X ≤ min(x, y)], then
the variance can be rewritten as:

V ar(X) =
∫ ∞

−∞

∫ ∞

−∞
(FX(min(x, y)) (1− FX(max(x, y))) dx dy,

and, therefore, it is straightforward to prove, by taking the properties of the cdf into ac-
count, that:

1
2
∆2 = 2

(∫ ∞

−∞
F (x)(1− F (x)) dx

)2

≤ V ar(X) ≤
(∫ ∞

−∞

√
F (x)

√
1− F (x) dx

)2

which provides us with a lower and an upper bound of the variance. N

4 GINI INDEX, COEFFICIENT OF VARIATION, AND A

GRAPHICAL REPRESENTATION OF THE VARIANCE

Let X be a non-negative continuous random variable with cdf F (x), pdf f(x) and fi-
nite variance. From Note 4, the expectation of X can be written as E(X) = µ =∫∞
0 (1 − F (x))dx. Furthermore, the Lorenz function L(x) = 1

µ

∫ x
0 t f(t) dt can be con-

sidered analogous to a cdf of a non-negative random variable UX , and by considering
g(x) = 1

µx f(x) in (1), then:

∫ ∞

0
x g(x) dx =

∫ ∞

0
(1− L(x)) dx ⇒ E(X2) = µE(UX) ⇒ V ar(X) = µ (E(UX)− µ) .

However, E(UX)− µ =
∫∞
0 (F (x)− L(x)) dx. Therefore,

∫ ∞

0
(F (x)− L(x)) dx =

V ar(X)
E(X)

. (10)

It should be pointed out that result (10) provides us with a relationship between some of
the most important characteristics of a non-negative random variable: the expectation,
the variance, the cumulative distribution function and the Lorenz curve. Moreover, result
(10) gives a new interpretation of the variance of a non-negative random variable as the
product of µ and the area enclosed by the cdf F (x) and the Lorenz curve L(x), that is,
the variance is the product of A (= E(X)) and B in Figure 1.

Let us now introduce an equality measure from the area enclosed between the curve
given by y = F (x) and y = L(x), that is, area B in Figure 1. From the previous result,
E(UX) = µ+ V ar(X)

µ ; it follows that area B is equal to E[UX ]−µ. In order to eliminate the
units of the variable and to achieve a relative measure this value is divided by µ, thereby
obtaining B

µ = E( 1
µUX − 1). From (10) (let us denote µ by µX),

CV 2(X) = E

(
1

µX
UX − 1

)
, (11)
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Figure 1: Graphical representation of the mean, the variance and the square of the coef-
ficient of variation of a non-negative random variable.

where CV (X) is the coefficient of the variation of X. Hence, the square of the coefficient
of variation has an intuitive geometric interpretation as the ratio of two regions.

It is worth noting that the construction in Figure 1 is similar to that of the Gini
index. In order to study this similarity, the transformation U = F (X) is considered,
and the Lorenz curve can be written as L(u) = 1

µ

∫ u
0 F−1(t)dt, 0 ≤ u ≤ 1, where F−1

is the left inverse of F . Hence, the area enclosed between the curve given by y = u and
y = L(u), that is, area B in Figure 2, is an equality measure. In the same way as for
L(x), the L(u) function can be considered analogous to a cdf of a non-negative random
variable UF (X), and from (7), E(UF (X)) =

∫ 1
0 (1− L(u)) du =

∫ 1
0 (u− L(u)) du + 1

2 ≤ 1
(note that U = F (X) is a uniform distribution and FU (u) = u, 0 < u < 1). Hence,
0 ≤ E(UF (X))− 1

2 =
∫ 1
0 (u− L(u)) du ≤ 1

2 , and multiplying by 2 in order to normalize this
expression, results in 0 ≤ E(2UF (X)−1) = 2

∫ 1
0 (u− L(u)) du ≤ 1. Furthermore, it is well-

known that the Gini index is IG(X) = 2
∫ 1
0 (u− L(u)) du and that E(U) = E(F (X)) =

µF (X) = 1
2 , and hence a similar expression of the square of the coefficient of variation (11)

is given by the Gini index:

IG(X) = E

(
1

µF (X)
UF (X) − 1

)
. (12)

Hence, the Gini index can be seen as a “normalization” of the square of the coefficient
of variation, by using the transformation U = F (X), from (11) and (12). Therefore, the
square of the coefficient of variation of X is an equality measure in the same as is the Gini
index.

