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ABSTRACT

In this paper, a new heavy-tailed distribution is used to model data with
a strong right tail, as often occurs in practical situations. The distribution
proposed is derived from the lognormal distribution, by using the Marshall
and Olkin procedure. Some basic properties of this new distribution are
obtained and we present situations where this new distribution correctly re-
flects the sample behaviour for the right tail probability. An application of
the model to dental insurance data is presented and analysed in depth. We
conclude that the generalized lognormal distribution proposed is a distribu-
tion that should be taken into account among other possible distributions
for insurance data in which the properties of a heavy-tailed distribution are
present.
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Sobre la modelización de datos de seguros
usando una distribución lognormal generalizada

RESUMEN

Presentamos una nueva distribución lognormal con colas pesadas que se
adapta bien a muchas situaciones prácticas en el campo de los seguros. Uti-
lizamos el procedimiento de Marshall y Olkin para generar tal distribución y
estudiamos sus propiedades básicas. Se presenta una aplicación de la misma
para datos de seguros dentales que es analizada en profundidad, concluyendo
que tal distribución debeŕıa formar parte del catálogo de distribuciones a
tener cuenta para la modernización de datos en seguros cuando hay presen-
cia de colas pesadas.

Palabras clave: seguros; distribución lognormal; función de pérdidas; co-
las pesadas.
Clasificación JEL: C16.
MSC2010: 60E05; 62H05.
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1 Introduction

According to Klugman (1986), three different risk elements are present in
most models of insurance risk. Firstly, whether the covered event occurs or
not; secondly, the time at which the insurance settlement is paid and, thirdly,
the amount to be paid. A simple model to describe the risk is given by

P = W exp (−δt)X,

where W ∈ {0, 1} represents the occurrence of a covered event, t ∈ R+ rep-
resents the time and X is the amount. The parameter δ, which is called the
force of interest, is usually assumed as known and constant. Depending on
the case in question, each of the three elements (W, t,X) can be assumed as
a random variable or not. For instance, in life insurance, the value of W is
known to be equal to one, X is determined beforehand and the only random
variable to be considered is t. In the case examined in this paper, that of den-
tal insurance claims, the time component can be assumed to be a known fixed
period and the variables of interest are then the number of claims and their
amount. From the point of view of the company, one of the main results to be
obtained from the model would be the expected value of the payment after a
given period, E (P ). Then, it would be useful to assume that W ∈ Z+ gives
the number of events covered during the period and that X represents the
mean value of the corresponding amounts. If the time and amount variables
are assumed to be independent (which does not always hold), the expected
value to be estimated is given by

E (P ) = E (W )E [exp (−δt)]E (X)

= K · E (W ) · E (X) .

With this notation, E (X) is called the severity and K is a known constant.
Note that E (X) is also the expected value of an individual claim. In this
paper, we shall focus on the estimation of a model for random variable X.

On many occasions, real data sets show a behaviour with extreme values
yielding tails which are heavier than those of standard, well-known statistical
distributions. Advances in computation speed have made it possible to de-
velop and use new probabilistic models that, not long ago, would have been
difficult to apply to describe any type of data.

The literature contains a vast catalogue of probability distributions to
obtain a close data fit but new families of distributions may still be welcome,
for various reasons. For instance, the heavy-tailed distributions which are
available are now competing to become the simplest and most accurate model
in each case.

The heavy-tailed distributions are those whose right tail probabilities are
heavier than the exponential one, that is, its survival function F verifies

lim
z→∞

exp (−λx)
F (x)

= 0, for any λ > 0.
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See Beirlant et al. (2001) for further information. Well-known examples
of these kind of distributions are the lognormal, Weibull and Pareto ones,
when the shape parameter is smaller than one (see Rolski et al. 1999, p.49).
In many practical situations, such as reliability analysis (Blishke and Murthy,
2000; Chen, 1995) and lifetime data (Prendergast et al., 2005), the lognormal
model is suitable for data fitting. Sobkowicz et al. (2013) recently presented
an analysis of the length of comments posted in Internet discussion fora and
found that the size of messages can be fitted quite well using a lognormal
distribution.

In the actuarial context, models with heavy-tailed distributions have been
used to provide adequate descriptions of claim size distributions, see Hogg and
Klugman (1984) and Klugman et al. (2008), among many others. The right
tail of a distribution is an important issue in various contexts, but especially
concerning issues related to insurance, where it represents the total impact of
insurance losses, and in risk theory, where it is associated with the extreme–
value theory. Dutta and Perry (2006) presented an empirical analysis of loss
distributions in which risk was estimated by different approaches, including
Exploratory Data Analysis and other empirical approaches. These authors
concluded that “one would need to use a model that is flexible enough in its
structure” and rejected the use of exponential, gamma and Weibull models
because of their poor results.

