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ABSTRACT

We model the mortality behavior of the general population in Mexico us-
ing data from 1990 to 2009 and compare it to the mortality assumed in
the tables used in Mexico for insured lives. We fit a Lee-Carter model,
a Renshaw-Haberman model and an Age-Period-Cohort model. The data
used are drawn from the Mexican National Institute of Statistics and Geog-
raphy (INEGI) and the National Population Council (CONAPO). We also
fit a Brass-type relational model to compare gaps between general popula-
tion mortality and the mortality estimates for the insured population used
by the National Insurance and Finance Commission in Mexico. As the life
tables for insured lives are unisex, i.e. they do not differentiate between
men and women, we assume various sex ratios in the mortality tables for
insured lives. We compare our results with those obtained for Switzerland
and observe very similar outcomes. We emphasize the limitations of the
mortality tables used by insurance companies in Mexico. We also discuss
the bias incurred when using unisex mortality tables if the proportion of
male and female policyholders in an insurance company is not balanced.
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Una comparación entre
la mortalidad de la población general

y las tablas de vida de los seguros en México
ante porcentajes desiguales de género

RESUMEN

Interesados en conocer las diferencias entre la mortalidad general y la de
un subgrupo de la población, como son los asegurados en una compañ́ıa
de seguros, hemos ajustado un modelo relacional Brass-Type. Para ello,
en primer lugar, hemos modelado el comportamiento de la mortalidad de
la población general de México entre los años 1990 y 2009. Hemos ajus-
tado un modelo Lee-Carter, un modelo Renshaw-Haberman y un modelo
edad-peŕıodo-cohorte. Los datos utilizados proceden del Instituto Nacional
de Estad́ıstica y Geograf́ıa (INEGI) y el Consejo Nacional de Población
(CONAPO). Una vez estimadas las tasas de mortalidad se han comparado
con la mortalidad asumida por las compañ́ıas aseguradoras mexicanas. Es-
tas tasas de mortalidad han sido calculadas por la Comisión Nacional de
Seguros y Finanzas de México. Como las tablas de mortalidad del seguro
de vida son unisex, es decir, que no distinguen entre hombres y mujeres,
hemos creado diferente escenarios modificando el porcentaje de hombres y
mujeres en las tablas de mortalidad. Comparamos los parámetros estima-
dos con los parámetros obtenidos en un análisis con la población Suiza y
se observan resultados muy similares. Finalmente, hacemos hincapié en las
limitaciones de las tablas de mortalidad utilizadas por las compañ́ıas de
seguros en México y se analiza el sesgo cuando la proporción de los asegura-
dos masculinos y femeninos en una compañ́ıa de seguros no está equilibrada.

Palabras clave: tasas de mortalidad; modelo Lee-Carter; modelo Brass-
Type; población asegurada.
Clasificación JEL: I13; I14; I18; C13; C18.
MSC2010: 62-07; 62H12; 62J05; 62P05.
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1 Introduction

Insurance policyholders are widely held to be wealthier than the average citizen
on the grounds that they can, in fact, afford insurance. Similarly, members of the
insured subpopulation are believed to invest more in prevention, resulting in their
presenting lower mortality rates than those of the general population for the same
age and gender groups. In this article we model the mortality behavior of the
general population in Mexico, drawing on data for the period 1990 to 2009, and
compare these patterns to the unisex mortality tables used by insurance compa-
nies in Mexico. Since this table are unisex we could studied the gender effect in
mortality. We conclude that the overly crude life tables used by Mexican insurers
may overestimate policyholder mortality. The fact that, in many countries insur-
ance regulators dictate that only unisex life tables are used to price life insurance
products raises several questions: First, does the sex ratio have a direct impact on
mortality rates? Does the gap in the mortality rates of the general population and
the insured population differ between the sexes? Typically, when implementing the
unisex rule in a life insurance portfolio, the insurer does not have the same gender
and age composition as in the unisex table being applied. In the application re-
ported here we assume different sex ratios in the insured population and conclude
that the life tables used in Mexico for pricing insurance products appear to be based
on a sex ratio biased in favor of men. The obligation in Europe to avoid gender dis-
crimination when pricing life insurance led us to undertake this analysis, in which
we seek to contribute to a better understanding of mortality models in this context.
Guillén (2012) discusses the possible effects of unisex pricing in life insurance.

