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ABSTRACT

In this paper we analyze empirically different specifications of a sample se-
lection model. We are interested in how the estimates vary across alternative
assumptions concerning the joint conditional distribution of the sample se-
lection equation errors, such us the specification of error distribution, the
functional relationship of the index function and heteroskedasticity. To do
this, we estimate a wage equation for the Spanish labor market using two
different approaches: Maximum Likelihood and Two-Step Methods. For the
latter, three alternative semiparametric procedures are used to compute the
sample selection mechanism, and thus three alternative two-step estimators
of the parameters of the wage equation are obtained. We compare theses
estimates with Heckman’s approach.
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Investigación emṕırica de métodos de estimación
paramétricos y semiparamétricos
de modelos de selección muestral

RESUMEN

En este trabajo se analizan emṕıricamente distintas especificaciones de un
modelo de selección muestral. Estamos interesados en conocer cómo las es-
timaciones de los parámetros vaŕıan en función de supuestos alternativos
sobre la distribución condicional conjunta de los errores de la ecuación de
selección, de la forma funcional de la función ı́ndice y la heteroscedastici-
dad. Para el análisis, estimamos una ecuación de salarios para el mercado
de trabajo español usado dos enfoques distintos: máxima-verosimilitud y
métodos en dos etapas. Para el caso de la estimación en etapas, considera-
mos tres procedimientos semiparamétricos alternativos para el cómputo del
mecanismo de selección. Aśı, se obtienen tres estimadores en dos etapas de
los parámetros de la ecuación de salarios. Comparamos las estimaciones con
la obtenidas siguiendo el método de Heckman.

Palabras clave: modelos de selección muestral; hipótesis distribucionales;
métodos de estimación en dos etapas semiparamétricos.
Clasificación JEL: C14; C25; J64.
MSC2010: 62P20; 91B40.
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1 Introduction

In any microeconometric study of the labor market, two facts are readily apparent: many individuals
do not work, and wages are not available to non-working people. This introduces a serious bias in the
estimation of many behavioral equations, since only a non-randomly chosen subsample is available to
estimate the parameters of interest. This is pointed out in Gronau (1974) and Heckman (1974). In
their papers, a sample selection model is introduced, consisting of two equations: a wage equation,
explaining the potential log-wage rate of every individual, including non-workers, and a selection
equation indicating whether or not someone is employed and therefore the wage is observed. Since
then, many estimation techniques have been developed in econometrics literature to account for
this issue. As pointed out in Vella (1998), in empirical literature, the main extension of Heckman’s
seminal paper has been the use of semiparametric and nonparametric methods in the estimation of
relationships of interest. In fact, these techniques have allowed empirical researchers to relax some
rather strong assumptions that were introduced in the early papers of this literature: Mainly those
involving the form of the distribution of the selection mechanism and those involving the statistical
relationship between errors and explanatory variables.

Although these new estimation procedures for sample selection models have received a lot of attention
in theoretical econometric literature (see among others Ahn and Powel, 1993; Andrews and Schafgans,
1998; Chen and Lee, 1998; Das, Newey and Vella, 2000 and Lewbel, 2007) very few applications are
available. Furthermore, with the exceptions of Melenberg and Van Soest (1993), Vella (1998), Martins
(2001) and Coelho, Veiga and Veszteg (2005), no comparison of the different estimation techniques
is available.

In this paper we seek to empirically study different specifications of a sample selection model. More
precisely, we are interested in analyzing the behavior of the different estimates under alternative
assumptions regarding the sample selection equation, such as the specification of error distribution,
the functional relationship between selection and explanatory variables (index function) and the
statistical relationship between error and explanatory variables (heteroskedasticity). To do this, we
estimate a wage equation for the Spanish labor market using two different approaches: Maximum
Likelihood and Two-Step Methods. The first technique is used as a benchmark. For the second, three
alternative procedures are used to compute the sample selection mechanism, in order to estimate the
parameters of the wage equation. Depending on whether the selection equation is fully parametric
(where both conditional distribution and index function are known), semiparametric (where only
the form of the index is known) or nonparametric, three alternative two-step estimators of the
parameters of the wage equation are obtained: Those proposed by Heckman (1979), Powell (1987)
and Ahn and Powell (1993). The impact of omitted heteroskedasticity in the selection equation
is analyzed in a fully parametric approach through standard Lagrange multiplier tests. Finally, a
consistent specification test of Heckman’s model is also implemented. This test is based on a general
specification test developed by Horowitz and Härdle (1994).

The paper is organized as follows. In Section 2 we introduce the model and the data. In Section
3, we develop the estimation methods and we present the main results. Finally, in Section 4 we
conclude.
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2 Data and Model

In order to estimate a wage equation for the Spanish labor market we have available data obtained
from the Encuesta de Población Activa (EPA), the Spanish quarterly Labor Force Survey. This
survey has taken place every quarter since 1975 and is collected by the National Bureau of Statistics
(INE). It covers approximately 60,000 households and contains information about 150,000 individuals
aged over 16. It provides information at different levels of disaggregation at both national and
regional level. From these surveys, in the second quarter of 1990 the National Bureau of Statistics
randomly selected a cross-section of 4,989 individuals (1,010 are unemployed looking for work) and
provided additional information about some variables that were considered relevant for labor market
participation analysis.

The variables included in this data set are defined in Table 1, where we also include some descriptive
statistics.

Variable Description Whole Sample Worker Sample

AGE16-19 dummy, 1 if age 16 to 19 0.1317
(0.3383)

0.1111
(0.3145)

AGE20-25 dummy, age 20 to 25 0.2653
(0.4417)

0.2565
(0.4371)

AGE26-35 dummy, age 26 to 35 0.2782
(0.4483)

0.2614
(0.4398)

AGE>45 dummy, older than 45 0.1386
(0.3457)

0.1437
(0.3511)

ELEMENTARY dummy, elementary school 0.3550
(0.4773)

0.3399
(0.4740)

H.SCHOOL dummy, high school 0.1158
(0.3202)

0.1062
(0.3083)

UNIVERSITY dummy, university 0.0643
(0.2455)

0.0392
(0.1943)

U-RATE unemployment rate 0.1718
(0.0693)

0.1714
(0.0710)

NOT HEAD OF HOUSE dummy, 1 if person is 0.7039
(0.4567)

0.6160
(0.4867)

not head of household
SEXF dummy, 1 if female 0.6802

(0.4666)
0.6258
(0.4843)

SINGLE dummy, 1 if single 0.6891
(0.4631)

0.7255
(0.4466)

PARTICIPATING dummy, 1 if participating 0.6059
(0.4888)

...
(...)