These results encourage us to search for more flexible probability distri-
butions providing greater accuracy in data-fitting.

In recent years, various techniques for extending heavy-tailed distribu-
tions have been proposed. One such, introduced by Marshall and Olkin
(1997), was first applied by its authors to extend the exponential family to
a generalized exponential. Given a distribution with the survival function
F (x) = P (X > x), a generalization of the family is obtained by considering
the survival function

Gα (x) =
αF (x)

1− αF (x)
, α > 0, α = 1− α. (1)

In the present paper, we denote the above cumulative distribution function
(cdf) by Gα, obtained from the original lognormal cdf, F , where the param-
eters µ and σ2 have been omitted for the sake of simplicity. Henceforth,
the new generalized lognormal distribution obtained using the Marshall and
Olkin procedure is referred to by GLN . We obtain closed expressions for
the probability density function (pdf) and the cdf of the new distribution,
from which the moments and quantiles can be easily computed. In addition,
the method preserves some properties of the original distribution which are
needed for risk models, as shown in the second example of applications. This
method has been successfully applied by several authors to extend different
distributions to generalized ones. Thus, Ghitany et al. (2005), applied the
exponential and Weibull generalized models to censored data. Furthermore,
Ghitany (2005) introduced a generalized Pareto distribution, and the Lomax

149



distribution was extended by Ghitany et al. (2007). Garćıa et al. (2010)
obtained a generalization of the normal distribution, Gómez-Déniz (2010)
obtained a generalization of the discrete geometric distributions and finally,
Jose et al. (2010) presented a Marshall-Olkin q-Weibull distribution applied
to time series analysis.

It is well known, that if a lognormal distribution has its shape parameter
smaller than one, then it is a heavy-tailed distribution. Equivalently, its cdf
verifies that

lim
x→∞

F (x+ y)
F (x)

= 1, for all y ≥ 0.

Then, it is easy to see that the corresponding transformed cdf G given by
(1) also verifies:

lim
x→∞

G (x+ y)
G (x)

= lim
x→∞

F (x+ y)
(
1− αF (x)

)
F (x)

(
1− αF (x+ y)

)
= lim
x→∞

F (x+ y)
F (x)

·
(
1− αF (x)

)(
1− αF (x+ y)

) = 1,

where we use that limz→∞ F (z) = 0. Then, G is also heavy-tailed. It can
also be proven that G is stochastically smaller (larger) than F for α ≤ (≥) 1.
In other words, G (x) ≤ (≥)F (x)⇐⇒ α ≤ (≥) 1.

The distribution and density functions of the GLN obtained from (1)
depend on three parameter, µ > 0, σ > 0 and the additional α > 0. Note
that, on the one hand, the original lognormal distribution is obtained for
α = 1 and, on the other hand, this generalization of the lognormal is different
from the given in Mart́ın and Pérez (2009).

A different approach to the problem is the max-stable class of distributions
given by G (x|η) = (F (x))η, with η > 0. This method has been under study
by several authors as Lehmann (1959), Gupta et al. (1998), Gupta and Kundu
(1999) and Sarabia and Castillo (2005). In this paper, we shall not apply this
approach.

1.1 Motivation for a new heavy-tailed distribution

The following example is based on real insurance data extracted from Klug-
man (1986). The data set corresponds to 392 claims from a dental insurance
group (basic coverage). The model is to be applied on the amount of each
claim, X, but the company may establish an upper bound, c, to the coverage,
so it then becomes interesting to estimate the expected value of the amount
per claim, Yc = min (X, c) , given by

E (Yc) =
∫ c

0
f (t) dt+ c (1− F (c)) , (2)

where f (·) and F (·), are the density and distribution functions of X, respec-
tively.
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Several heavy-tailed distributions have been postulated, including the Log-
normal, Weibull and Generalized Exponential distributions. In Figure 1, the
histogram for these data is overprinted on the maximum likelihood (ML) es-
timated densities of the Lognormal (L), Weibull (W), Marshall-Olkin Gener-
alized Exponential (GE) and the new Generalized Lognormal (GLN), derived
from (1), distributions. The first row pictures show a good fit for the lower
values but underestimate the right tail; on the other hand, the GE distribu-
tion (bottom left) shows a better fit for the tail but underestimates the lower
values. The GLN picture (bottom right) shows the distribution to be flexible
enough to describe the whole range of the variable.
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Figure 1: Histogram over densities. From top to bottom, from right to left,
Lognormal, Weibull, Generalized Exponential and Generalized Lognormal
(GLN).