1.1 Background

During the 20th century, there was a substantial decrease in mortality, attributable
in the main to the reduction in infant mortality from infectious diseases. In Mexico,
for example, life expectancy at birth has increased from 57.04 years in 1960 to
76.47 in 2009, equivalent to an average year-on-year growth of 0.39 years. If we
only consider the last two decades, average life expectancy has risen by 0.27 and
0.33 years for females and males, respectively.

The deceleration in the life expectancy rate can be attributed to the fact that
while some causes of death, such as accidents and violence-related deaths, have
been reduced, there has been an increase in such chronic conditions as heart-related
disease. Moreover, among the Mexican male population, the changes can also be
attributed to emigration (typically to the United States), a factor that constantly
modifies the composition and structure of the population (Camposortega, 1997).

In short, during the second half of the 20th century, mortality has fallen markedly
in early childhood, while it has only slightly increased at later ages. These changes
have given rise to the need for further research in the insurance sector, and above
all in the field of risk management, insofar as life expectancy affects mortality
forecasting, longevity risk, reserve calculations, annuities, pension plan design and
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premiums for life products.
Over recent decades, various models have been proposed to describe mortality.

Yet as early as the 19th century, reference was already being made in the litera-
ture to such concepts as mortality, annuities and adverse selection risk. Indeed,
the first life tables to consider alterations in mortality were created in the United
Kingdom, constructed with data for insurers in the period 1900 to 1920. Pitacco
et al. (2009) provides an interesting review of the historical background to early
mortality tables.

The early study of mortality led to the development of graduation models,
which have been used to smooth crude mortality data and to analyze mortality
behavior. This line of study in the actuarial literature has drawn heavily on the
so-called Mortality Laws of Heligman-Pollard, Gompertz-Makeham, among oth-
ers. With the advent of new statistical methods, mortality analysis for insurance
portfolios was revolutionized. Recently introduced models include Poisson mod-
els, which fit the number of deaths given the number of individuals exposed to
risk. These models also include a trend component that captures the evolution of
mortality over time given a fixed gender and age. Survival models, such as the
Cox proportional hazards model, fit the probability that an individual survives to
a particular age; hence, it can model the duration of life conditional to various
characteristics, including lifestyle and health. In this case, age is considered a
continuous variable (Cox and Oakes, 1984). All these models can include risk fac-
tors other than gender in their analyses of mortality. Obvious examples include:
time trends and other regressors that can incorporate interaction effects between
variables. In non-parametric models, such as generalized additive models (GAM),
specification provides the potential for better data fits than those provided by other
methods. This is attributable to the fact that the effects induced by risk factors can
allow more flexible forms (Hastie and Tibshirani, 1990). Other approach in non-
parametric models, focused in older ages, is described in Fledelius et al. (2004).

Contemporary predictive mortality modeling usually takes into account cohort
(i.e., a group of the population born in the same period, typically, a specific year)
effects. The advantage of modeling cohort mortality is that individuals in the same
cohort evolve together and are, therefore, exposed to the same external phenom-
ena, such as epidemics. This approach facilitates mortality prediction because the
effects of ageing can vary from one cohort to another.

Among the models that take cohort or age effects into account, we find: the
Lee-Carter model (1992), the Renshaw-Haberman model (2006), the Currie model
(2006) and the Cairns, Blake and Dowd model (2006) and its generalizations. In
the section that follows we discuss these models and then adopt them in order to
analyze and predict mortality rates for the Mexican population. Lee-Carter model
is a reference model in mortality, it has been used by several authors, for instance,
Brouhns et al. (2002), Renshaw and Haberman (2003), Delwarde et al. (2003),
Debón et al. (2008) and more recently Betzuen (2010) compared Spanish mortality
rates with the ones estimated by the Lee-Carter model.
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2 Methodology

In this section we describe various models that are currently being used to estimate
demographic trends in the general population. We also present a model for com-
paring a reference mortality population (for example, the general population) with
another population (for example, a population of insured policyholders).

Using the following notation, the log crude rate of mortality m(x, t) can be
calculated as:

log m(x, t) = log
d(x, t)
l(x, t)

, (1)

where l(x, t) is the number of living individuals and d(x, t) the number of deaths at
time t of individuals aged x.