SIZE 1010 612

Table 1: Comparative statistics of explanatory variables, mean and standard deviation (in brackets).

Before specifying the wage equation, we need to stress some issues related to both the characteristics
of the Spanish labor market and the data. In 1990 most contracts in the Spanish labor market
were signed for forty hours per week. Almost no part time contracts were allowed at this time. In a
standard wage equation model (Heckman, 1974), this would imply that offered wages are not affected
by hours worked. In this sense, a most accurate specification of a wage equation for our purposes
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would be the one proposed in Gronau (1973), where in fact offered wages are not assumed to depend
on hours worked. A second issue that also affects the standard specification of a wage equation is the
fact that in our data set we only observe the wage of the individual that has been randomly selected.
No information about other incomes in the household is available. Nor do we know the number of
components of the family or other related issues, for example children’s ages. In our analysis we will
not therefore specify different wage equations for males and females.

Taking into account the above restrictions, we propose the following sample selection model, also
referred in Amemiya (1985) as the Type II Tobit model:

z∗i = f1(x1i) + u1i, i = 1, . . . , n, (1)

y∗i = f2(x2i) + u2i, i = 1, . . . , n, (2)

yi = y∗i , if z∗i > 0, (3)

yi = 0, if z∗i ≤ 0. (4)

Here, f1(x1) and f2(x2) are real functions and (u1, u2) are random variables whose realizations are
unobserved by the researcher. The observed variables are yi, zi, x1i and x2i. x1 and x2 might contain
common variables. zi denotes a dummy variable indicating whether the i-th individual has a paid
job (zi = 1 if z∗i > 0) or not (zi = 0 if z∗i ≤ 0), and yi is the wage someone receives if he/she
is employed. It is only observed iff zi = 1. Equation (2) is the so called market wage equation. The
explanatory variables in this equation, x1, are the standard ones in this type of models (see Vella,
1998), i.e. one dummy variable for the gender differential effect, and three dummy variables referring
to education level. In a first attempt at specification we also included age as a proxy of experience,
but it turned out that this variable was more relevant in explaining participation, and therefore since
we needed a exclusion restriction in order to identify the parameters of the market wage equation
we decided to remove this variable from the wage equation.

Equation (1) reflects the difference between the market and the reservation wage. It is a reduced form
participation equation. Therefore, among the explanatory variables in this equation, x2, we can find
variables related to both market and individual characteristics: One dummy variable for the gender
differential effect, four dummy variables associated with age and three dummy variables referring
to education level. Education level is used as an indicator of potential earnings of individuals. We
also used the unemployment rate in the area of residence since participation may depend on cyclical
conditions of the economy. We decided also to include a dummy variable that indicates marital
status. This last variable approximates the reservation wage.

The selection problem comes from the fact that we are interested in understanding the relationship
represented in equation (2), but we observe only a subsample of observations due to the observability
rule that is represented in equations (3) and (4). Finally, it is important to note that equations (1) to
(4) alone do not restrict the distribution of (y, z) conditional on (x1, x2). An econometric model takes
on content when restrictions are imposed on f1(·), f2(·) and the distribution of (u1, u2) conditional
on x1, x2.
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3 Estimation Methods and Results

Any first attempt to introduce an estimation method of the sample selection model must go through
the analysis of identification conditions. Following Manski (1993), three different types of identifying
restrictions can be imposed on the above specification.

First, we can assume that u1 and u2 are statistically independent conditionally on (x1, x2). In this
case, f2(·) can be consistently estimated without taking into account the information contained in
the other equation. A further restriction not necessary to identify the conditional probability model
is that f2(·) should fall within a specified class of linear parametric models. In this case, standard
least squares techniques provide consistent estimates for the parameters of the wage equation.

A second group of identifying restrictions is to assume that the joint distribution of (u1, u2) condition-
ally on (x1, x2) belongs to a pre-specified family of parametric density functions. Moreover, f1(·) and
f2(·) are assumed to be linear parametric functions. These restrictions identify the parameters of the
wage equation that can be estimated through maximum likelihood methods. Under the conditions
detailed above it is also possible to consistently estimate the parameters of interest by a two-step
method proposed in Heckman (1979). This method estimates in a first step the parameters of the
selection equation and then, in a second step, the parameters of the wage equation, incorporating
a correction term, are estimated by standard weighted least squares. Note that a two-step sample
selection estimator with a linear correction term can be consistent for the regression coefficients
despite misspecification of distribution (see Olsen, 1981 and Newey, 1999).

Maximum likelihood estimators of the wage equation are extremely sensitive to misspecification in
the joint conditional distribution of (u1, u2) on (x1, x2). Hurd (1979) shows the consequences of
omitted heteroskedasticity and Goldberger (1983) describes the effects of non-normality. Newey
(1999) analyzes the impact of misspecification of distribution in two-step estimators, Fernández,
Rodŕıguez-Póo and Villanua (2002) show the impact of ignoring heteroskedasticity and Nawata and
Nagase (1996) compare the performance of the two estimators by a simulation study.

In order to weaken certain distributional assumptions, a third group of identifying restrictions has
been introduced in the literature of sample selection models. The identifying restriction consists of
assuming that the conditional distribution of the selection equation error, u1, depends on a certain
function of x1 (single index function), through an unknown relationship, h(x1).

Based on this single index restriction, several semiparametric estimation methods have been pro-
posed. The main advantage of these estimation procedures over the ones above is that knowledge of
the conditional distribution of u1 given x1 is not required, and therefore they are robust to misspecifi-
cation in error distribution. All are based on two-stage procedures. Powell (1987) and Newey (1991)
additionally assume that h(·) is a linear parametric function, and they propose estimating the pa-
rameters of this index function through a semiparametric estimation method (Klein and Spady, 1993
or Horowitz and Härdle, 1996). Ahn and Powell (1993) do not impose linearity restrictions on index
h(·), but they assume some conditions that guarantee the possibility to estimate nonparametrically
this index function.

