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ABSTRACT

Following the recent work of Gómez–Déniz and Pérez–Rodŕıguez (2014),
this paper extends the results obtained there to the normal–exponential
distribution with dependence. Accordingly, the main aim of the present pa-
per is to enhance stochastic production frontier and stochastic cost frontier
modelling by proposing a bivariate distribution for dependent errors which
allows us to nest the classical models. Closed–form expressions for the error
term and technical efficiency are provided. An illustration using real data
from the econometric literature is provided to show the applicability of the
model proposed.
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Modelos de frontera estocástica con errores
dependientes basados en márgenes normal y

exponencial

RESUMEN

Continuando el reciente trabajo de Gómez–Déniz y Pérez–Rodŕıguez (2014),
el presente art́ıculo extiende los resultados obtenidos a la distribución normal–
exponencial con dependencia. En consecuencia, el principal propósito de
este art́ıculo es mejorar el modelado de la frontera estocástica tanto de pro-
ducción como de coste proponiendo para ello una distribución bivariante
para errores dependientes que nos permitan encajar los modelos clásicos.
Se obtienen las expresiones en forma cerrada para el término de error y la
eficiencia técnica. Se ilustra la aplicabilidad del modelo propouesto usando
datos reales existentes en la literatura econométrica.

Palabras claves: eficiencias técnica y de coste; frontera estocástica; dis-
tribución marginal; dependencia; modelo de Sarmanov.
Clasificación JEL: C01; C13; C21; C51.
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1 Introduction

In general, the methods used for estimating technical and cost efficiency can be considered either

parametric or non–parametric. The former involves the estimation of a stochastic production

frontier (SPF) or a stochastic cost frontier (SCF) by imposing an explicit functional form and

distribution assumption on the data (Aigner et al., 1977; Meeusen and van den Broeck, 1977;

Battese and Corra, 1977; Stevenson, 1980; Greene, 1980a, 1980b; Jondron et al., 1982; Lee,

1983; Greene, 1990, 2003; Smith, 2008), where the output of a firm is a function of a set of

inputs, plus inefficiency and random error. The second approach is the linear programming

technique of data envelopment analysis (DEA), a non–parametric approach which does not

impose any assumptions regarding functional form and which does not take into account random

error (see Lovell and Schmidt, 1988, for an early survey). Both techniques have advantages

and disadvantages; for example, SPF and SCF require the analyst to assume an underlying

distribution about the error term, and independence between the inefficiency term and random

error. On the other hand, DEA cannot take into account such statistical noise, and efficiency

estimates may be biased if the production process is largely characterised by stochastic elements.

Between these two alternatives of modelling, our main interest is based on the the stochastic

frontier model in a cross–section framework. The model in this scenario can be written as

yi = f (xi;β) + νi ± ui, i = 1, 2, . . . , n, ui ≥ 0, where the sign of the last term depends on

whether the frontier describes costs (positive) or production (negative). For example, if we

assume that f (xi;β) takes the log–linear Cobb–Douglas form, then the stochastic production

frontier (SPF) model can be written as: log yi = β0 +
∑k
j=1 βj log xij + νi − ui, i = 1, 2, . . . , n,

where log yi is the natural logarithm of the production of the i-th firm; log xi is a k×1 vector of

(natural log transformations of the) input quantities of the i-th firm; β is a vector of unknown

parameters, and the disturbance term εi = νi ± ui (which is asymmetric) is assumed to have

two components: one with a strictly non–negative distribution, ui (which is a non–negative

component often referred to as the inefficiency term), and another with a symmetric distribution,

νi (which is termed the idiosyncratic error). Although it is not an assumption of the model,

independence of ν and u makes it easy to obtain the density of ε. The density of ε is then used

to conduct maximum likelihood estimation of the model parameters. In addition, it is possible

to obtain the conditional density of u|ε and E(u|ε). These serve as a basis to obtain estimates
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for firm–specific inefficiency.

The maximum likelihood method can be used to estimate β and ui, the variances of the

errors and the technical efficiency of each firm. Therefore, distributional assumptions are re-

quired for νi and ui. In terms of vi, and in general, these random variables are assumed to be

independently and identically distributed (iid) N
(
0, σ2ν

)
. On the other hand, in terms of ui,

various assumptions may be made; for example, Meeusen and van den Broeck (1977) assigned

the exponential distribution to ui, Battese and Corra (1977) assumed a half–normal distribu-

tion, while Aigner et al. (1977) considered both distributions. However, since the half–normal

and exponential distributions are both single–parameter specifications with modes at zero, some

scepticism has been expressed regarding their generality. Thus, Stevenson (1980) suggested the

truncated normal and gamma distribution for ui. Greene (1980a, 1980b) proposed the gamma

distribution, Lee (1983) proposed a four–parameter Pearson family of distributions and Greene

(1990, 2003) proposed the two–parameter gamma density as a more general alternative.