For comparative purposes, the Akaike Information Criterion (AIC) values
were computed, obtaining the following values: AICGE = 5487.3, AICW =
5492.3, AICL = 5408.2 and AICGLN = 5407.1. As is well known, a model
with a minimum AIC value is to be preferred. In this respect the GLN
distribution performs very well in fitting the data distribution, compared to
other standard heavy-tailed uniparametric distributions, and also provides a
better fit than the Lognormal distribution.

1.2 Outline of the paper

With the aim of predicting the expected value given in (2), we derived the
GLN following the procedure suggested by Marshall and Olkin (1997). As
shown in the above motivating example, this distribution gives better results
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than some well-known models in terms of estimating, and achieves a reason-
ably good data fit.

This paper presents some novel aspects: (i) the good results of the GLN
distribution in fitting certain actuarial data, together with other positive prop-
erties; (ii) a simple and easily implementable approach to quantify one of the
most important quantities of interest in the insurance scenario, that of the
expected value of the amount per claim.

The article is organized as follows. The generalized lognormal distribution,
GLN(µ, σ, α), is introduced in Section 2. This section also introduces the
moments µk of the new distribution and analyses the parameter estimation
problem. Furthermore, the motivating example given in Section 1 is continued
and developed. Numerical solutions to the ML-estimate problem are obtained
using suitable software. Section 3 presents some additional useful properties
of the GLN distribution. Finally, in Section 4 some conclusions are drawn
and promising areas for further research are proposed.

2 A new heavy-tailed distribution: the generalized lognormal

distribution

We propose the GLN , defined as in (1), from an parent lognormal distribution
F (µ, σ) .

Let be Z0 a random variable with Gaussian density φθ (z) and distribution
function Φθ (z), where θ = (µ, σ), −∞ < µ < ∞ and σ > 0. Then, the
random variable Z = exp (Z0) is said to be lognormal distributed. When
the lognormal distribution F is used as the parent one, the Marshall and
Olkin scheme for generalizing distributions given in (1) leads to the GLN
distribution function given by

Gθ,α (x) =
Φθ (log x)

1− αΦθ (log x)
,

where α > 0, α = 1− α and Φθ = 1− Φθ. By computing the first derivative
of Gθ,α (x) we obtain the corresponding density function

gθ,α (x) =
αφθ (log x)

x
[
1− αΦθ (log x)

]2 . (3)

The following result is very useful to compute central moments of the
GLN distribution.

Proposition 1 Let be X ∼ GLN (µ, σ, α). Then, the k-th moment around

the origin of the random variable X is given by

µk +E
(
Xk
)

=
∫ 1

0

α exp
[
k Φ−1

θ (h)
]

(αh+ α)2
dh

=α exp (kµ)
∫ 1

0

exp
[
kσerf−1 (2h− 1)

]
(αh+ α)2

dh, (4)
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where erf (·) is the error funtion.

The proof can be found in the Appendix. Table 1 contains values for
µk (k = 1, 2, 3), the variance and skewness coefficient, Sk, in a GLN (0, 1, α)
distribution for several values of α. The skewness coefficient Sk is given by

Sk =
E (X − EX)3

V ar (X)3/2
. (5)

Remark: Observe that the computation of E (Y ) in the case c = ∞ is
reduced to find E (X). Such calculus can be obtained with the help of Propo-
sition 1.

Table 1: Moments for GLN(0, 1, α) distributions.