Another two similar expressions, which are straightforward to obtain, for IG(X) and
CV 2(X), are given in the following:
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Figure 2: Graphical representation of the Gini index of a non-negative random variable.

In terms of integrals:

IG(X) =
1

E(U)

∫ 1

0
(u− L(u)) du,

CV 2(X) =
1

E(F−1(U))

∫ 1

0
(u− L(u)) dF−1(u), (from (10)).

In terms of covariances:

IG(X) = Cov

(
X

µX
,
F (X)
µF (X)

)
, (given in (Lerman and Yitzhaki 1984)).

CV 2(X) = Cov

(
X

µX
,

X

µX

)
.

Note 8 It is worth bearing in mind that the square of the coefficient of variation, as an
inequality measure of a distribution of income (or consumption, or wealth, or a distribu-
tion of any other kind), verifies the four properties which are generally postulated in the
economic literature on inequality (for the sake of simplicity let us interpret this coefficient
on countries): Anonymity (it does not matter who the high and low earners are); Scale
Independence (it does not consider the size of the economy, the way it is measured, or
whether it is a rich or poor country on average); Population Independence (it does not
matter how large the population of the country is); and Transfer Principle (if an income
less than the difference is transferred from a rich person to a poor person, then the resulting
distribution is more equal) (Dalton 1920). N

Example 4.1 If X ∈ U(a, b) (Uniform distribution), then F (x) = u = x−a
b−a , with a ≤ x ≤

b and dF−1(u) = (b− a)du. Hence,

IG(X) = 2
∫ 1

0
(u− L(u)) du =

2
b− a

∫ 1

0
(u− L(u)) dF−1(u) =

2
b− a

µCV 2(X)

=
b + a

b− a
CV 2(X) =

1
3
· b− a

b + a
.

¥
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The major drawback (when the Gini index is used) is that there are non-negative
random variables X and Y such that IG(X) = IG(Y ) and, therefore, it is impossible to
quantify which distribution is more equitable. To avoid this situation, and by following
the above results, the most natural solution is obtained by calculating the square of the
coefficient of variation. Let us see an example:

Example 4.2 Let X ∈ U( 1
49 , 1). The square of the coefficient of variation is straightfor-

ward to calculate: CV 2(X) = 1
3

(b−a)2

(b+a)2
= 0.3072, and, from Example 4.1, the Gini index is

IG(X) = 1
3

b−a
b+a = 8

25 .
Let us consider the random variable Y with values and probabilities given by {0, 0.5, 1}
and {0.2, 0.6, 0.2}, respectively. In this case, the Gini index is IG(Y ) = 8

25 = IG(X),
nevertheless, CV 2(Y ) = 0.4000 is greater than CV 2(X). Thus, it can be concluded that
the distribution of X is more equitable than the distribution of Y . ¥

Another expression with regard to the integrals can be given: Let X1 and X2 be
independent and identically distributed (iid) random variables with the same distribution
as X, then:

∫ 1

0
(u− L(u)) du =

E |X1 −X2|
2µ

;
∫ 1

0
(u− L(u)) dF−1(u) =

E(X1 −X2)2

2µ
.

The main advantage of the Gini index over the square of the coefficient of variation
is that the Gini index is bounded, that is, 0 ≤ IG(X) ≤ 1 while the square of coefficient
of variation has no upper bound, that is, 0 ≤ CV 2(X). Nevertheless, the Gini index is
only defined for non-negative random variables and this condition is not required by the
coefficient of variation. In both cases, by the definition of the L(·) function, it is necessary
that µ 6= 0.

The condition X ≥ 0 leads to a bounded Gini index, but it is also possible to define
the Gini index for any X random variable. This is studied in the following section.

5 THE GINI INDEX OF ANY RANDOM VARIABLE

Let X be a continuous random variable with cdf F (x), pdf f(x), µ 6= 0 and finite variance.
Clearly, the Lorenz function, L(x) = 1

µ

∫ x
−∞ t f(t) dt, cannot be considered as analogous to

a cdf of a random variable since L(x) can take negative values. Nevertheless, it is possible
to consider g(x) = 1

µx f(x) in (1) and hence, by using (4):

E(X2) =
∫ ∞

−∞
x2 f(x)dx = µ

∫ ∞

0
(1− L(x)− L(−x)) dx.

14
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Figure 3: Graphical representation of B = V ar(X)/E(X) from the curves y = F (x) and
y = L(x).