More recently, another way to model SPF and SCF are based on dependence of error terms

such as Smith (2008) and Wiboonpongse et al. (2015) with copulas and El Mehdia and Hafner

(2014) and Gómez–Déniz and Pérez–Rodŕıguez (2014) with closed–form solutions by using biva-

riate distributions. On the other hand, Tran and Tsionas (2015) and Amsler et al. (2016) study

the correlation between the inputs and statistical noise or inefficiency. The former one propo-

ses an approach which is based on copula function to directly model the correlation between

the endogenous regressors and the composed errors assumed to be independent and identically

distributed.

Accordingly, the main aim of the present paper is to enhance SPF and SCF modelling by

proposing a closed form of a bivariate distribution for dependent errors which allows us to nest

the classical models. In particular, we follow Gómez–Déniz and Pérez–Rodŕıguez (2014) and

extend their results by using Sarmanov’s family of distributions (Sarmanov, 1966; Lee, 1996;

Gómez–Déniz and Pérez–Rodŕıguez, 2014; among others) to obtain closed–form expressions for

the error term and technical efficiency. More specifically, we built a bivariate dependent SPF

and SCF models by using normal and exponential distributions (NE), and thus we construct a

general extension of the classical stochastic frontier model with these distributions.

The remainder of this paper is structured as follows. Section 2 introduces a brief note on the

Sarmanov family of distributions which is used to estimate the technical (cost) efficiency in a
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cross–section framework. We analysed one parametric form, deriving in closed–form expression

the log likelihood functions and technical (cost) efficiencies, based on the classical pdf distribu-

tions, by including the dependence structure. An application of the new model is discussed in

Section 3. Finally, the main conclusions drawn are presented in Section 4.

2 Modelling the dependence

In addition to the distributional assumptions on the error terms, νi and ui, in stochastic pa-

rametric frontier models, another important characteristic of the above cited models is the

independence between them to construct the density and marginal distributions.

The classical stochastic frontier model with normal and exponential assumptions is described

by the following stochastic representation: (i) vi ∼ iidN(0, σ2ν); (ii) ui ∼ iid exponential with

parameter σu > 0; and (iii) ui and vi are distributed independently of each other and of the

regressors. The probability density functions of vi and ui are as follows

fσν (ν) =
1

σν
√

2π
e
− ν2

2σ2ν , fσu(u) =
1

σu
e−

u
σu ,

where −∞ < ν <∞, σν > 0, u > 0 and σu > 0.

In this case, we have

fσu,σν (ε) =
1

σu
Φ

(
− ε

σν
− σν
σu

)
exp

{
ε

σu
+

σ2ν
2σ2u

}
, (1)

f(u|ε) =
1√

2π σν Φ(µ̃/σν)
exp

{
− 1

2σ2ν
(u− µ̃)2

}
, (2)

where µ̃ = −ε− σ2ν/σu.

The marginal f(ε) is asymmetrically distributed with given by E(ε) = −σu and the variance

by var(ε) = σ2u+σ2ν . On the other hand, u|ε follows a half–normal distribution, N+(µ̃, σ2ν), with

mean

E(u|ε) = µ̃+ σν
φ(−µ̃/σν)

Φ(−µ̃/σν)
= σν

(
φ(A)

Φ(−A)
−A

)
,

and where A = −µ̃/σν .

Following Gómez–Déniz and Pérez–Rodŕıguez (2014), we obtain closed–form expression for

the likelihood function and technical efficiency for SPF and SCF likelihoods based on the classical
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mixture of normal and exponential distributions. We propose a broader, more general and

flexible range of dependence, which is also easy to handle, for testing the independence between

the inefficiency term and random error (the idiosyncratic component).