2.1 Mortality Models

2.1.1 Lee-Carter model

This model combines time series to adjust decreasing mortality rates exponentially.
Mortality is represented by m(x, t), which is the crude mortality rate at time t of
individuals aged x . A single index guides the trend and it is used to obtain both
predictions and confidence intervals (Lee and Carter, 1992). The model is specified
as follows:

log[m(x, t)] = β(1)
x + β(2)

x κt + εx,t, (2)

where κt is an index that varies over time and which represents variations in mortal-
ity per year. β̂(1)

x and β̂(2)
x are parameters to be estimated and the residuals εx,t is a set

of independent random variables. β̂(1)
x represents the time average for log[m(x, t)]

and
∂log(m(x, t))

∂t
= β(2)

x
∂κt

∂t
is the rate change over time. A negative β(2)

x is ex-
pected for certain ages, indicating that at these ages mortality increases. The error
term is assumed to have zero mean and constant variance σ2

ε .
As specified above, the model parameters are not identified, i.e. given the date,

the solution of the system of equations when fitting equation (2) by maximum like-
lihood (assuming that the error term is normally distributed) is not unique. Conse-
quently, constraints have to be imposed to guarantee identifiability:∑

x

β(2)
x = 1 and

∑
t

κt = 0. (3)

∑
t κt = 0 implies that the parameter β̂(1)

x is in fact the empirical average over
the time of the age profile in age x. Given that β(2)

x and κt have restrictions,
they are estimated by using singular value decomposition applied to the difference
log[m(x, t)] − β̂(1)

x . The estimates of κt can be modeled as an ARIMA time series
by using the Box-Jenkins methodology.
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2.1.2 Renshaw-Haberman model

The model proposed by Renshaw and Haberman (2006) seeks to identify and rep-
resent cohort effects; thus, clearly establishing generational changes. As such, the
term β(3)

x γ(3)
t−x is added to the Lee-Carter model:

log[m(x, t)] = β(1)
x + β(2)

x κ(2)
t + β(3)

x γ(3)
t−x + εx,t. (4)

Here β(3)
x is the rate change over time for the cohort effect γ(3)

t−x . As in the Lee-
Carter model, this new model also presents identification problems, so a further
restriction is added to those already included in (3):∑

x

β(3)
x = 1 and

∑
x,t

γ(3)
t−x = 0. (5)

The parameters are estimated using an iterative process. Details can be found
in Renshaw and Haberman (2006).

2.1.3 Age-Period-Cohort model

The Age-Period-Cohort model was proposed by Currie (2006) and usually refers
to the following model:

log[m(x, t)] = β(1)
x +

1
na
κ(2)

t +
1
na
γ(3)

t−x + εx,t, (6)

where na is the total number of ages. Currie used p-splines to estimate the param-
eters. The following constraints are required:∑

t

κ(2)
t = 0 and

∑
x,t

γ(3)
t−x = 0. (7)

2.1.4 Model Selection Criteria

The following two criteria can be used to compare the mortality models fitted. One
of them is the Bayesian information criterion (BIC), which penalizes models that
are over parameterized. It is defined as:

BICk = l̂x −
1
2

nk log N, (8)

where nk is the number of parameters, l̂x is the maximum of the likelihood function
and N is the number of observations.

Models were also evaluated based on standardized residuals,

Z(x, t) =
d(x, t) − l(x, t)m̂(x, t; φ)√

l(x, t)m̂(x, t; φ)
, (9)
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where d(x, t) is the number of individuals aged x who die at time t and l(x, t) is the
number of people still living at age x and time t . Residuals Z(x, t) are assumed to
be distributed identically and independently as a standard normal law. More details
can be found in Cairns et al. (2009).

2.2 Brass-type relational model

The Brass-type relational model is a mortality model that links the survival prob-
abilities of a given group with a set of benchmark survival probabilities (Brass,
1971). In others words, the model assumes that the mortality rates of two different
populations might be related in terms of their survival probabilities. For instance, it
allows the mortality of insured policyholders to be compared with the mortality of
the general population. The association is established through a linear or logistic
regression so as not to omit information from the reference rates (Brouhns et al.,
2002).

