La prima de riesgo recargada en un seguro de rentas: tarificación mediante el uso de una medida de riesgo coherente
DOI:
https://doi.org/10.46661/revmetodoscuanteconempresa.2227Palabras clave:
Seguro de rentas, recargo, medida de riesgo coherente, función de distorsión, survival life insurance (annuities), surcharge, coherent risk measure, distortion functionResumen
En este estudio se obtiene un principio de cálculo de primas, para el ramo de vida, basado en una medida de riesgo coherente, la esperanza distorsionada transformada proporcional del tanto instantáneo (Wang, 1995), que justifique la recomendación de Solvencia II de reducir, para un seguro de rentas, el efecto del tanto instantáneo de mortalidad y conseguir de este modo una prima recargada implícitamente para hacer frente a las desviaciones desfavorables de la siniestralidad real. La modalidad de seguro seleccionada para el estudio ha sido el de rentas, seguro con cobertura de supervivencia, calculándose la prima única de riesgo para las cuatro leyes de supervivencia más aceptadas, como son la primera y segunda de Dormoy, la ley de Gomperzt y la ley de Makeham. La selección de estas leyes ha sido por ser las que mejor se ajustan al modelo mediante el empleo de las tablas de mortalidad elaboradas por Pérez (2000). En los seguros de vida con cobertura de supervivencia, una experiencia de siniestralidad negativa para la compañía significa que los asegurados son más longevos de lo esperado. Así, cuando se calculan las primas, es una práctica común añadir un margen de seguridad implícito, en forma de porcentaje, a las probabilidades de fallecimiento qx, o bien emplear una tabla de mortalidad cuyas probabilidades de fallecimiento sean inferiores a las del grupo humano considerado. Esto se puede interpretar como un decremento del tanto instantáneo con un múltiplo.
Descargas
Citas
Artzner, P. (1999) “Application of coherent risk measures to capital requirements in insurance”, North American Actuarial Journal, 3 (2), pp.11–15.
Aartzner, P.; Delbaen, F.; Eber, J.M.; Heath, D. (1999) “Coherent measures of risk”, Mathematical Finance, 9, pp. 203–228.
Bowers, J.R.; Newton, L.; Gerber, H.; Jones, D. (1997) Actuarial Mathematics, The Society of Actuaries, Illinois.
Denuit, D.; Dhaene, J.; Goovaerts, M.; Kaas, R. (2005) Actuarial Theory for Dependent risks: measures, orders and model, John Wiley & Sons.
European Commission (2010) Internal Market and Services DG. Insurance and pensions, Brussels, QIS5 Technical Specifications (Working Document of the Commission services). Disponible en: https://www.ceiops.eu.
Gerber, H. (1979) An introduction to mathematical risk theory, Huebner Foundation.
Gómez, E.; Sarabia, J.M. (2008) Teoría de la Credibilidad. Desarrollo y aplicaciones en primas de seguros y riesgos operacionales, Fundación MAPFRE.
Heilmann, W. (1989) “Decision theoretic foundations of credibility theory”, Insurance: Mathematics & Economics, 8, pp. 77–95.
Heras, A. (2010) “Medidas del riesgo y sus aplicaciones actuariales y financieras”, Economía Española y protección social, II, pp. 69–103.
Hernández Solís, M. (2013) “Tarificación en seguros de vida con la medida de riesgo esperanza distorsionada”, Tesis Doctoral, Universidad Complutense, Madrid.
Hurlimann, W. (2008) “Distortion Risk measures and Economic capital”, North American Actuarial Journal, 8, pp. 86–95.
Landsman, Z.; Sherris, M. (2001) “Risk measures and insurance premium principles”, Insurance: Mathematics & Economics, 29, pp. 103–115.
Modigliani, M.; Miller, M. (1958) “The cost of capital, Corporate Finance and the Theory of Investment”, The American Economic Review, 48, pp. 261–297.
Prieto, E.; Fernández, J. (2000) Tablas de Mortalidad de la Población Española de 1950 a 1990, Editorial Aseguradora.
Sandell, R. (2003) El envejecimiento de la población, Real Instituto Elcano, WP 20.
Tasche, D. (2000) Risk contributions and performance measurement, Technische Universität München, Munich.
Tse, Y-K. (2009) Nonlife Actuarial Models. Theory, methods and evaluation, Cambridge University Press.
Vegas, J. (2000) “El riesgo de longevidad en los planes de pensiones”, Anales Instituto Actuarios Españoles, 6, pp. 119–157.
Wang, S. (1995) “Insurance pricing and increased limits ratemaking by proportional hazards transforms”, Insurance Mathematics and Economic, 17, pp. 43–54.
Wang, S. (1996) “Premium calculation by transforming the layer premium density”, Astin Bulletin, 26.
Wang, S. (2000) “A class of distortion operators for pricing financial and insurance risk”, Journal of Risk and Insurance, 67, pp. 15–37.
Wang, S.; Young, V.; Panjer, H. (1997) “Axiomatic characterization of insurance prices”, Insurance Mathematics and Economics, 21, pp. 173–183.
Young, V. (2004) Premium Principles, Encyclopedia of actuarial Science, Wiley, New York.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2013 Revista de Métodos Cuantitativos para la Economía y la Empresa

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
El envío de un manuscrito a la Revista supone que el trabajo no ha sido publicado anteriormente (excepto en la forma de un abstract o como parte de una tesis), que no está bajo consideración para su publicación en ninguna otra revista o editorial y que, en caso de aceptación, los autores están conforme con la transferencia automática del copyright a la Revista para su publicación y difusión. Los autores retendrán los derechos de autor para usar y compartir su artículo con un uso personal, institucional o con fines docentes; igualmente retiene los derechos de patente, de marca registrada (en caso de que sean aplicables) o derechos morales de autor (incluyendo los datos de investigación).
Los artículos publicados en la Revista están sujetos a la licencia Creative Commons CC-BY-SA de tipo Reconocimiento-CompartirIgual. Se permite el uso comercial de la obra, reconociendo su autoría, y de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.
Hasta el volumen 21 se ha estado empleando la versión de licencia CC-BY-SA 3.0 ES y se ha comenzado a usar la versión CC-BY-SA 4.0 desde el volumen 22.