α µ1 µ2 µ3 Var Sk

0.1 0.4766 0.9673 9.3901 0.7401 12.9140

0.2 0.6945 1.81272 18.6479 1.3303 10.1278

0.3 0.8662 2.6036 27.8079 1.8532 8.8554

0.4 1.0125 3.3564 36.8851 2.3310 8.0824

0.5 1.1420 4.0795 45.8893 2.7751 7.5472

0.6 1.2592 4.7781 54.8276 3.1924 7.1476

0.7 1.3966 5.4560 63.7055 3.5876 6.8339

0.8 1.4668 6.1158 72.5274 3.9641 6.5789

0.9 1.5604 6.7596 81.2969 4.3245 6.3661

1 1.6487 7.3890 90.0171 4.6707 6.1848

10 4.9431 45.1616 779.502 20.7270 3.7233

20 6.5852 73.7568 1444.70 30.3908 3.3349

30 7.7178 97.1450 2955.61 37.5798 3.1505

40 8.6045 117.5260 2630.04 43.4881 3.0350

50 9.3422 135.8610 3177.03 48.5843 2.9530

60 9.9785 152.6790 3702.12 53.1089 2.8904

70 10.5408 168.3120 4209.03 57.2042 2.8404

80 11.0462 182.9820 4700.42 60.9628 2.7990

90 11.5066 196.8510 5178.32 64.4484 2.7640
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2.1 Parameter estimation

From (3), the log-likelihood of the sample x = (x1, . . . , xn) reads as follows:

l (x;µ, σ, α) = n logα+
n∑
i=1

log φθ (log xi)− 2
n∑
i=1

log
[
1− αΦθ (log xi)

]
.

The normal equations for the maximum likelihood estimation are then ob-
tained by

∂l

∂µ
=
n

σ2
(u− µ) + 2α

n∑
i=1

φθ (ui)
Di

= 0,

∂l

∂σ
=−n

σ
+

1
σ3

n∑
i=1

u2
i +

nµ2

σ3
− 2nµ

σ3
u+

2α
σ

n∑
i=1

uiφθ (ui)
Di

−2αµ
σ

n∑
i=1

φθ (ui)
Di

= 0,

∂l

∂α
=
n

α
− 2

n∑
i=1

Φθ (ui)
Di

= 0,

where ui = log xi, u = n−1
∑n

i=1 ui and Di = 1− αΦθ (ui).

With the help of a proper software, the ML-estimates are easily found. A
well established procedure for the numerical resolution of normal equations
consists in taking as initial points those obtained by the approximation derived
from erf−1(x) ≈ z

√
π/2 and expanding the kernel of the integrand in (4) by

second-order series. Thus

µ1 ' α exp (µ)
24
(
1 + α2

)
− 4
√

2πσ
(
α2 − 1

)
+ πσ2 (1 + α)2

3 (1 + α)4
,

µ2 ' α exp (2µ)
4
(

6 (1 + α)2 + 2
√

2πσ
(
α2 − 1

)
+ πσ2 (1 + α)2

)
3 (1 + α)4

,

µ3 ' α exp (3µ)
8
(
1 + α2

)
+ 4
√

2πσ
(
α2 − 1

)
+ 3πσ2 (1 + α)2

(1 + α)4
.

The scoring method works now well to solve the above normal equations
(see Klugman et al., 2008). These normal equations are solved using the
scoring method (see Klugman et al., 2008), and the need to use second or-
der derivatives is avoided by applying the Newton-Raphson method. The
Appendix shows the second order derivatives of the log-likelihood which are
needed to obtain the Fisher information matrix.

Example [continued] The data set analysed in Klugman (1986) and pre-
sented in Section 1 is now revisited. The estimates and the maximized log-
likelihood values obtained are shown in Table 2, which shows that the best fit
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to the data is provided by the GLN distribution, which produces the lowest
AIC value.

Table 2: Estimated parameters, standard errors and AIC for data in example.

Distribution Parameters
Standard

Errors
Lmax AIC

GE α = 0.67 0.122

λ = 0.002 0.0002 −2741.63 5487.3

Weibull θ = 0.99 0.035

β = 402.44 21.71 −2744.13 5492.3

Lognormal µ = 5.50 0.05

σ = 0.974 0.035 −2702.08 5408.2

GLN µ = 5.874 0.263

σ = 0.972 0.039

α = 0.51 0.237 −2700.56 5407.1

The expected value for E (Yc) is computed for different values of c. The
claim amount, X, is therefore described by the GLN , Lognormal, Weibull
and GE models, where GE is the generalized exponential distribution from
Marshall and Olkin (1997). The results are shown in Table 3. Comparison
with the empirical values shows that there is little difference between the fits
of the standard lognormal and the GLN distributions, but the latter seems
to provide a better fit in the middle part of the data set. This is confirmed
by the P-P plot shown in Figure 2.

In summary, the GLN model can adopt a flexible set of density forms, and
so it is very suitable for describing a data set like this. It not only improves the
data fit with a lognormal distribution, but also the fit with other, alternative
models.

3 Some other useful properties of the GLN distribution

Some properties of the GLN distributions are set below. They referred to the
most commonly used characteristics of a probability distribution and they
could be useful for further applications.