Note that by estimating a wage equation model with different estimation procedures, maximum like-
lihood, parametric and semiparametric two-step methods, we can obtain very important information
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about possible specification errors in the econometric model. Thus, if we estimate the same wage
equation model alternatively with maximum likelihood and with Heckman’s two-step procedure, and
the estimation results are similar, we can conjecture that the conditional distribution of u2 given x2

is approximately normal. Furthermore, by estimating the same econometric model by parametric
and semiparametric two-step methods we could guess that in fact the conditional distribution of the
sample selection mechanism, u1 given x1, is Gaussian if the estimation results are close. Finally, the
impact of omitted heteroskedasticity in the parameter estimates of the wage equation can also be
considered within the framework of conditionally Gaussian distributions.

In the estimation under these different identifying restrictions we can compare the parameter esti-
mates, and decide, if possible, what sort of specification best fits the data structure. In what follows
we will estimate the model described in equations (1) to (4) by using the different estimation tech-
niques described above. To do this we will add the identification conditions already discussed for
each of these estimation procedures.

3.1 Maximum Likelihood Estimators

As already remarked in the previous section, in order to implement the maximum likelihood esti-
mators of the wage equation, in the setting described by equations (1), (2), (3) and (4) we add the
following restrictions: (

u1

u2

∣∣∣∣∣ X = x

)
∼ N (0, Σ(x, α)) (5)

and

Σ(x, α) =




σ2
1(x1; α1) ρσ1(x1; α1)σ2(x2;α2)

ρσ1(x1;α1)σ2(x2; α2) σ2
2(x2; α2)


 . (6)

Note that x = (x1 x2). Furthermore, we also assume that f1(x1) = xT
1 β1, f2(x2) = xT

2 β2 and
the functions σ1(·) and σ2(·) are known by the researcher and belong to some family of parametric
functions. Under these conditions, β1 is identified up to a scale factor, β2 and ρ are identified,
and the nuisance parameters α1, α2 can also be identified only under some specific functional forms
for heteroskedasticity. For example, if σ2

1(x1;α1) = κ1exp
(
xT

1 α1

)
and σ2

2(x2; α2) = κ2exp
(
xT

2 α2

)
,

κ1 > 0 and κ2 > 0, then the nuisance parameters, α1 and α2, and the second scale factor, κ2, are
identified. The vector of coefficients, β1, will be identified up to the scale, κ1.

The statistical model represented in equations (1)–(6) nests a great variety of specifications. For
example, if we make ρ = 0, we are imposing statistical independence between the selection and the
wage equation. This restriction, as indicated in Section 2, identifies the parameters of the wage
equation regardless of the distribution of errors. We can also consider the case where errors are
independent of explanatory variables. That is, σ2

1(x1; α1) = κ1 and σ2
2(x2;α2) = κ2.

The unrestricted likelihood function takes the following form,

ln L =
n∑

i=1

[
(1− yi) ln

(
1− Φ

(
xT

1iβ1

σ1 (x1i; α1)

))
+ yi ln

(
Φ

(
xT

1iβ1

σ1 (x1i; α1)

+ρ

(
yi − xT

2iβ2

σ2(x2i; α2)

) (
1− ρ2

)− 1
2

)
1

σ1 (x1i; α1)
φ

(
yi − xT

2iβ2

σ2(x2i; α2)

))]
,
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where φ(·) and Φ(·) stand respectively for the Gaussian density and distribution function. We
compute maximum likelihood estimates of four nested wage equation models for Spanish labor market
data. The models are the following:

Model I: ρ = 0, σ2
1(x1; α1) = κ1 and σ2

2(x2; α2) = κ2.

Model II: σ2
1(x1;α1) = κ1 and σ2

2(x2; α2) = κ2.

Model III: σ2
1(x1; α1) = κ1exp

(
xT

1 α1

)
and σ2

2(x2; α2) = κ2.

Model IV: σ2
1(x1; α1) = κ1exp

(
xT

1 α1

)
and σ2

2(x2;α2) = κ2exp
(
xT

2 α2

)
.

In Table 2 we show the estimates for the wage equation, and the correlation coefficient between
this equation and the sample selection one. In all models, standard deviations of the maximum
likelihood estimators have been computed using the variance-covariance matrix that is robust to
misspecifications of the conditional distribution of the errors. It is obtained by considering the
Maximum Likelihood estimator as a special case of M-estimators (see Gourieroux and Monfort,
1995; Vol. I, p. 213). Note that under Gaussian errors, this variance-covariance matrix is the inverse
of the Fisher information matrix.

Variable Model I Model II Model III Model IV

Constant 6.155
(0.03)

6.261
(0.03)

6.245
(0.03)

6.227
(0.03)

Sexf −0.076
(0.04)

−0.022
(0.04)

−0.051
(0.04)

−0.004
(0.03)

Elementary −0.168
(0.04)

−0.112
(0.04)

−0.111
(0.04)

−0.029
(0.04)

H. School 0.079
(0.06)

0.149
(0.06)

0.112
(0.06)

0.224
(0.05)

University 0.419
(0.09)

0.565
(0.09)

0.501
(0.10)

0.707
(0.07)

ρ ...
(...)

−0.624
(0.07)

−0.543
(0.09)

−0.677
(0.05)

κ2 0.438
(0.01)

0.484
(0.02)

0.217
(0.02)

0.144
(0.01)

Table 2: Maximum likelihood estimates of the wage equation, standard deviation in brackets.

Across the different models, the estimation results do not change significantly in size or sign. In all
cases the sex dummy variable is insignificant1 and small. However, the educational dummy variables
are all significant and they keep their sign unchanged in all models. In fact, the dummy elementary
school variable has a significant negative impact and the dummy university variable has a significant,
strong, positive effect. It is important to remark that in the last three cases, ρ is significantly different
from zero. On these grounds, Model I does not appear to be a reasonable specification.

In Table 3 we show maximum likelihood estimates of the parameters of the selection equation. In
doing this, our aim is to analyze the impact of a possible misspecification on the selection equation
in the wage equation. For example, if Model III is the right specification, then maximum likelihood

1Significance level: 5%.
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estimators of the parameters in models I and II are inconsistent. A very interesting issue is study-
ing how the parameter estimates of the wage equation change across different specifications of the
selection equation. Note that we have chosen the absolute value of the parameter associated with
the unemployment rate in the participation equation as a normalization scale instead of using more
usual normalization scales such as σ1 = 1. This is to allow for comparisons against semiparametric
estimation methods.