This family of distributions is implemented by assuming that f1(x1) and f2(x2) are univariate

probability density functions, with supports defined on A1 ⊆ IR and A2 ⊆ IR, respectively. Let

ϕs(t), s = 1, 2, be bounded nonconstant functions (the mixing functions) such that∫ ∞
−∞

ϕs(t)fs(t) dt = 0,

then the function defined by

f(x1, x2) = f1(x1)f2(x2) [1 + ω ϕ1(x1)ϕ2(x2)] (3)

is a bivariate joint density with margins f1(x1) and f2(x2), provided ω is a real number which

satisfies the condition 1 + ω ϕ1(x1)ϕ2(x2) ≥ 0, for all x1 and x2. Some methods to obtain

the mixing function ϕ when fs(xs), s = 1, 2, are members of the natural exponential family

of distributions are described in Lee (1996). The Farlie–Gumbel–Morgernstern (FGM) family

of copulas can be viewed as a special case of the above–mentioned construction, by setting

ϕ(xs) = 1 − 2F (xs), s = 1, 2 and therefore one of the models proposed in Smith (2008). Here

F (·) represents the cumulative distribution function of the random variables with pdf f(·).

As we will see this family provide analytical expressions for the marginal pdf of the random

variable ε, the conditional pdf of u|ε, cov(u, ν) and technical efficiency are provided in the SPF

model, for the NE model. The classical independent models are derived as a particular case

when ω = 0 while ω 6= 0 measures the dependence structure.

As in the classical SPF model, let ν = u+ ε. Using (3) we get

fσu,σν ,ω(u, ε) = fσu(u)fσν (u+ ε) [1 + ω ϕσu(u)ϕσν (u+ ε)] , (4)

by taking ϕσu(u) = e−u − δu(σu), ϕσν (ν) = e−ν
2−2ν − δν(σν), with

δu(σu) =
1

1 + σu
, (5)

δν(σν) =
1√

1 + 2σ2ν
exp

{
2σ2ν

1 + 2σ2ν

}
, (6)

defines a bivariate distribution of (u, ν) with marginal distributions fσν (ν) and fσu(u) as in the

classical model and where ω1 ≤ ω ≤ ω2, being
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ω1 = max

{ −1

δu(σu)δν(σν)
,

−1

(1− δu(σu))(e− δν(σν))

}
, (7)

ω2 = min

{
1

δu(σu)(e− δν(σν))
,

1

(1− δu(σu))δν(σν)

}
. (8)

To see this, observe that because d
duϕσu(u) < 0 we have that ϕσu(u) is a decreasing function

on u and the range of variation of ϕσu(u) is (−δu(σu), 1− δu(σu)). In the same way, it is simple

to see that ϕσν (ν) has a maximum in ν = −1 and therefore the range of variation of ϕσν (ν)

results (−δν(σν), e − δν(σν)). Now, we have that fσu,σν ,ω(u, ν) represents a probability density

function if 1 + ω ϕσu(u)ϕσν (ν) ≥ 0, and this occurs if

ω ≥ −1

ϕσu(u)ϕσν (ν)
, for ϕσu(u)ϕσν (ν) > 0,

ω ≤ −1

ϕσu(u)ϕσν (ν)
, for ϕσu(u)ϕσν (ν) < 0,

from which it is a simple exercise to see that range of ω is given by (ω1, ω2).

Although any other mixing functions satisfying that
∫∞
0 fσu(u)ϕσu(u) du = 0 and that∫∞

−∞ fσν (ν)ϕσν (ν) dν = 0 can be considered we have chosen the mixing functions above since:

(i) The presence of the exponential term which is also present in the probability density function

of the normal and exponential distributions facilitates the computations in order to obtain

closed–form expressions for the marginal of ε as we will see in the next section; (ii) The square

term in the exponential part of ϕσν (ν) is important to ensure appropriate bounds for the ω pa-

rameter. Dependence assumption is now depending on ω and the Sarmanov family with normal

and half normal marginals studied here can also be considered as an extension of the classical

Sarmanov family of distributions dealt in Lee (1996) for the normal case.

Some algebra provides the correlation coefficient, which is given by

ρ =
2ω σu σν

(1 + σu)2(1 + 2σ2ν)3/2
exp

{
2σ2ν

1 + 2σ2ν

}
,

This correlation coefficient is bounded by (see Lee, 1996)

|ρ| ≤ |ω|
[
E
(
ϕ2
σu(u)

)
E
(
ϕ2
σν (ν)

)]1/2
.