The proof of this result can be found in Appendix.

Proposition 2 The GLN distribution verifies the following properties:

1. It is unimodal, for all feasible values of its parameters µ ∈ R, σ > 0, α >

0.
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Figure 2: P-P plots for the data set in Klugmann (1986) for the different
models considered.

2. It is verified that

G0,1,α (x) = 1−G0,1,α−1

(
x−1

)
,

for all x > 0.

3. Denoting by µk (µ, σ, α) = E
(
Xk
)
, where X is GLN distributed, then:

a) µ1 (µ, σ, α) = exp (µ)µ1 (0, σ, α) ,

b) µk (µ, σ, α) = exp (kµ)µ1 (0, kσ, α) ,

c) V ar (µ, σ, α) = exp (2µ)V ar (0, σ, α) .

Finally, the quantiles γ (xγ) of a GLN distribution are given by

xγ = exp
[
Φ−1
θ

(
αγ

1− αγ

)]
, (6)
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Table 3: Limited expected values for the different models considered

i ci Empirical GE Weibull Lognormal GLN

1 25 25 24.12 24.24 24.94 24.96

2 50 48 46.58 47.05 49.28 49.43

3 75 71 67.53 68.48 72.34 72.67

4 100 91 87.09 88.62 93.81 94.25

5 150 126 153.28 125.34 131.80 132.10

6 200 153 204.97 157.56 163.76 163.50

7 250 177 245.25 186.40 190.66 189.16

8 300 196 277.05 211.66 213.39 211.54

9 400 226 302.31 253.65 249.29 246.09

10 500 250 322.48 286.35 275.93 271.92

11 600 267 338.64 311.82 296.16 291.83

12 700 281 351.63 331.65 311.85 307.58

13 800 292 362.10 347.08 342.22 320.27

14 900 300 362.47 359.09 334.13 330.67

15 1000 306 380.30 368.43 342.17 339.30

16 1250 321 391.04 383.70 356.61 355.43

17 1500 332 401.20 391.84 365.90 366.41

18 2000 349 404.80 398.50 376.55 379.92

19 2500 357 406.09 400.39 382.02 387.50

20 3000 360 406.71 400.93 385.09 392.10

21 4000 361 406.79 401.13 388.11 397.04

where Φ−1
θ (·) is the quantile function of the normal distribution function

Φθ (x). In particular, the median, Me, is given by

Me = exp
[
Φ−1
θ

(
α

1 + α

)]
. (7)

Numerical values for (6) and (7) can be easily computed by using the
instruction InverseCDF[NormalDistribution[µ,σ,γ]], which is available
within the Mathematica c© package. As expression (7) shows, Me increases
with α. At the limit values of α, when α → ∞, then Me → ∞; and when
α→ 0, then Me→ 0. Thus, it is shown that there are no limit distributions,
and the right or left tail probabilities increase for α > 1 and 0 < α < 1,
respectively.
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4 Conclusions

In this paper, the generalized lognormal distribution, GLN , has been intro-
duced. The GLN is a generalization of the lognormal distribution, which
is contained in the new set for the additional parameter value α = 1. The
given example shows that this new model can compete with some of the most
well-known available models reasonably, and that it should be considered in
data-fitting, due to its flexibility.

A generalized distribution by the Marshall and Olkin method preserves
some of the properties of the original family. As a consequence, the GLN
distribution maintains some desirable properties for risk-theory, as heavy-
tailed profile and sub-exponential belonging. This way, its application on
fitting data of this kind, the study of properties of its hazard rate function or
its extension to higher dimensions could be interesting for future researches.
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Appendix

A1: Proof of Proposition 1

The k-th moment around the origin is defined by

µk =
∫ ∞

0
xkg

θ,α
(x) dx.

We term h = Φθ (log x), and thus dh = φθ (t) dt and t = Φ−1
θ (h). Then, we

can write

µk =
∫ 1

0

α exp
[
k Φ−1

θ (h)
]

(αh+ α)2
dh.

In order to prove the second expression (4), it is only necessary to consider
the relationship

Φ−1
θ (h) = µ+ σerf−1 (2h− 1) ,

and the proof is completed.

A2: Proof of Proposition 2

Here, we provide a brief sketch of the proof of Proposition 2.
By taking the derivative of (3) and equating to zero, we obtain the equa-

tion, (
µ− logMo− σ2

) [
1− αΦθ (logMo)

]
− 2ασ2φθ (logMo) = 0. (8)

Now, assume the function

Ψ (x) =
(
µ− log x− σ2

) [
1− αΦθ (log x)

]
− 2ασ2φθ (log x) .