Variable Model I Model II Model III Model IV

Constant 2.170
(2.57)

2.294
(2.59)

1.129
(0.99)

3.06
(0.53)

Sexf −0.584
(0.76)

−0.595
(0.74)

−0.310
(0.33)

−1.066
(0.24)

Age16-19 −1.054
(1.39)

−1.292
(1.61)

−3.726
(4.75)

−3.202
(0.57)

Age20-25 −0.546
(0.77)

−0.359
(0.53)

1.088
(0.69)

0.652
(0.19)

Age26-35 −0.384
(0.56)

−0.313
(0.46)

−0.633
(0.72)

−0.411
(0.17)

Age>45 −0.886
(1.17)

−0.825
(1.03)

−0.916
(0.98)

−1.504
(0.30)

Elementary 0.065
(0.24)

0.233
(0.36)

3.531
(6.56)

0.915
(0.23)

H. School −0.243
(0.42)

−0.127
(0.32)

6.022
(7.88)

−0.089
(0.16)

University −1.082
(1.43)

−1.051
(1.32)

−0.131
(1.75)

−2.174
(0.41)

U-rate 1.0
(..)

1.0
(..)

1.0
(..)

1.0
(..)

Single 1.237
(1.59)

1.038
(1.27)

1.828
(2.37)

1.816
(0.34)

Not Head of House −1.756
(2.26)

−1.932
(2.36)

−1.237
(1.38)

−3.149
(0.56)

κ1 0.877
(0.12)

0.942
(0.12)

1.456
(0.74)

1.819
(0.087)

Table 3: Maximum likelihood estimates of the selection mechanism.

As expected, the estimates of the parameters in the sample selection equation present more significant
changes across models, in both sign and size than those of the wage equation. This is particularly
true in the dummies Age 20-25 and High School. Moreover, the dummies Single and Not head
of house are only significant in the last column. These changes have also been remarked in other
studies such as Gerfin (1996), Fernández and Rodŕıguez-Póo (1997) and Martins (2001). One possible
explanation may be the presence of heteroskedasticity in the selection equation. If this is the case,
the estimators in models I and II are inconsistent and their results are meaningless. To analyze this
issue more precisely, we show the maximum likelihood estimates of the variance parameters both in
the selection and wage equation in Table 4.

The results estimated from Models III and IV are not conclusive. In fact, the main interest of these
estimates is that they allow us to construct general specification tests for nested models. More
precisely, we are interested in testing Model I against Model II (H0 : ρ = 0), for independence
between the two equations; Model II against Model III (H0 : σ1(x1; α1) = κ1), for homoskedasticity
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Variable Model III Model IV

Heter. Sample selection

Sexf 0.687
(0.50)

0.705
(0.09)

Age16-19 −0.274
(2.51)

1.066
(0.10)

Age20-25 −0.196
(1.35)

0.675
(0.10)

Age26-35 −1.323
(0.71)

0.156
(0.10)

Age>45 −0.581
(0.74)

0.553
(0.09)

Elementary 3.996
(2.82)

1.596
(0.10)

H. School 4.710
(1.54)

1.650
(0.10)

University 2.845
(3.84)

0.559
(0.10)

U-rate −2.740
(3.03)

0.570
(0.10)

Single 0.723
(1.03)

−0.881
(0.09)

Not Head of House 2.949
(0.80)

1.231
(0.09)

Heter. Wage

sexf ...
(...)

0.259
(0.08)

Elementary ...
(...)

0.685
(0.08)

H. School ...
(...)

0.529
(0.09)

University ...
(...)

0.550
(0.09)

Table 4: Variance parameters in selection and wage equations.

Model II Model III Model IV

Model I 31.31
(2.2e-08)

76.76
(1.7e-11)

90.29
(2.2e-12)

Model II ...
(...)

45.45
(4.0e-06)

58.98
(3.8e-07)

Model III ...
(...)

...
(...)

13.53
(0.009)

Table 5: Likelihood ratio statistic and p-values in brackets.

in the selection equation; Model III against Model IV (H0 : σ2(x2; α2) = κ2), for homoskedasticity in
the wage equation, and it is also interesting to test Model II against Model IV (H0 : σ1(x1; α1) = κ1

and σ2(x2; α2) = κ2), for homoskedasticity in both equations. In Table 5 we present the values of
the different likelihood ratio tests for the specifications.
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Within the framework of conditionally Gaussian models (this assumption is maintained throughout
the four models), the different likelihood ratio tests support the idea of a specification close to a
Gaussian conditionally distributed model with heteroskedasticity in the participation equation and
significant sample selection bias (Model III). As remarked in previous studies (see Fernández and
Rodŕıguez-Póo, 1997), heteroskedasticity is present in the participation equation and therefore a
specification based on heteroskedasticity appears to be a more reasonable structure. The coefficient
estimates of the wage equation are rather sensitive to the specification of the participation equation.
Mainly, these parameter estimates change significantly when the correlation between the two equa-
tions is different from zero and when we assume exponential heteroskedasticity for the participation
equation.

3.2 Two Stage Estimation Procedures

This estimation procedure relies on the following expression for the wage equation that can be easily
obtained from the structural model represented in equations (1) to (4),

E (y|z∗ > 0, x1, x2) = xT
2 β2 + m (x1, x2) , (7)

where
m (x1, x2) = E (u2|x2, f1(x1) + u1 > 0) . (8)

Then the parameter vector, β2, of the wage equation can be estimated through the following corrected
regression equation,

yi = xT
2iβ2 + m̂ (x1i, x2i) + υi, (9)

where
υi = yi −m (x1i, x2i)− {m̂ (x1i, x2i)−m (x1i, x2i)} ,

and m̂ (x1, x2) can be any estimator of m (x1, x2).