Now, we have the following result which can be used to build the likelihood function for SPF

(see Appendix 4 for the SCF model).
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Theorem 1 In the SPF model for NE distributions and assuming dependence, the marginal pdf

of ε is given by

fσu,σν ,ω(ε) =
Υ1
σu,σν (ε)

σu
√

1 + 2σ2ν

Φ

(
µ̃

σν

)√1 + 2σ2ν +
ω e

2σ2ν
1+2σ2ν

1 + σu


− ω Υ2

σu,σν (ε) Φ

(
µ̃

σν
− σν

)
− ω

1 + σu
Υ3
σu,σν Φ

(
−σν
σu

1 + 2σu√
1 + 2σ2ν

− ε

σν

√
1 + 2σ2ν

)

+ ωΥ4
σu,σν (ε) Φ

(
−σν
σu

1 + 3σu√
1 + 2σ2ν

− ε

σν

√
1 + 2σ2ν

)}
, (9)

where

Υ1
σu,σν (ε) = exp

{
ε

σu
+

σ2ν
2σ2u

}
,

Υ2
σu,σν (ε) = exp

{
ε+

σ2ν
σu

+
σ2ν
2

+
2σ2ν

1 + 2σ2ν

}
,

Υ3
σu,σν = exp

{
σ2ν
2σ2u

4σu − 2σ2ν
1 + 2σ2ν

+
2σ2ν

1 + 2σ2ν

}
,

Υ4
σu,σν (ε) = exp

{
ε+

σ2ν
2σ2u

5σ2u + 6σu − 2σ2ν
1 + 2σ2ν

+
2σ2ν

1 + 2σ2ν

}
.

Proof: See Appendix 1.

Observe that when ω = 0, i.e. the independence case, pdf (9) reduces to (1). Simple

computations provide that the mean for the marginal pdf given in (9) is equal to E(ε) = −σu

while the variance results

var(ε) = σ2u + σ2ν

[
1− 4ω σ2u

(1 + σ2u)(1 + 2σ2ν)3/2
e

2σ2ν
1+2σ2ν

]
.

Figure 1 shows examples of the marginal pdf (9) for different values of the model parameters.

Having obtained the main result of the likelihood function, we now show the conditional

distribution of u given ε.
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Figure 1: Marginal distribution in the SPF–NE model for selected parameter values.

Proposition 1 In the SPF model under NE distributions, assuming dependence, the conditional

pdf of u given ε is given by

fσu,σν ,ω(u|ε) =
fσu,σν (u|ε) + ωΨ0

σu,σν (u|ε)
1 + ωΨ1

σu,σν (ε)
, (10)

for u > 0, where fσu,σν (u|ε) is given in (2) and

Ψ0
σu,σν (u|ε) = ϕσu(u)ϕσν (u+ ε) fσu,σν (u|ε), (11)

Ψ1
σu,σν (ε) =

1√
1 + 2σ2ν

1

Φ
(
µ̃
σν

)
Φ

(
µ̃

σν

)
e

2σ2ν
1+2σ2ν

1 + σu
− Υ2

σu,σν (ε) Φ

(
µ̃

σν
− σν

)

− 1

1 + σu
Υ3
σu,σν Φ

(
−σν
σu

1 + 2σu√
1 + 2σ2ν

− ε

σν

√
1 + 2σ2ν

)

+ Υ4
σu,σν (ε) Φ

(
−σν
σu

1 + 3σu√
1 + 2σ2ν

− ε

σν

√
1 + 2σ2ν

)]
. (12)

Proof: See Appendix 2.
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The point estimation for technical efficiency used in this study is the expression given by

Battese and Coelli (1988), which is related to the conditional expectation of e−ui , that is,

E(e−ui |ε = ε̂) which is given in the next result.1

Proposition 2 The point estimation for the technical efficiency of the i–th producer in the SPF

model under NE distributions, assuming dependence, is given by

TEi =
Ψ01
σu,σν ,ω(εi) + ωΨ02

σu,σν (εi)

1 + ωΨ1
σu,σν (εi)

, i = 1, 2, . . . , n,

where

Ψ01
σu,σν ,ω(εi) = [1 + ω δu(σu) δν(σν)]

Φ(−A− σν)

Φ(−A)
eσν(A+σν/2),

and

Ψ02
σu,σν (εi) =

1

Φ(−A)

[
1√

1 + 2σ2ν
Υ11
σu,σν (εi) Φ

(
−A+ 2(2 + εi)σν√

1 + 2σ2ν

)
− δν(σν) Υ22

σu,σν (ε) Φ(−A− 2σν)

− 1√
1 + 2σ2ν

δu(σu) Υ33
σu,σν (εi) Φ

(
−A+ σν(3 + 2εi)√

1 + 2σ2ν

)]
,

with

Υ11
σu,σν (εi) = exp

{
−ε

2
i −Aσν(4−Aσν)− 8σ2ν + 2εi(1− σν(A+ 2σν))

1 + 2σ2ν

}
,

Υ22
σu,σν (εi) = exp {2σν(A+ σν)} ,

Υ33
σu,σν (εi) = exp

{
−ε

2
i −Aσν(3−Aσν)− 9/2σ2ν + 2εi(1− σν(A+ σν))

1 + 2σ2ν

}
,

while δu(σu), δν(σν) and Ψ1
σu,σν (εi) are given in (5), (6) and (12), respectively.