It is simple to verify that Ψ (0+) =∞, Ψ (∞) = −∞ and Ψ (x) is a continuous
function. Then, we obtain that

Ψ′ (x) =
1
x

[
α
(
Φθ (log x) +

(
log x−

(
µ+ σ2

))
φθ (log x)

)
− 1
]
.

As α < 1, the desired result follows if it can be shown that

Φθ (z) + φθ (z)
(
z −

(
µ+ σ2

))
< 1,

or equivalently
φθ (z)

(
z −

(
µ+ σ2

))
< Φθ (z) , (9)

with z = log x ∈ R. To this end, we firstly consider z > µ + σ2 and then
observe that the left-hand side in (9) coincides with the area of a rectangle
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with base
[
µ+ σ2, z

]
and height φθ (z), constructed under pdf curve φθ (z).

Trivially, this area is smaller that the total area under φθ (z) in the interval
(−∞, z]. Secondly, if z ≤ µ + σ2, then φθ (z)

(
z −

(
µ+ σ2

))
< 0. Therefore,

we conclude that Ψ′ (x) < 0, so then Ψ (x) is a decreasing function on x and
the solution to equation (8) is unique and the unimodality is proven.

The proof of (6) is direct, from (3). From (4), expression (6) is direct.
Hence, expression (6) is derived. Finally, note that

V ar (µ, σ, α) = µ2 (µ, σ, α)− µ2
1 (µ, σ, α)

= exp (2µ)µ2 (0, σ, α)− exp (2µ)µ2
1 (0, σ, α) ,

and the proof is completed.

A3: Second-order derivatives of the log-likelihood function

After some algebraic simplication, they can be written as

∂2l

∂µ2
=− n

σ2
+

2α
σ2

n∑
i=1

uiφθ (ui)
Di

− 2αµ
σ2

n∑
i=1

φθ (ui)
Di

+ 2α2
n∑
i=1

(
φθ (ui)
Di

)2

.

∂2l

∂µ∂σ
=−2n

σ3
(u− µ)− 2α

σ

n∑
i=1

φθ (ui)
Di

+
2α
σ3

n∑
i=1

u2
iφθ (ui)
Di

+
2αµ
σ3

n∑
i=1

φθ (ui)
Di

−4αµ
σ3

n∑
i=1

uiφθ (ui)
Di

+
2α2

σ

n∑
i=1

ui

(
φθ (ui)
Di

)2

− 2αµ
σ

n∑
i=1

(
φθ (ui)
Di

)2

.

∂2l

∂µ∂α
=−2

n∑
i=1

φθ (ui)
Di

− 2α
n∑
i=1

φθ (ui) Φθ (ui)
D2
i

.
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∂2l

∂σ2
=
n

σ2
− 3
σ4

n∑
i=1

u2
i −

3nµ2

σ4
+

6nµ
σ4

u− 4α
σ2

n∑
i=1

uiφθ (ui)
Di

+
2α
σ4

n∑
i=1

u3
iφθ (ui)
Di

+
2αµ2

σ4

n∑
i=1

uiφθ (ui)
Di

− 4αµ
σ4

n∑
i=1

u2
iφθ (ui)
Di

+
2α
σ4

n∑
i=1

(
uiφθ (ui)
Di

)2

−4α2µ

σ2

n∑
i=1

ui

(
φθ (ui)
Di

)2

+
4αµ
σ2

n∑
i=1

φθ (ui)
Di

− 2αµ
σ4

n∑
i=1

φθ (ui)
Di

+
2αµ2

σ2

n∑
i=1

(
φθ (ui)
Di

)2

∂2l

∂σ∂α
=− 2

σ

n∑
i=1

uiφθ (ui)
Di

+
2µ
σ

n∑
i=1

φθ (ui)
Di

− 2α
σ

n∑
i=1

uiφθ (ui) Φθ (ui)
D2
i

+
2αµ
σ

n∑
i=1

φθ (ui) Φθ (ui)
D2
i

.

∂2l

∂α2
=− n

α2
+ 2

n∑
i=1

(
φθ (ui)
Di

)2

.

The elements of the observed information matrix are minus the second-
order partial derivatives fo the log-likelihood with respect to the parameters
and the elements of the expected information matrix are the expected values
of their corresponding above elements.
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