In considering two-step methods, it is interesting to categorize them in different groups according to
the restrictions that are imposed in order to estimate the function m (x1, x2). In the first group we will
include those that fully explode parametric assumptions. This is the case of the estimator proposed
in Heckman (1979). Since the selection equation error is assumed to be conditionally Gaussian
then, considering equations (1), (2), (3) and (4) and f1 (x1) = xT

1 β1, the following expression can be
obtained

m (x1, x2) = ρσ2λ

(
xT

1 β1

σ1

)
, (10)

and
λ(u) = E

[
u1

σ1

∣∣∣∣
u1

σ1
> −z

]
=

φ(z)
Φ(z)

. (11)

Here φ(·) and Φ(·) are the standard normal density and the distribution function. The function
m(x1, x2) can be estimated in a first stage by a probit maximum likelihood technique, and then

m̂ (x1, x2) = ρσ2λ
(
xT

1 β̂∗1
)

, (12)

where β∗1 = β1

σ1
.

From (9), (10) and (11) it is clear that E (υ|z∗ > 0, x1, x2) = 0 and the variance Var (υ|z∗ > 0, x1, x2)
is not constant. Therefore, O.L.S. estimators of β2 are consistent, but unfortunately the standard
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Variable Heckman Powell Ahn-Powell Newey

Constant 6.021
(0.08)

...
(...)

...
(...)

...
(...)

Sexf −0.444
(0.12)

−0.455
(0.18)

−0.386
(0.22)

−0.402
(0.16)

Elementary −0.121
(0.08)

−0.083
(0.08)

0.012
(0.11)

−0.1
(0.02)

H. School 0.184
(0.12)

0.103
(0.13)

0.209
(0.15)

0.112
(0.14)

University 0.405
(0.19)

0.441
(0.22)

0.591
(0.25)

0.425
(0.21)

λ 0.156
(0.09)

...
(...)

...
(...)

...
(...)

Table 6: Two-step estimates of the sample selection model. Wage equation.

Variable Probit M.L. Horowitz-Härdle

Constant 2.176
(2.47)

...
(...)

Sexf −0.586
(0.74)

−0.029
(0.08)

Age 16− 19 −1.050
(1.34)

−0.403
(0.25)

Age 20− 25 −0.544
(0.75)

−0.220
(0.22)

Age 26− 35 −0.384
(0.55)

−0.223
(0.19)

Age > 45 −0.889
(1.12)

−0.169
(0.09)

Elementary 0.065
(0.23)

−0.104
(0.12)

H. School −0.240
(0.40)

−0.270
(0.27)

University −1.078
(1.36)

−0.722
(0.25)

U-rate 1
(...)

1
(...)

Single 1.236
(1.52)

0.483
(0.12)

Not Head of House −1.762
(2.17)

0.027
(0.19)

κ1 0.879
(0.12)

...
(...)

Table 7: Two-step estimates of the sample selection model. Selection Equation.

errors computed in the traditional way are inconsistent (Amemiya, 1985). Several methods have
been proposed for estimating these standard errors consistently (Newey, 1987). In the first column
of Table 6 we represent O.L.S. estimates of the corrected wage equation. The standard deviations
of the parameter estimates have been computed using the method proposed in White (1980), which
provides estimators that are robust to heteroskedasticity.

If we compare the two-step estimates of the wage equation with the maximum likelihood estimates
already shown in Tables 2 and 6, we can observe strong disagreements between the two groups of
results. The sex variable is insignificant and small in the M.L.E. case, whereas in the two-step
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method it is large and significant. A similar discrepancy occurs for the impact of the highest degree,
i.e. the dummy elementary school has a significantly negative impact for all the maximum likelihood
estimates but one, and is not significant for the two-step estimator. These disagreements may be
due to possible misspecification errors that come from the sample selection equation. In other
words, even if the wage equation is correctly specified, excluding the case when sample selection and
wage equations are uncorrelated, a specification error in the selection equation can cause misleading
estimation results in the wage equation.

Before implementing further developments of two-step methods that require weaker assumptions
on the sample selection specification equation, we perform an empirical comparative analysis of a
standard probit maximum likelihood estimator with a semiparametric estimation method of the bi-
nary equation, in order to detect posible misspecifications in this equation. Much deeper research
into this problem can be found in Fernández and Rodŕıguez-Póo (1997). Among other possible
specification errors, omitted hetereoskedasticity and non-normality can cause inconsistency in pro-
bit maximum likelihood estimators. Since Manski (1975), much research has been devoted to the
estimation of binary response models without assuming either homoskedasticity or knowledge of the
conditional distribution of the error term. These semiparametric methods rely basically on three
different groups of identifying restrictions (see Manski, 1988): quantile independence restrictions,
single index restrictions and independence between errors and explanatory variables. Weighted av-
erage derivative estimators belong to the second group of identifying restrictions, and are of great
interest for our purposes since, first, they allow for heteroskedasticity that depends on the index
function and, second, there is no need to specify the form of the conditional distribution of the error
term in order to estimate the parameters of index function. Horowitz and Härdle (1996) propose a
weighted average derivative estimator that allows for discrete explanatory variables. For the sake of
comparison, in Table 7 we show probit maximum likelihood estimates of the selection equation and
the semiparametric estimates proposed by Horowitz and Härdle (1996). A detailed description of
this last estimator is provided in the Appendix. In order to make the calculations we take c0 = 0.2,
c1 = 0.8, a fourth order kernel with support [−1, 1],

K (u) =
105
64

(
1− 5u2 + 7u4 − 3u6

)
I (|u| < 1) , (13)

and the vector of parameters associated to continuous variables is computed as a weighted average
of density weighted average derivative estimates with weights equal to the frequencies of the discrete
variables. The bandwidth, hn was chosen by least square cross-validation. All the above choices are
justified by the assumptions introduced in the paper by Horowitz and Härdle (1996). The higher
order kernel is needed to deal with the bias term in the semiparameteric estimator.

Comparing the two results, we observe significant changes in both the size and the sign of the
coefficient estimates. More specifically, in the semiparametric estimates most variables, as expected,
become significant, and the signs of both the elementary and not head of household dummy variables
change their sign. A deeper analysis could be performed, but our interest here is to note that these
significant changes can be due to misspecification errors in the parametric equation. Of course, as
already remarked in a simulation study in Nawata and Nagase (1996) and Fernández, Rodŕıguez-Póo
and Villanua (2002), these errors may seriously affect the properties of the estimators of the wage
equation.