Proof: See Appendix 3.

1This estimator is particularly useful when ui is not close to zero. However, the estimate of technical efficiency

is inconsistent because the variation associated with the distribution of ui|ε is independent of i (Kumbhakar and

Lovell, 2000, p.78)
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3 Numerical application

In this section, we use the theoretical results obtained in Section 3 to estimate and test indepen-

dence between the inefficiency term and the idiosyncratic error, using one empirical framework.

In the example we estimate the proposed model normal–exponential by using data obtained

from several bank branches of a large Spanish commercial bank during from January 2011 to

December 2014 (monthly data). Specifically, data corresponds to gross operating annual cost as

output and the inputs we use are labour and capital prices but also the annual revenues (total

income) for each bank branch.

We estimate a log-linear Cobb-Douglas cost function for the 5009 pooled data and without

imposing linear homogeneity in the input prices. The estimated model is written as follows

log ci = β0 + β1 log li + β2 log ki + β3 log yi + νi + ui, i = 1, 2, . . . , 5009,

where the variable log ci is the natural log–transformed annual operating cost, log li is the natural

log-transformed labour price, log ki is the natural log-transformed price of capital and log yi is

the natural log-transformed annual revenue.

The maximum likelihood estimates for the cost frontier NE model and for a sample of n bank

branches can be obtained by maximizing the log–likelihood function derived from (17) restricted

by (7) and (8), respectively. After some algebra, it is given by

logL =
n

2

[
σ2ν
2σ2u
− 2 log σu − log(1 + σ2ν)

]
+

1

σu

n∑
i=1

εi

+
n∑
i=1

log

{
Φ

( ˜̃µ
σν

)[√
1 + 2σ2ν +

ω

1 + σu
exp

(
2σ2ν

1 + 2σ2ν

)]

−ω
[√

1 + 2σ2ν Ξ2
σu,σν (εi) δν(σν) Φ

( ˜̃µ
σν
− σν

)

+ Ξ3
σu,σν (εi) δu(σu) Φ

(
σν(2σu − 1)

σu
√

1 + 2σ2ν
+
εi
√

1 + 2σ2ν
σν

)

− Ξ4
σu,σν (εi) Φ

(
σν(σu − 1)

σu
√

1 + 2σ2ν
+
εi
√

1 + 2σ2ν
σν

)]}
, (13)

where Ξ1
σu,σν (εi), Ξ2

σu,σν (εi), Ξ3
σu,σν (εi) and Ξ4

σu,σν (εi), i = 1, . . . , n, are given in (18), (19), (20)

and (21), respectively.
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Table 1 shows three estimation methods applied to the data: ordinary least squares (OLS),

unrestricted maximum likelihood (UML) (by taking ω = 0 in (13)) and restricted maximum

likelihood (RML) (by using directly (13)).

Table 1: Stochastic cost frontier estimates

Variable Coeff t–Stat Coeff t–Stat Coeff t–Stat

OLS UML–NE RML–NED

β0 0.1013 0.28 0.2744 21.43 0.2220 1.75

β1 0.3238 9.16 0.2847 29.79 0.2835 21.33

β2 0.2278 13.29 0.2549 14.14 0.2515 13.90

β3 0.5072 36.07 0.4666 35.36 0.4709 33.76

σu 0.4336 31.95 0.4757 30.52

σv 0.2441 10.91 0.2573 11.42

ω –1.3970 –119.36

ρ –0.14648

(0.0141)

ρS –0.01246

(0.0093)

Lmax –5508.38 –3221.14 –3092.30

Note: Between parenthesis standard error is indicated.

The OLS estimates are compared with those obtained from stochastic frontier models, using

the exponential distribution (UML–NE) and normal–exponential with dependence (RML–NED).

Also shown is the maximum value of the log–likelihood function (Lmax), together with some cor-

relation coefficients. It is known that if X and Y are two random variables with cdf F (x) and

G(y), respectively, Spearman’s coefficient, denoted by ρS , is given by ρS = Corr(F (X), G(Y )),

i.e. the ordinary (Pearson) correlation coefficient of the random variables F (x) andG(y) (see Fre-

dricks and Nelsen, 2007). This coefficient was computed numerically for the analyzed data, and

is also shown in the tables, together with ρ, the classical coefficient of correlation. The standard

errors of both, Spearman’s coefficient and correlation coefficient, appear between parenthesis.