In the actuarial sciences, the Brass-type relational model can also be used to
measure adverse selection. If the mortality rates of the insured population are
higher than those of the general population in adult ages, then individuals may
have private information that is not disclosed to the company and they underwrite
insurance because they know they have a greater risk of mortality than individuals
of the same age. If there is no adverse selection, the opposite phenomenon is likely
to be found.

As mentioned above, as insurance policyholders tend to have higher incomes
than those of the average citizen, they tend to spend more money and resources on
healthcare and, consequently, their risk of mortality can be expected to be lower
than that of a similar person in the uninsured population. This situation is known
as counter adverse selection or positive selection.

The Brass-type relational model is specified as follows:

f (m(x, t)) = β0 + β1 f (m(x, t)re f ) + εx,t, (10)

where m(x, t)re f refers to the crude mortality rate of a reference group. Link func-
tion f (·) can be the logarithm or the logistic function. This model can be ex-
tended to incorporate interactions between mortality rates and time t , as Gatzert
and Wesker (2011) have proposed, or to incorporate interactions between mortality
rates and age x. Their model includes a time trend component t:

log[m(x, t)] = β0 + β1 log[mre f (x, t)] + β2 log[mre f (x, t)] · t + εx,t. (11)

Since the mortality rates available are unisex we vary the proportion w of
women in the population, at a given age x and time t, and calculate unisex mortal-
ity rates for the general population: mw(x, t) = wm f (x, t) + (1 − w)mm(x, t), where
m f (x, t) and mm(x, t) are the crude mortality rates for the female and male popu-
lations, respectively. We assume that the proportion is stable and constant for all
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adult age groups. This assumption can be relaxed, as we know that after the age
of 65 the proportion of women in each cohort increases substantially due to their
longer life expectancy.

When comparing a general population and an insured population, the simplest
Brass-type relational model is:

log[mins(x, t)] = β0 + β1 log[mw(x, t)] + εx,t, (12)

where mins(x, t) is the crude mortality rate for insured individuals aged x at time t.
Parameter β in equations (10), (11) and (12), should be interpreted as the pa-

rameters in linear regression. Consequently β0 is the intercept estimate,then, it
represents the mean outcome when log(m(x, t)re f ) = 0. Finally β1 is the slope co-
efficient, so that, it represent the expected increment or decrement (depending on
the sign) in the response per unit change in log(m(x, t)re f ).

3 Data description

The data for this study were collected from the Mexican National Institute of Statis-
tics and Geography (INEGI) and the National Population Council’s (CONAPO)
website. Mortality rates m(x, t) were computed as the ratio between the number
of people alive and the number of registered deaths of individuals aged x in year t
(see equation (12)). The data reflect the demographic behavior of the 32 Mexican
states between 1990 and 2009, and are arranged by sex for ages ranging from 0 to
100 years.

In order to avoid any biased information, data without any description of sex
and/or age were excluded. The omission of these details is usually the result of
death having occurred at a very early age and so the individual’s sex is not recorded,
or, in the case of the elderly, the exact age at death is sometimes not known. The
percentage of such data is small.

We only have information for those living in the years when a census was held.
Information for the years without a census was completed by linear interpolation
in accordance with the method described by Delwarde and Denuit (2003).

From information disaggregated by sex and age, the interpolated l(x, t) data for
the periods t between 1992 and 1994, 1996 and 1999, 2001 and 2004 and finally
between 2006 and 2009 were obtained.

4 Results

We analyzed the evolution in mortality rates separately by gender over t years and
for different ages x. Figure 1 shows that the log mortality rate curves for men and
women are very similar during childhood and adulthood, the largest differences
being found in young adulthood when men are more likely to be involved in ac-
cidents. This phenomenon, known as the accident hump, has not changed greatly
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Log crude mortality rates, Males 1990 − 2009
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Figure 1: Log crude mortality rates for Mexican population from 1990 to 2009: (a)
Males, (b) Females
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Figure 2: Log mortality rates for Mexican population in 2000. Log insured mor-
tality rates (CNSF) Mexico.

over the two decades studied here.
In the following sections we present the results obtained from the Lee-Carter

model, the Renshaw-Haberman model and the Age-Period-Cohort model. The esti-
mation was performed separately for men and women, from the ages of 0 to 99 and
between the years 1990 to 2009. We only report estimates for ages 12 to 99 years,
because the minimum age for underwriting a contract in most insurance companies
is twelve. To obtain these estimates we used Lifemetrics software implemented in
R version 2.13.