A second group of sample selection estimators relies on the so called single index assumption (see

111



Manski, 1993). Let h(x1) be a known index, and assume that f1(x1) and (u1, u2) vary with x1 only
through h(·). Then, (8) can be written as

m (x1, x2) = E (u2|x2, f1 [h(x1)] + u1 > 0) = g [f1 [h(x1)] , x2] , (14)

and hence, from (7),

E (y|z∗ > 0, x1, x2) = xT
2 β2 + g [f1 [h(x1)] , x2] . (15)

Note that if no assumption is made about the conditional distribution of the error terms, even if h(·)
is known, the function g(·, ·) is unknown. One way to estimate consistently the parameters β2 of the
wage equation is to take advantage of the partial additive structure of (15) by noting that

yi = xT
2iβ2 + g [f1 [h(x1i)] , x2i] + νi, (16)

where

νi = yi − E (yi|z∗ > 0, x1i, x2i) .

Then, if we take two different observations of indexes i and j such that

g [f1 [h(x1i)] , x2i] = g [f1 [h(x1j)] , x2j ] ,
we obtain

yi − yj = βT
2 (x2i − x2j) + νi − νj . (17)

Since
E [νi − νj | z∗ > 0, x1, x2] = 0,

then a consistent estimator of β2 is given by the following weighted least squares estimator:

β̂2n =




(
n

2

)−1 n∑

i=1

n∑

j=i+1

ŵijn (x2i − x2j) (x2i − x2j)
T



−1

×
(

n

2

)−1 n∑

i=1

n∑

j=i+1

ŵijn (x2i − x2j) (yi − yj) . (18)

The sequence of weights ŵijn can take several forms. If the index function is assumed to be known
and parametric, i.e. f1 [h(x1)] = xT

1 β1, then the weight function is

ŵijn =
1
hn

K

(
(x1i − x1j)

T β̂1n

hn

)
for i , j = 1 , ...,n, (19)

and β̂1n is any root-n consistent semiparametric estimator of β1 (for example, the one proposed in
Horowitz and Härdle (1996)). K(·) is a kernel function and hn is the window width.

The estimator defined in (18), jointly with the weights in (19), has already been proposed in Powell
(1987), where it is shown that under some technical assumptions β̂2n is consistent and asymptotically
normal. One can relax the above assumption in the index function, h(x1), by assuming that this
function is unknown and needs to be estimated by the researcher. Let us define the following
composite function: q(x1) = f1 [h(x1)] .

Then, in this case, the weights in (18) take the following expression:

ŵijn =
1
hn

K

(
q̂(x1i)− q̂(x1j)

hn

)
for i , j = 1 , ...,n, (20)
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and q̂(x1i) are multivariate nonparametric kernel regression estimators:

q̂(x1i) =
1

nln

∑n
j=1

∏K
k=1 L

(
x1ki−x1kj

ln

)
1

(
z∗j > 0

)

1
nln

∑n
j=1

∏K
k=1 L

(
x1ki−x1kj

ln

) , i = 1, ..., n, (21)

where 1 (·) stands for the indicator function.

Note that, in order to implement this procedure, we need to use two different bandwidths, h and
l. This can create several problems, and empirically it represents an important drawback of this
method. It is also necessary to use two different kernels, K(·) and L(·). Ahn and Powell (1993) show
that the parameters of the wage equation estimated under this technique are root-n consistent, and
also calculate their asymptotic distribution.

In Table 6 we show parameter estimates of the wage equation obtained by the method proposed in
Powell (1987) and Ahn and Powell (1993). For the first method, the semiparametric estimates of the
sample selection equation (the β1s) are computed following the method proposed in Horowitz and
Härdle (1996), and the kernel function K(·) is

K(u) =
τ3k(u)− k

(
u
τ

)

τ (τ2 − 1)
, (22)

for τ =
√

2 and

k(v) =
15
16

(
1− v2

)2
I (|v| < 1) . (23)

This is a so called higher order kernel, and it is necessary to eliminate a bias term in the asymptotic
expression of the estimator for β2 that would otherwise render it inconsistent. For the kernel function
L(·) in the method proposed in Ahn and Powell (1993), we choose the Gaussian kernel, and finally,
for the bandwidths the results obtained tend to be more sensitive to the choice of l than to the
choice of h. On these grounds, we set the first bandwidth arbitrarily and calculate the second by
least square cross-validation.

Standard deviations of the parameter estimators are computed according to the following expression:

V̂ar
(
β̂2n

)
=




(
n

2

)−1 n∑

i=1

n∑

j=i+1

ŵijn (x2i − x2j) (x2i − x2j)
T



−1

×



(
n

2

)−1 n∑

i=1

V̂ar (yi − E[y|z∗i > 0, x1i, x2i])
n∑

j=i+1

ŵijn (x2i − x2j) (x2i − x2j)
T


×




(
n

2

)−1 n∑

i=1

n∑

j=i+1

ŵijn (x2i − x2j) (x2i − x2j)
T



−1

, (24)

where the form of the weights depends on whether the form of the link function h(·) is known and
parametric (Powell, 1987), or unknown (Ahn and Powell, 1993).

Finally, Newey (1991) proposes an efficient GMM-estimator that is different from the above ap-
proaches. Let f1 [h(x1)] = xT

1 β1, then, if we substitute this equality into (16) we get

yi = xT
2 β2 + g

[
xT

1iβ1, x2i

]
+ νi, (25)

where

νi = yi −E (y|z∗i > 0, x1i, x2i) = u2i − g
[
xT

1iβ1, x2i

]
,

and
E [νi|z∗I > 0, x1i, x2i] = 0. (26)
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Equation (26) implies that νi is uncorrelated with any vector of functions ϕ(x1, x2) in the selected
sample

E
{
1(z∗ > 0) [ϕ(x1, x2)− E (ϕ(x1, x2)|z∗ > 0, x1, x2)]

[
u2 − g

[
xT

1 β1, x2

]]}
= 0,

and furthermore, if we define a more general function ψ(u2, ν), under the single index restriction,
the following moment condition also holds:

E {1(z∗ > 0) [ϕ(x1, x2)−E (ϕ(x1, x2)|z∗ > 0, x1, x2)] [ψ(u2, ν)− E (ψ(u2, ν)|z∗ > 0, x1, x2)]} = 0.

Based on this set of moment conditions, Newey (1991) proposes taking the sample analog with
ϕ(x1, x2) = (x1 x2) and

ψj(u2, ν; γ) =
[
u2 − µ2

σ2

]κj
[
ν − µν

σ2

]λj

j = 1, · · · , J.