The first was calculated by using the expression σρS =
√

0.437/(n− 4) (see Bonnet, 2000).
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The second was computed by using the expression σρ = 1/
√
n− 3, provided also in Bonnet

(2000) which produces a similar result than the one obtained by using σρ = (1 − ρ2)/
√
n2 − 1

(see Dingman and Perry, 1956 for details). As pointed out by Shubina and Lee (2004), the

Spearman correlation coefficient for a Sarmanov family of distribution is situated in the interval

[−3/4, 3/4].

The model was estimated by using restricted maximum likelihood in two–stages. The first

stage is based on the simplex method, a search procedure that requires only function evaluations,

not derivatives. To apply simplex, OLS initial values are used for β0, β1 and β2 and then values

for σu, σν and ω are determined (these values are equal to 2.0, 2.0 and 2.0, respectively). The

most important use of simplex is to refine initial estimates before applying one of the derivative–

based methods, which are more sensitive to the choice of initial estimates. For all models, we

used 5 iterations in this stage. In the second stage, the BFGS (Broyden, Fletcher, Goldfarb

and Shanno) algorithm was applied to obtain the final estimates of the parameters and the

asymptotic variance–covariance matrix estimated by the final iteration of the approximation of

the inverse Hessian. Finally, we computed regression standard errors and the covariance matrix

allowing for heteroscedasticity.2

It is noteworthy that the estimated parameters are very similar between the UML–NE and

RML–NED estimates and, in general, they are statistically significant at any significant level

and positive, indicating a positive relationship between the total cost and all input prices and

total revenue. On the other hand, the estimated value of the dependence parameter, that

is, ω, it is statistically significant at any significant level and negative (t–statistic is equal to

–119.36, p-value = 0.0). Moreover, the correlation coefficient (ρ) and Spearman’s ρS measure

(the probabilistic concordance among errors) indicate that correlation is low and negative among

errors but it is not zero. Finally, the maximum value of likelihood function is higher for RML–

NED than UML–NE and OLS estimates.

In terms of models fitting, we compare both the RML–NED and UML–NE models by using

a likelihood ratio test. Therefore, we can also show evidence of the dependence assumption

2All the computations were performed using RATS software.
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being tested. Specifically, the likelihood ratio test for the null hypothesis where ω = 0 is 257.68

(p-value = 0.0) which also indicates that independence between errors is rejected by our data.

As a final point, to illustrate the behavior of estimated cost efficiencies for RML–NED

and UML–NE models by using results in Table 1, we show in Figure 2 their kernel densities

(Epanechnikov kernel). As we can observe, there are clear differences among the estimated

cost efficiencies. In general, we can see as UML–NE overestimates cost efficiencies regarding

RML–NED estimates.

Figure 2: Kernel densities for estimated cost efficiencies.

Therefore, we can conclude that our data confirm a value added of our parametric specifi-

cation and its practical relevance, that is, RML–NED is better fitted than UML–NE when the

assumption of dependence is rejected.

4 Concluding remarks

In this paper, we have propose a new stochastic frontier model which introduces a flexible corre-

lation structure between the probability of the normal error term, ν, and the inefficiency term,

u. The formulae derived are closed form expressions for the marginal density of the estimated

error, which allow us to introduce the classical assumptions applicable to the idiosyncratic error

and the inefficiency term.
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Our approach presents the following advantages: (i) Probabilistic interpretation, in the

context of stochastic frontier models, is straightforward. (ii) It adds flexibility to the model

by taking into account both the effects of the independent case and the correlation among

variables. Furthermore, it allows a wider range of dependence. Any correlation sign is allowed,

including the possibility of negative correlation among variables, thus reducing the possibility

of misspecification. (iii) It is easily modelled in a maximum likelihood framework to test the

dependence assumption, and it is computationally simpler than other models like, for example,

Frank and Plackett copulas. (iv) It focuses on the classical case normal–exponential, but can also

be extended to other distributions, including the normal–truncated normal and normal–gamma,

among others.
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Gómez–Déniz, E. and Pérez–Rodŕıguez, J.V. (2014). Closed–form solution for a bivariate

distribution in stochastic frontier models with dependent errors. Journal of Productivity

Analysis, 43:2, 215-223.

Greene, W. (1980a). Maximum likelihood estimation of econometric frontier functions. Journal

of Econometrics, 13:1, 27–56.

Greene, W. (1980b). On the estimation of a flexible frontier production model. Journal of

Econometrics, 13:1, 101–115.

Greene, W. (1990). A Gamma distributed stochastic frontier model. Journal of Econometrics,

46:1, 141–164.