Since the mortality rates for the insured population are available, Figure 2 com-
pares the logarithm of the mortality rate for an insured policyholder and the log-
arithm of the mortality rate for the Mexican population in 2000. After the age of
70, the mortality rate of an insured individual seems to be lower than that of the
general population. If the mortality for insured individuals is lower than that of the
general population, then we would expect the longevity of insured individuals to
be much longer than that observed in the general population. This may give rise
to some bias in the reserve calculations or in the number of expected claims if the
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general population’s mortality is considered in the forecasts. Later we address this
problem by studying the Brass-type relational model described in equation (12).
The CNSF rates do not represent the real mortality shape.

4.1 Results of the general mortality models

4.1.1 Lee-Carter model

Figure 3 presents the parameter estimates for the Lee-Carter model for the Mexican
population data. The number of estimated parameters is 88 for both β̂(1)

x and β̂(2)
x

and 20 for κ̂t, resulting in a total of 196 parameters.
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Figure 3: Estimated parameters for the Lee-Carter model. Male and Female aged
12 to 99 from 1990 to 2009. Mexican population.

Note that β̂(1)
x estimates for women are lower than those for men (Figure 3),

except at ages above 80 . Applying exponential function yields, crude mortality
rates have a median of 0.007 for women (interquartile range, denoted as IQR, is
0.001,0.045 ) and a median of 0.010 for men (IQR 0.003,0.054).
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A further feature is that β̂(2)
x has a positive sign for both sexes, and for all

ages ranging from 12 to 78. Changes in the logarithm of mortality rates are very
low because β̂x parameter estimates are around 0.01. The median of β̂(2)

x is 0.009
(IQR 0.006,0.011 ) for women and 0.009 (IQR 0.006,0.012) for men. Substantial
differences between men and women are shown for ages between 12 and 40, when
the female logarithmic mortality rates grow steadily. After the age of 40, the curves
do not differ by sex.

Inspection of the values of κ̂t show that they decrease for both genders. If
we analyze the differences between male and female values of κ̂t , we note that
from 1995 to 2005 , women presented a slight increase in their mortality level,
approaching that of men for 2000. However, after 2005 the opposite occurs with
the male κ̂t increasing.

4.1.2 Renshaw-Haberman model

Parameter estimates were obtained for the Renshaw-Haberman model using an it-
erative process. Figure 4 shows the values for both the male and female population
aged 12 to 99 years. The number of estimated parameters is 88 for every β̂x (3 ×
88), 20 for κ̂t and 119 for γ̂t−x, resulting in a total of 403 estimated parameters. In
general, these estimated parameters are similar to those estimated using the Lee-
Carter model. There is no perceived difference between the ages of 22 and 40,
though the most notable difference is just before the age of 22 . Mortality rates are
higher for men than they are for women.

Values of β̂(2)
x for women have a median of 0.008 (IQR 0.003,0.011), while for

men this median is equal to 0.007 (IQR 0.005,0.014). Estimates for men are above
zero. These estimates increase at the age of 23 up to 0.033, followed by a gradual
drop until the age of 60. From this age until 90, we can observe a much more
stable behavior, with some occasional fluctuations. After the age of 90, estimated
parameters have negative values. Estimates are more stable between the ages of
12 and 40 for women than they are for men. For young women, there is a slight
fall and these parameters eventually become negative. Between the ages of 45 and
60, values oscillate and are very close to zero. From the age of 61 onward, values
begin to rise steadily, reaching their peak at the age of 91. After this age, observed
parameters have similar values, with the exception of ages 95 and 99.

The slope indicates some abrupt increases in the logarithm of the mortality rate
as age increases. There is a sudden increase in the mortality of men at the age of 23.
This reaffirms the fact that the mortality of young men rises while that of young
females does not. Unlike the Lee-Carter model, the Renshaw-Haberman model
indicates that there are differences between the mortality of the sexes at older ages.
This is most notable in women, whose mortality has slightly increased in recent
years.