Furthermore, by using (7):

E2(X) = µE(X) = µ

∫ ∞

0
(1− F (x)− F (−x)) dx,

and hence V ar(X) = E(X2)−E2(X) = µ
∫∞
0 (F (x)− L(x) + F (−x)− L(−x)) dx. There-

fore, as
∫∞
0 (F (−x)− L(−x)) dx =

∫ 0
−∞ (F (x)− L(x)) dx, result (10) has been generalized.

Let us write it in the form of a theorem.

Theorem 9 Let X be a continuous random variable with cdf F (x), pdf f(x), µ 6= 0 and
finite variance. If the Lorenz function is defined as L(x) = 1

µ

∫ x
−∞ t f(t) dt, then

∫ ∞

−∞
(F (x)− L(x))dx =

V ar(X)
E(X)

. (13)

¥

If support(X) ∆= {x / f(x) > 0} = (a, b), with −∞ ≤ a < b ≤ ∞, and R(x) =
F (x)− L(x) are considered for any x ∈ (a, b) (see Figure 3), then:

1. If µ > 0, then R(x) > 0, and the maximum is attained in x = µ.

2. If µ < 0, then R(x) < 0, and the minimum is attained in x = µ.

Hence, in the same way as for the non-negative random variable X, the square of the
coefficient of variation can be considered as an equality measure since:

0 ≤ 1
µ

∫ ∞

−∞
(F (x)− L(x))dx =

1
µ

∫ 1

0
(u− L(u)) dF−1(u) = CV 2(X).

The only difference between the general random variable case with regard to the non-
negative random variable case is that the graphical interpretation of this coefficient as the
ratio between two areas is not possible.
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Figure 4: Graphical representation of the Gini index from the line y = u and the curve
y = L(u).

On the other hand, the Gini index must be considered in terms of absolute values since
if µ < 0 then u ≤ L(u) (see Figure 4), that is, IG(X) =

∣∣∣2
∫ 1
0 (u− L(u)) du

∣∣∣. The main
problem is that the integral has no upper bound, although the remaining of considerations
made for a non-negative random variable still remain valid for a random variable.

Sometimes the Lorenz curve is not known, and only values at certain intervals are given.
In that case, the most common technique is to approximate the curve in each interval as a
straight line between consecutive points, and therefore area B can be approximated with
trapezoids. Thus, if {(Fk, Lk), k = 0, 1, · · · , n}, where F0 = L0 = 0 and Fn = Ln = 1,
are the known points set on the Lorenz curve, with the Fk indexed in increasing order
(Fk−1 < Fk), then (Rao 1969):

IG =

∣∣∣∣∣
n−1∑

k=0

(FkLk+1 − Fk+1Lk)

∣∣∣∣∣ .

It is important to note that this expression does not depend on whether the random
variable is non-negative. Let us see an example which allows us to clarify the idea of this
approach.

Example 5.1 Four players of cards start a game where each one bets $100 and a debit
balance is allowed. Let us consider the variable Xt =monetary value of each player at
time t. A possible change of the distribution of profit and loss in the game is shown in
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Table 1. In this table, it can be seen that, when x4 = −200 and t = 4, the Gini index is
greater than one, which is consistent because the situation after this sharing out is worse
than the earlier case. The Gini index, in the same way as the square of the coefficient of
variation, increases when the sharing out is less equitable. Therefore, there is no reason to
demand non-negativity in random variables when using the Gini index in equality studies.

¥

Table 1: Example of inequality in the game.
t x1 x2 x3 x4 IG CV 2

0 100 100 100 100 0.0000 0.0000
1 150 120 75 50 0.2188 0.1563
2 200 150 50 0 0.4375 0.6250
3 400 200 0 −200 1.2500 5.0000
4 800 100 −200 −300 2.2500 18.5000
5 1000 0 −200 −400 2.7500 29.0000

CONCLUSION

We have obtained several generalizations of some well-known results which establish rela-
tionships concerning the joint cdf, the marginal cdfs and other characteristics of a random
vector (X, Y ). We have proved that these relationships can be useful in theoretical con-
siderations.

An identity which relates four of the most important characteristics of a random vari-
able (the mean, the variance, the cumulative distribution function, and the Lorenz curve)
has also been given. This result provides us with a graphical representation of the mean,
the variance and the square of the coefficient of variation in the same figure. Furthermore,
new expressions of the Gini index have been given, and they have their counterparts in
the square of the coefficient of variation.

In this paper, by following the same interpretation as the one of the coefficient of
variation, the Gini index is defined as an equality measure for random variables which do
not have to be non-negative.
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