Greene, W. (2003). Maximum simulated likelihood estimation of the Normal–Gamma stochas-

tic frontier function. Journal of Productivity Analysis, 19:2–3, 179–190.

Jondron, J.; Lovell, C.A.; Materov, I.S. and Schmidt, P. (1982). On the estimation of technical

inefficiency in the stochastic frontier production function model. Journal of Econometrics,

19, 233–238.

18



Kumbhakar, S.C. and Lovell, C. A. (2000). Stochastic Frontiers Analysis. Cambridge Univer-

sity Press.

Lee, L.–F. (1983). A test for distributional assumptions for the stochastic frontier functions.

Journal of Econometrics, 22:3, 245–267.

Lee, T.M.L. (1996). Properties and applications of the Sarmanov family of bivariate distribu-

tions. Communications Statistics: Theory and Methods, 25:6, 1207–1222.

Meeusen, W. and Van Den Broeck, J. (1977). Efficiency estimation from Cobb–Douglas pro-

duction function with composed error. International Economic Review, 18, 435–444.

Park, Y.–H. and Fader, P.S. (2004). Modeling browsing behavior at multiple websites. Mar-

keting Science, 23:3, 280–303.
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Appendix 1. Proof of Theorem 1

From (4) we have

f(ε) =

∫ ∞
0

fσu,σν ,ω(u, ε) du

=

∫ ∞
0

fσu(u) fσν (u+ ε) du+ ω

∫ ∞
0

fσu(u) fσν (u+ ε)ϕσu(u)ϕσν (u+ ε) du. (14)

The first integral in (14) coincides with (1). Then, we have

f(ε) = [1 + ω δu(σu) δν(σν)]
1

σu
Φ

(
− ε

σν
− σν
σu

)
exp

{
ε

σu
+

σ2ν
2σ2u

}
−ω (J1 + J2 + J3) ,

where δu(σu), δν(σν) are given in (5), (6), respectively, while

J1 =

∫ ∞
0

e−u−(u+ε)
2−2(u+ε) fσu(u) fσν (u+ ε) du,

J2 = δν(σν)

∫ ∞
0

e−u fσu(u) fσν (u+ ε) du,

J3 = δu(σu)

∫ ∞
0

e−(u+ε)
2−2(u+ε) fσu(u) fσν (u+ ε) du.

Again, simple but tedious computations lead to the following:

J1 =
1

σu
√

1 + 2σ2ν
Υ1
σu,σν (ε) Υ4

σu,σν (ε) Φ

(
−σν
σu

1 + 3σu√
1 + 2σ2ν

− ε

σν

√
1 + 2σ2ν

)
,

J2 =
1

σu
√

1 + 2σ2ν
Υ1
σu,σν (ε) Υ2

σu,σν (ε) Φ

(
− ε

σν
− σν
σu
− σν

)
,

J3 =
1

σu
√

1 + 2σ2ν
Υ1
σu,σν (ε) Υ3p

σu,σν Φ

(
−σν
σu

1 + 2σu√
1 + 2σ2ν

− ε

σν

√
1 + 2σ2ν

)
,

from which (9) is obtained.

Appendix 2. Proof of Proposition 1

We start with the wellknown relation

fσu,σν ,ω(u|ε) =
fσu,σν ,ω(u, ε)

fσu,σν ,ω(ε)

and replace in this expression the numerator and the denominator by (4) and (9),

respectively. Now by taking the common factor for ω in both, numerator and denominator,

we get the result after some computations.
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Appendix 3. Proof of Proposition 2

From (9) it is easy to see

E
(
e−u|ε

)
∝
∫ ∞
0

e−ufσu,σν (u|ε)du+ ω

∫ ∞
0

e−uΨ0
σu,σν (u|ε)du, (15)

where the proportionality factor is given by
[
1 + ωΨ1

σu,σν (ε)
]−1

.

The first integral in (15) is simple to solve by using the pdf of the half.normal provided in

(2). For the second integral we use the expression given in (11) and with simple but tedious

computations we get the result.

Appendix 4. The stochastic cost frontier model

The corresponding expressions for the stochastic cost frontier (SCF) are derived easily from the

fact that now we assume v = −u+ ε.

In this case and under the classical model we have that,

fσu,σν (ε) =
1

σu
Φ

(
ε

σν
− σν
σu

)
exp

{
− ε

σu
+

σ2ν
2σ2u

}
,

fσu,σν (u|ε) =
1

√
2π σν Φ(˜̃µ/σν)

exp

{
− 1

2σ2ν
(u− ˜̃µ)2

}
, (16)

where ˜̃µ = ε− σ2ν/σu.