We know that the parameter β̂(3)
x indicates the rate of change for period mor-

tality rates. Using this model, estimated values for women have a median equal
to 0.010 (IQR 0.007,0.013), while those for men have a median of 0.009 (IQR
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0.007,0.016). We also observe that, for men, oscillations are common around dif-
ferent ages. Meanwhile, females present a very stable behavior, with the most
significant difference occurring after the age of 50.
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Figure 4: Estimated Parameters Renshaw-Haberman. Men and women aged be-
tween 12 and 99 between 1990 and 2009. Mexican population.
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We know that the parameter β̂(3)
x indicates the rate of change for period mor-

tality rates. Using this model, estimated values for women have a median equal
to 0.010 (IQR 0.007,0.013), while those for men have a median of 0.009 (IQR
0.007,0.016). We also observe that, for men, oscillations are common around dif-
ferent ages. Meanwhile, females present a very stable behavior, with the most
significant difference occurring after the age of 50.

The evolution of κ̂t represents the overall path of mortality over time, as if
all ages were considered together. The male κ̂t value presents an almost linear
behavior up until 2005. From this year on, we observe a long curved path leading
to the last year studied here, i.e. 2009. In the case of the women, the slope is less
steep, but it maintains a negative value. We see that the decrease in male mortality
rates has been faster than it has been for women if we consider all ages. In general,
beginning in 2000, the evolution in female rates presents a less steep curve than
that of men.

If we focus on the year of birth and treat it as a series with non-constant vari-
ance, we note that gender behavior is different for those born between 1903 to
1950, and then for those born from 1980 onward. For these generations born after
1980 the γ̂t−x for women is higher than it is for men. Values for men show a linear
shape, with a mostly rising trend, while for women the values present a convex and
concave shape before and after 1950 respectively. Peaks are reached between 1984
and 1987. A possible explanation for this phenomenon is the strong earthquake
that hit Mexico in 1985, affecting several states in the country.

4.1.3 Age-Period-Cohort model

This is a special case of the previous model, with β̂(1)
x and β̂(2)

x equal to one. The
number of estimated parameters is 88 for β̂x, 20 for κ̂t and 119 for γ̂t−x, resulting in
a total of 227 estimated parameters. Like the Lee-Carter model, this model empha-
sizes the differences in mortality by gender among the young. These differences
disappear at older ages. This is an expected behavior of the log mortality rates.
Figure (5) presents the estimated parameters.
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Figure 5: Estimated Parameters Age-Period-Cohort. Male and Female aged 12 to
99 from 1990 to 2009. Mexican population.

Values of the parameters κ̂t were similar to those obtained by the Lee-Carter
model especially in men. Prior to 2000, this model predicted lower values, above
all between 1995 and 1999. For women, changes are constant and no linear behav-
ior can be identified. If we take the year of birth we see there are no differences
between the sexes and the respective behaviors are very similar.

4.1.4 Model comparison

To evaluate the quality of the models, we plotted residuals in order to identify
patterns. The x-axis displays age x and the y-axis shows the year t. We would
expect residuals to be distributed randomly, i.e. they should be independent and
identically distributed.

The residuals of the Lee-Carter model show that cohort effects were not cap-
tured. There are diagonal lines through years, mainly after 60, for both male and
female. Residuals have a median of -0.35 (IQR -1.96,1.60) for men and -0.3 (IQR
-1.88,1.52) for women. The largest residuals correspond to the estimated mortality
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Figure 6: Standardized Residuals Z(x, t) (a)Lee-Carter , (b)Renshaw-Haberman
and (c)Age-Period-Cohort models for males. Largest residuals appear in dark
Z(x, t) < 0 or soft colorsZ(x, t) > 0
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Figure 7: Standardized Residuals Z(x, t) (a)Lee-Carter , (b)Renshaw-Haberman
and (c)Age-Period-Cohort models for females. Largest residuals appear in dark
Z(x, t) < 0 or soft colorsZ(x, t) > 0
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Model Male Female
Lee-Carter −23, 105.68 −23, 559.63

Renshaw-Haberman −14, 963.81 −14, 302.79
Age-Period-Cohort −19, 058.61 −18, 273.52

Table 1: Bayes Information Criterion

at older ages.
In contrast, the residuals of the Renshaw-Haberman model do not show a clear

pattern, as cohort effects were included in the model and these have a median of -
0.06 (IQR -1.13,1.13) for men, and a median of -0.02 (IQR -1.03,1.02) for women.
Residuals are larger through ages 96 to 99 , and also in the early nineties. We
can also observe that residuals are larger in women than they are in men, most
presenting negative values. Nevertheless, overall residuals are close to zero.

