Design of a control charter based on principal component analysis. A case study

Authors

  • Bruno de Jesús Rahmer Fundación Universitaria Tecnológico Comfenalco (Colombia)
  • José Solana Garzón Fundación Universitaria Tecnológico Comfenalco (Colombia)
  • Hernando Garzón Saénz Fundación Universitaria Tecnológico Comfenalco (Colombia)
  • Gustavo Ortiz Piedrahita Fundación Universitaria Tecnológico Comfenalco (Colombia)

DOI:

https://doi.org/10.46661/revmetodoscuanteconempresa.3509

Keywords:

chemical industry, data reduction, statistical analysis, multivariate quality control, variability

Abstract

The set of quantitative methods and techniques used to detect assignable variations in manufacturing processes are contained within a discipline classified as statistical process control. Such methods carry out precise evaluations on the general state of productive systems and carry out simultaneous monitoring of various interrelated quality characteristics. In the framework of this research, the analysis of a chemical process based on the theoretical principles of principal component analysis is proposed, which enables the representation of the original variables in a compact dimensional space. In the later phase, a control graph based on the squares of the prediction errors is constructed in order to evaluate the behavior of the composite variables found. The results indicate that the process is not marginally stable and it is necessary to reduce its variability margin.

Downloads

Download data is not yet available.

References

Bógalo, J. (2012). Componentes subyacentes comunes en series temporales. Madrid: Universidad Nacional de Educación a Distancia. Recuperado de http://e-spacio.uned.es/fez/eserv/bibliuned:masterMatavanz-Jvbogalo/Documento.pdf

Camacho, J., & Ferrer, A. (2014). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical Aspects. Chemometrics and Intelligent. Laboratory Systems. Valencia: Elseiver.

Camacho, J., Pérez-Villegas, A., García-Teodoro, P., & Maciá-Fernández, G. (2016). PCA-based multivariate statistical network. ScienceDirect, 59, 118-137.

Costa, F., Pedroza, R., Porto, D., Amorim, M., & Lima, K. (2015). Multivariate Control Charts for Simultaneous Quality Monitoring of Isoniazid and Rifampicin in a Pharmaceutical Formulation Using a Portable Near Infrared Spectrometer. Journal of the Brazilian Chemical Society, 26(1), 64-73.

De Ketelaere, B., Hubert, M., & Schmitt, M. (2015). Overview of PCA-Based Statistical Process-Monitoring Methods for Time-Dependent, High-Dimensional Data. Journal of Quality Technology, 47(4), 318-335.

Dias, C., & Krzanowski, W. (2006). Choosing components in the additive main effect and multiplicative interaction (AMMI) models. Scientia Agricola, 63(2), 169-175.

Filho, D., & Sant’Anna, A. (2016). Principal component regression-based control charts for monitoring count data. The International Journal of Advanced Manufacturing Technology, 85, 1565-1574.

Herrera, J., Herrera, G., & Rahmer, B. (2017). Control Estadístico de Procesos para datos Correlados Serialmente. Un Caso de Estudio. International Conference on Industrial Engineering and Operations Management (pp. 891-904). Bogotá.

Jolliffe, I., & Cadima, J. (2016). Principal component analysis: a review and recent. The Royal Society Publishing, 374, 20150202. DOI: 10.1098/rsta.2015.0202.

Lazzarotto, E., Madalena, L., Chaves, A., & Texeira, L. (2016). Principal components in multivariate control charts applied to data instrumentation of dams. Independent Journal of Management & Production, 7(1), 17-37.

Montgomery, D. (2012). Statistical Quality Control (Séptima ed.). Jon Wiley & Sons.

Owen, J.A. (2014). Principal Component Analysis: Data Reduction and Simplification. McNair Scholars Research Journal, 1, 1-12.

Pérez, C. (2004). Técnicas de Análisis Multivariante de Datos. Madrid: Pearson Prentice Hall.

Phaladiganon, P., Bum, S., Chen, V., & Jiang, W. (2013). Principal component analysis-based control charts for multivariate nonnormal distributions. Expert Systems with Applications: An International Journal, 40(8), 3044-3054.

Quaglino, M., & Vitelleschi, M. (2009). Comparación de Métodos para el Tratamiento de Información Faltante en un Análisis de Componentes Principales sobre Datos Biológicos. Revista de la Facultad de Bioquímica y Ciencias Biológicas, 13, 115-124.

Rahim, M. A., Siddiqui, Y., & Elshafei, M. (2014). Integration of Multivariate Statistical Process Control and Engineering Process Control. International Conference on Industrial Engineering and Operations Management (pp. 470-480). Bali.

Severson, K., Molaro, M., & Braatz, R. (2017). Principal Component Analysis of Process Datasets with Missing Values. Processes, 5(3), 38.

Slišković, D., Grbić, R., & Hocenski, Ž. (2012). Multivariate statistical process monitoring. Tehnicki Vjesnik-Technical Gazette, 19(1), 33-41.

Vanhatalo, E., Kulahci, M., & Bergquista, B. (2017). On the structure of dynamic principal component analysis used in statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 167, 1-11.

Zude, M. (2008). Optical Monitoring of Fresh and Processed Agricultural Crops. New York: CRC Press Taylor & Francis Group.

Published

2020-12-01

How to Cite

Rahmer, B. de J., Solana Garzón, J., Garzón Saénz, H., & Ortiz Piedrahita, G. (2020). Design of a control charter based on principal component analysis. A case study. Journal of Quantitative Methods for Economics and Business Administration, 30, 279–296. https://doi.org/10.46661/revmetodoscuanteconempresa.3509

Issue

Section

Articles