Again, the marginal f(ε) is asymmetrically distributed with mean E(ε) = σu and variance

var(ε) = σ2u + σ2ν .

The corresponding expressions under the dependence assumption are given bellow.

The marginal pdf of ε is given by

fσu,σν ,ω(ε) =
Ξ1
σu,σν (ε)

σu
√

1 + 2σ2ν

{
Φ

( ˜̃µ
σν

)[√
1 + 2σ2ν +

ω

1 + σu
exp

(
2σ2ν

1 + 2σ2ν

)]

−ω
[√

1 + 2σ2ν Ξ2
σu,σν (ε) δν(σν) Φ

( ˜̃µ
σν
− σν

)

+ Ξ3
σu,σν (ε) δu(σu) Φ

(
σν(2σu − 1)

σu
√

1 + 2σ2ν
+
ε
√

1 + 2σ2ν
σν

)

− Ξ4
σu,σν (ε) Φ

(
σν(σu − 1)

σu
√

1 + 2σ2ν
+
ε
√

1 + 2σ2ν
σν

)]}
, (17)

where

Ξ1
σu,σν (ε) = exp

{
− ε

σu
+

σ2ν
2σ2u

}
, (18)
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Ξ2
σu,σν (ε) = exp

{
−ε+

σ2ν
σu

+
σ2ν
2

}
, (19)

Ξ3
σu,σν = exp

{
σ2ν
2σ2u

4σu(σu − 1)− 2σ2ν
1 + 2σ2ν

}
, (20)

Ξ4
σu,σν (ε) = exp

{
−ε+

σ2ν
2σ2u

σu(σu − 2)− 2σ2ν
1 + 2σ2ν

}
. (21)

The conditional pdf of u given ε is given by

fσu,σν ,ω(u|ε) =
fσu,σν (u|ε) + ω=0

σu,σν (u|ε)
1 + ω=1c

σu,σν (ε)
, (22)

for u > 0, where fσu,σν (u|ε) is the pdf given in (16) and

=0
σu,σν (u|ε) = ϕσu(u)ϕσν (u+ ε) f cσu,σν (u|ε),

=1
σu,σν (ε) = δu(σu) δν(σν)− 1√

1 + 2σ2ν Φ

( ˜̃µ
σν

) × [√1 + 2σ2ν Ξ2
σu,σν (ε) δν(σν) Φ

( ˜̃µ
σν
− σν

)

+ Ξ3
σu,σν (ε) δu(σu) Φ

(
σν(2σu − 1)

σu
√

1 + 2σ2ν
+
ε
√

1 + 2σ2ν
σν

)

− Ξ4
σu,σν (ε) Φ

(
σν(σu − 1)

σu
√

1 + 2σ2ν
+
ε
√

1 + 2σ2ν
σν

)]
.

The point estimation for the efficiency in the SCF model under NE distributions, assuming

dependence, is given by

CEi =
=01
σu,σν ,ω(εi) + ω=02

σu,σν (εi)

1 + ω=1
σu,σν (εi)

, i = 1, 2, . . . , n,

where

=01
σu,σν ,ω(εi) = [1 + ω δu(σu) δν(σν)]

Φ

( ˜̃µ
σν
− σν

)
Φ

( ˜̃µ
σν

) e−εi+σ
2
ν/σu+σ

2
ν/2

and

=02
σu,σν (εi) =

1

=
( ˜̃µ
σν

) [ 1√
1 + 2σ2ν

Ξ11
σu,σν (εi) Φ

(
εi
σν

√
1 + 2σ2ν −

σν

σu
√

1 + 2σ2ν

)

− δν(σν) Ξ12
σu,σν (εi) Φ

( ˜̃µ
σν
− 2σν

)

− δu(σu)√
1 + 2σ2ν

Ξ13
σu,σν (εi) Φ

(
εi
σν

√
1 + 2σ2ν +

σu − 1

σu

σν√
1 + 2σ2ν

)]
,
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with

Ξ11
σu,σν (εi) = exp

{
−2εi −

σ4ν
(1 + 2σ2ν)σ2u

}
,

Ξ12
σu,σν (εi) = exp

{
−2εi +

2σ2ν
σu

(1 + σu)

}
,

Ξ13
σu,σν (εi) = exp

{
−εi +

σ2ν(σu(σu − 2)− 2σ2ν)

2σ2u(1 + 2σ2ν)

}
,

while δu(σu) and δν(σν) are given in (5), (6), respectively.
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