Finally, the residuals of the Age-Period-Cohort model have a median equal to
-0.22 (IQR -1.61,1.58) for men and -0.06 (IQR -1.43,1.4) for women. No large
differences are found at any particular age or year (see Figures 6 and 7). As in
the Renshaw-Haberman model, diagonals in residuals do not appear in the Age-
Period-Cohort model. Residuals are larger for this particular model than for the
previous ones.

According to the Bayes information criterion (BIC), the Renshaw-Haberman
model provides a better fit than the other models. This model includes cohort
effects and presents a better distribution of the residuals.

4.2 Results for the Brass-type relational model

In this subsection we analyze the results obtained from the Brass-type relational
model. We carried out a linear regression to compare the mortality reported in the
insurance industry with the mortality in the general population. We consider as
reference mortality rates those estimated for the general population in Mexico with
the Lee-Carter, the Renshaw-Haberman and the Age-Period-Cohort models, as de-
scribed in sections 2.1.1, 2.1.2 and 2.1.3. A Brass-type relational model is used to
analyze the mortality rates calculated by the National Insurance and Finance Office
for insured lives. The fundamental idea is that the insured individuals’ mortality
behavior is significantly different from the mortality experienced by the general
population (Brouhns et al., 2002).

In our setting, we assume that the mortality rates for the insured population are
unisex, which is the case of the Mexican mortality tables for the insured population,
there being no male-female segregation.

Thus, using the Brass-type relational model, we investigate the influence of
the gender composition of insurance portfolios on the management of mortality
risk when only a unisex table is available. We see that for insurers, using a single
unisex mortality life table can be hazardous.
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Estimated parameters and the BIC for this model are shown in Table 2. The
first column indicates the percentage of women in the population. This means that
we considered different values for weight w in the linear regression. The estimates
of the slope are equal to one when the proportion of women is exactly 25%, which
means that there is a similarity between the insured population and the general
population when we consider that one individual in every four is a woman. The
significant negative intercept indicates that the mortality of the insured population
is lower than the mortality of the general population.

Examining the logarithm rates adjusted by the Brass-type relational model
from ages 12 to 18, the larger the proportion of women, the larger we can ex-
pect the difference between the mortality rate of the insured and that of the general
population to be. The opposite occurs in the age interval 19-40; at these ages the
differences are small.

% Women Lee-Carter Renshaw-Haberman Age-Period-Cohort
β̂0 β̂1 BIC β̂0 β̂1 BIC β̂0 β̂1 BIC

0% −0.06 1.04∗ 33.36 −0.04 1.05∗ 22.06 −0.01 1.05∗ 24.17
25% −0.14∗ 1.00∗ 17.88 −0.12 1.00∗ 3.48 −0.10 1.00∗ 7.79
50% −0.22∗ 0.95∗ 8.70 −0.20∗ 0.95∗ −7.86 −0.19∗ 0.96∗ −1.18
75% −0.30∗ 0.91∗ 6.00 −0.27∗ 0.91∗ −11.18 −0.27∗ 0.91∗ −2.64

100% −0.38∗ 0.87∗ 8.77 −0.35∗ 0.87∗ −7.58 −0.35∗ 0.87∗ 1.96

Table 2: β̂ by Brass-Type relational model: log[mins(x, t)] = β̂0 + β̂1 log[mw(x, t)],
with different weights w according to the female proportion. ∗ significance α =

0.05.

According to Gatzert and Wesker (2011), β̂0 = −0.3197 and β̂1 = 1.0747
for the Swiss population. Comparing these estimates with the estimated parame-
ters for the Mexican population using the Brass-type relational model, we see that
β̂0 is similar to that estimated by the Brass-type relational model when there is a
population with more women than men. Meanwhile, in contrast with the previ-
ous parameter, β̂1 resembles that obtained for Switzerland when considering a low
proportion of women.

Figure 8 shows the result of setting the year 2000 for the Mexican mortality
rates, and when considering the parameter estimates in accordance with the Swiss
Brass-type relational model, we obtained mortality rate estimates that could be
used by the insurers.