γ = (µ2, µν , σ2, σν) are location and scale parameters of u2 and ν, and conditional expectations
are replaced by nonparametric regression estimators. Then the parameter vector β2 is estimated
by the Generalized Method of Moments where the optimal weighting matrix is taken as suggested
in Hansen (1982). For the sake of comparison, we also present the results for the efficient GMM
estimator proposed by Newey in Table 6 .

As can be observed in Table 6, there are no significant differences between the alternative two-
step estimators. All variables are significant across the estimators, and the only change in sign is
the dummy variable Elementary School which is positive in the case of the estimator proposed by
Ahn and Powell. For the other estimators, the sign of the coefficient related to this variable is
negative. These rather stable results can be justified by the robustness of these two-step methods
to several misspecification errors. If we compare them with the results obtained for the maximum
likelihood estimates (see Table 2), the differences are not really significant either. The coefficient
associated with the female sex dummy variable is significantly smaller for the M.L.E. estimates than
for the two-step ones, but for the others there are not significant divergences. As concluded in other
studies, if there is correlation between the two equations, a specification of the wage equation that
accounts for conditionally Gaussian errors and heteroskedasticity in the sample selection equation
appears as a fairly reasonable model for an empirical problem such as the one proposed in this
paper. Finally, as a guideline to enable the empirical researcher to discriminate among the different
two-step estimation procedures we present a specification test where the null hypothesis is the model
presented in Heckman (1979), and the alternative is semiparametric.

3.3 A Nonparametric Test for Sample Selection Models

This test relies on the idea that if the model under the null hypotheses is the true one, then a no
nparametric estimate will deviate from the parametric specification only due to sampling error. In
our case, the null hypothesis is the parametric model proposed in Heckman (1979). Recall that under
some assumptions on the conditional distribution of the selection equation the correction term in the
wage equation has an expression that is proportional to the inverse of Mill’s ratio. The alternative
is a correction term that is the negation of the null.

The model we aim to test is

E (y|z∗ > 0, x1, x2) = xT
2 β2 + ρσ2λ

(
xT

1 β1

σ1

)
(27)
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and

λ(u) = E

[
u1

σ1

∣∣∣∣
u1

σ1
> −z

]
=

φ(z)
Φ(z)

. (28)

Here φ(·) and Φ(·) are the standard normal density and the distribution function.

The alternative is the following specification:

E (y|z∗ > 0, x1, x2) = xT
2 β2 + g

[
xT

1 β1, x2

]
, (29)

where g(·, ·) is an unknown smooth function. Then, based in the idea of Horowitz and Härdle (1994),
we propose the following nonparametric test statistic

Th =
√

h
n∑

i=1

π
(
xT

1iβ̂1n, x2i

) {
yi − xT

2iβ̂2n − ρ̂nσ̂2λ
(
xT

1iβ̂
∗
1n

)}

{
ρ̂nσ̂2λ

(
xT

1iβ̂
∗
1n

)
− ĝh

[
xT

1iβ̂1n, x2i

]}
1 (z∗i > 0) .

π(.) is a weight function that down weights the extreme observations and ĝh(.) is a nonparametric
estimator of the bias correction:

ĝh [u, v] =

∑n
i K

(
u−xT

1iβ̂1n

h

)
L

(v−x2i
h

)
1(z∗i > 0)

{
yi − xT

2iβ̂2n

}

∑n
i K

(
u−xT

1iβ̂1n

h

)
L

(v−x2i
h

)
1(z∗i > 0)

.

Finally, the vectors
(
β̂2n, ρ̂nσ̂2, β̂1n

)
are the parameters estimated under the null (Heckman two-step

estimates). The idea of the test is very simple. Under the null hypothesis the last term will be
negligible since the nonparametric estimate will deviate from the parametric specification only due
to sampling error.

The central term under the null, using standard Central Limit Theorem arguments, will be bounded
in distribution and therefore the whole statistic, once conveniently normalized, will tend to a normal
density. Under the alternative, the last term is unbounded and this gives the consistency of the test.
For a test for a binary logit model, Horowitz and Härdle (1994) show that under the null hypoth-
esis their statistic converges in distribution to the normal density. They also provide a consistent
estimator of asymptotic variance. Unfortunately, they do not provide a guide for computing the
bandwidth h. Following Proença and Ritter (1994), we have computed the Th-statistic for different
bandwidth values. Since this type of statistic shows a bias that depends linearly on the bandwidth
h, it is advisable to choose small bandwidth values, otherwise we might have a non-negligible bias.
In Table 8 we present the results.

The p-values are computed using a normal distribution, and the results do not recommend the use
of the statistical model proposed in Heckman (1979) for small bandwidth values.

4 Conclusions

In any microeconometric study of the labor market, the estimation of models with sample selection
bias is very common from both empirical and theoretical points of view. Since the two-step sample
selection estimation methods poposed in Heckman (1979), many estimation techniques have been
developed to weaken some strong assumptions.
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Bandwidth T-Statistic p-value

0.1 0.695 0.2514

0.3 0.763 0.2236
0.5 0.845 0.2035
0.7 0.412 0.3409
1.0 0.564 0.2877
1.3 3.291 0.0005
1.5 4.157 0.0000
1.8 3.412 0.0030
2.0 2.121 0.0170

Table 8: Horowitz-Härdle test.

In this paper we estimate a sample selection model taking into account different sets of identifying
restrictions. First, the errors are statistically independent conditionally on regressors; second, if
the equations are linear in the regressors, then maximum likelihood or Heckman two-step methods
can be used. Third, if the conditional distribution of the selection equation error depends on a
function h(.), then semiparametric estimation two-step methods are available . The main advantage
is that no knowledge of conditional distribution is necessary, and so the estimators are robust to
misspecification in error distribution.

Empirical results support the idea of a specification close to a Gaussian models with heteroskedas-
ticity in the selection equation. If two-step methods are used, estimates of the parameters of the
wage equation do not vary across different specifications (parametric and semiparametric). This is
important since Heckman’s estimator relies on normality whereas the semiparametric estimator does
not requires this hypothesis.

Additionally, several specification tests have been performed which support the same conclusions
that we achieve in the estimation part. However, the results obtained in the tests are not conclusive,
and further research in tests for distributional assumptions in sample selection models is needed.