5 Conclusions

We have described the mortality behavior of the Mexican population and, as in
other countries, the pattern of mortality has been shown to be dependent on the
factors of age and gender. Gender is a relevant factor in the longevity and mor-
tality risk of the Mexican population, with the main gap between male and female
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Figure 8: : Solid line represents the log-adjusted death rates obtained with the pa-
rameters for the Switzerland population. Dotted line represents the rates of CNSF
Mexico year 2000.

mortality rates occurring in the age interval of 20 to 50. According to the Mexi-
can Association of Insurance Institutions (AMIS), this age interval corresponds to
adult ages and is precisely where the highest proportion of policyholders is to be
found. Thus, using unisex life tables for insurance purposes can lead to a marked
bias in the data, particularly if the male-female ratio in any given portfolio is not
taken into account.

No historical mortality rates are available for the life insurance market in Mex-
ico, but a unisex life table has been used by insurers. Here, therefore, we have
proposed approximating the mortality of the insured population by comparing ex-
periences in other countries. Gatzert and Wesker (2011) have used a Brass-type
relational model to fit the insured population mortality rates to the general pop-
ulation mortality rates in Switzerland. This has been done for men and women
separately.

We have compared the parameters obtained in the Brass-type relational model
for Switzerland and the parameter estimates for the Mexican case, when the mor-
tality of the population mortality is compared to the unisex life table assuming
different male-female ratios. We obtained linear regression coefficients that are
similar to those for the Swiss population. However, note that as the Mexican life
table for insured portfolios is unisex, it should be stressed that we cannot compare
the two sets of results directly.

We recommend studying mortality in insurance portfolios separately by gen-
der, since the proportion of men and women in the general population and in a
given portfolio can differ substantially. Unisex tariffs should be based on reason-
able assumptions regarding the proportion of women in the portfolio, and on the
gap between the mortality of the general population and that of the insured pop-
ulation. Unisex life tables for insured portfolios, such as those used by Mexican
insurers, implicitly assume a constant male-female equilibrium of risk exposures
in the portfolio. Thus, we believe that even though regulations insist that insur-
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ance prices should be equal for men and women, mortality analyses for actuarial
purposes should be conducted separately. Insurers need to bear in mind the gender
composition of their portfolios when setting the price of their particular life insur-
ance product. All in all, a unisex life table for insurers should serve as a benchmark
against which their portfolio mortality can be compared.

Acknowledgments

All authors thank support received from The Spanish Ministry: ECO2010-21787-
C03-01. Montserrat Guillén thanks ICREA Academia.

References

Betzuen, A. (2010). Un Análisis sobre las posibilidades de prediccion de la mor-
talidad futura aplicando el modelo Lee-Carter. Anales del Instituto de Actuarios
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Carter. Belgian Actuarial Bulleti, 3:1–21.

Delwarde, A., Denuit, M., Guillen, M., and Vidiella, A. (2003). Application of the
Poisson Log-Bilinear Projection Model to the G5 Mortality Experience. Belgian
Actuarial Bulletin, 6:54–68.

66



Fledelius, P., Guillen, M., Nielsen, J., and Petersen, K. (2004). A Comparative
Study of Parametric and Nonparametric Estimators of old age Mortality in Swe-
den. Journal of Actuarial Practice, 11:101–126.

Gatzert, N. and Wesker, H. (2011). Mortality Risk and its Effect on Shortfall and
Risk Management in Life Insurance.

Guillén, M. (2012). Sexless and Beautiful Data: from Quantity to Quality. The
Annals of Actuarial Science, 6(2):231–234.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman
and Hall.

Lee, R. and Carter, L. (1992). Modeling and Forecasting U. S. Mortality. Journal
of the American Statistical Association, 87:659–671.

Pitacco, E., Denuit, M., Haberman, S., and Olivieri, A. (2009). Modelling
Longevity Dynamics for Pensions and Annuity Business. United States: Oxford
University Press.

Renshaw, A. and Haberman, S. (2003). Lee-Carter Mortality Forecasting: a Par-
allel Generalized Linear Modelling Approach for England and Wales Mortality
Projections. Journal of the Royal Statistical Society Series C, 52(1):119–137.

Renshaw, A. and Haberman, S. (2006). A Cohort-Based Extension to the Lee -
Carter Model for Mortality Reduction Factors. Insurance: Mathematics and
Economics, 38(3):556–570.

67