Appendix

In the sample selection equation model:

z∗i = xT
1iβ1 + u1i, i = 1, · · · , n (30)

zi = 1 if z∗i > 0,

zi = 0 if z∗i ≤ 0,
(31)

we distinguish between continuous and discrete variables by rewriting (30) as

z∗i = xT
1diβ1d + xT

1ciβ1c + u1i, (32)

where xT
1 =

(
xT

1d xT
1c

)
and βT

1 =
(
βT

1d βT
1c

)
. x1d denotes a vector of discrete random variables and

x1c denotes a vector of continuous random variables.
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If all variables in the index function are continuous, i.e. β1d = 0, then root-n consistent semipara-
metric estimation of β1c can be implemented by the so called Average Derivative Estimation method
proposed in Härdle and Stoker (1989). This estimation method relies on the following ideas. Taking
into account that

r(x1c) = E (z|x1c) = G
(
xT

1cβ1c

)
, (33)

where by the single index restriction the function G(·) does not depend on x1c and is not necessarily
a distribution function, then, if r(·) is a.e. first differentiable in x1c and this variable is continuously
distributed with first differentiable density f(x1c), the local effects of changing x1c on z are given as
the vector of derivatives ∇r(x1c) = ∂r(x1c)/∂x1c. The average derivative is the expectation of these
effects over the population:

δ = E (∇r(x1c)) , (34)

where the expectation is taken with respect to x1c. If we substitute (33) into (34) and we make some
straightforward computations, it is easy to show that

δ = E
[
∂G

(
xT

1cβ1c

)
/∂

(
xT

1cβ1c

)]
β1c = θβ1c. (35)

Therefore, δ is proportional to β1c and we can equivalently replace β1c by δ (provided that θ 6= 0) in
(33) obtaining

r(x1c) = G
(
xT

1cδ
)

, (36)

and G(·) is defined in such a way that E
[
∂G

(
xT

1cβ1c

)
/∂

(
xT

1cβ1c

)]
= 1.

Taking the sample counterpart of (34), Härdle and Stoker (1989) propose the simplest Average
Derivative Estimator as

δ̂ =
1
n

n∑

i=1

∇r̂h(x1ci)Î(x1ci), (37)

where Î(x1ci) = 1
[
f̂h(x1ci) ≥ b

]
is an indicator that drops observations with small estimated density

b, f̂h(x1ci) is a standard Parzen-Rosenblatt nonparametric density estimator,

f̂h(x1c) =
1

nhd

n∑

i=1

K

(
x1c − x1ci

h

)
, (38)

r̂h(x1c) is a Naradaya-Watson nonparametric regression estimator denoted as

r̂h(x1c) =
ĉ (x1c)
f̂h(x1c)

, (39)

where

ĉ (x1c) =
1

nhd

n∑

i=1

K

(
x1c − x1ci

h

)
zi.

Finally,

∇r̂(x1ci) =
∇ĉ (x1c)
f̂h(x1c)

− r̂h(x1c)
∇f̂h(x1c)
f̂h(x1c)

. (40)

The main problem presented by this estimation technique, and other estimators derived from it
(see Powell, Stock and Stoker, 1989), is the requirement that all the variables that appear in the
index must have absolutely continuous density functions. This rules out many interesting cases such
as qualitative variables. In order to overcome this problem, Horowitz and Härdle (1996) propose
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a modified version of the A.D.E. method that accounts for discrete covariates. In order better to
explain this estimator, let us now consider only one discrete random variable. Then, (33) is now

E (z|x1c, x1d) = G
(
xT

1cβ1c + x1dβ1d

)
. (41)

The estimator proposed by Horowitz and Härdle (1996) estimates parameter β1d according to the
following steps. First, let us define S1d =

{
x

(j)
1c : j = 1, · · · ,M

}
as the support of the discrete random

variable x1d. To estimate the parameter vector associated with the continuous variables β1c (up to a
normalization scale θ), we use standard average derivative methods for each x1d in its support S1d,
and then average over all these estimators. The estimator for the parameter β1d, associated with
the discrete random variable works by deducing the horizontal distance between G

(
η + x

(j)
1d β1d

)
and

G
(
η + x

(1)
1d β1d

)
for j = 1, · · · ,M , on a set of η values in which G (η + x1dβ1d) is assumed to satisfy a

weak monotonicity condition. That is, for their estimator to work they assume that there are finite
numbers η0, η1, c0 and c1 such that η0 < η1, c0 < c1, and for each x1d ∈ S1d:





G (η + x1dβ1d) < c0 if η < η0;

G (η + x1dβ1d) > c1 if η > η1.

This assumption is crucial since then, in Horowitz and Härdle (1996), Lemma 1, it is shown that

J
[
x

(j)
1d

]
− J

[
x

(1)
1d

]
= (c1 − c0)

[
x

(j)
1d − x

(1)
1d

]
β1d for j = 1, · · · ,M, (42)

where
J [x1d] =

∫ η1

η0

{c0I [G (η + x1dβ1d) < c0] + c1I [G (η + x1dβ1d) > c1]

+G (η + x1dβ1d) I [c0 ≤ G (η + x1dβ1d) ≤ c1]} dη. (43)

Equation (42) constitutes M − 1 linear equations in the components of β1d. These equations may
be solved if a unique solution exists. To do this, define the M − 1-vector

∆J =




J
[
x

(2)
1d

]
− J

[
x

(1)
1d

]

...
J

[
x

(M)
1d

]
− J

[
x

(1)
1d

]


 (44)

and the matrix

W =




x
(2)
1d − x

(1)
1d

...
x

(M)
1d − x

(1)
1d


 . (45)

Then an estimator for β1d is that which solves the following system of equations:

∆J = (c1 − c0) Wβ1d, (46)

with solution
β1d = (c1 − c0)

−1
(
W T W

)−1
W T ∆J. (47)

Equation (47) is the basis for the estimation of β1d. All that we have to do now is to replace
population quantities by their sample analogs. More specifically, the function G(·) in (43) is unknown.
We propose that it be replaced by the Naradaya-Watson regression estimator in (39). Under some
conditions (see Horowitz and Härdle, 1996 for details), both consistency and asymptotic normality
of the estimator can be shown.
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