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ABSTRACT 
 
 Computer modeling of protein-ligand interactions is one of the most important 
phases in a drug design process. Part of the process involves the optimization of highly 
multi-modal objective (scoring) functions. This research presents the Minimum Population 
Search heuristic as an alternative for solving these global unconstrained optimization 
problems. To determine the effectiveness of Minimum Population Search, a comparison 
with seven state-of-the-art search heuristics is performed. Being specifically designed for 
the optimization of large scale multi-modal problems, Minimum Population Search 
achieves excellent results on all of the tested complexes, especially when the amount of 
available function evaluations is strongly reduced. A first step is also made toward the 
design of hybrid algorithms based on the exploratory power of Minimum Population 
Search. Computational results show that hybridization leads to a further improvement in 
performance. 
 
KEY WORDS: Minimum Population Search, Molecular Docking, Heuristic Algorithms, 
Optimization, Multi-modality. 
 
 
INTRODUCTION 
 
Several population-based heuristics such as Particle Swarm Optimization (Bratton and 
Kennedy, 2007), Differential Evolution (Storn and Price, 1997) and Nelder-Mead (Lagarias 
et al., 1998) use line segments (e.g. difference vectors, attraction vectors, mid-point 
crossover, etc.) to generate new solutions. If the population size (n) of such algorithms is 
smaller than the dimensionality of the problem (d), then solutions generated through the 
mere combination of line segments will get trapped inside the n-1 dimensional hyperplane 
defined by the population members. The Nelder-Mead algorithm is a clear example: a 
simplex of n = d+1 solutionsis required to search a d-dimensional search space. To 
guarantee the effectiveness of the difference/attraction vectors, the recommended 
population size for PSO and DE is usually larger than the dimensionality of the problem 
(Mallipeddi and Suganthan, 2008). However, large populations may affect a metaheuristic’s 
scalability and/or its ability to converge with a limited budget of function evaluations 
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(FEs). Conversely, if the population is too small, then the metaheuristic may be prone to 
premature convergence and may even be unable to cover the entire search space (i.e. when 
n<d as is often the case for large d) (Chen et al., 2014). 
 
Minimum Population Search (MPS) is a new metaheuristic explicitly designed to deal with 
this limitation (Bolufé-Röhler and Chen, 2014). The innovative idea of MPS is to provide 
strong exploration/diversification mechanisms which allow it to effectively cover the 
search space while using a (relatively) small population. In MPS the population size is set 
equal to the dimensionality of the problem (n = d). To generate new solutions, line 
segments are used to search within the d-1 dimensional hyperplane, and full coverage of the 
search space is then achieved by taking a subsequent step that is orthogonal to this 
hyperplane. To preserve the diversity of the (small) population and avoid premature 
convergence, the thresheld convergence technique is used. By establishing a minimum search 
step, thresheld convergence disallows new solutions which are too close to members of the 
current population, and this ensures a strong exploration during the early stages of the 
search. The minimum step (threshold) decays as the search progresses and convergence is 
thus “held” back until the last stages of the search process.   
 
Previous work on the BBOB set of benchmark functions confirms the ability of MPS to 
perform effectively on multi-modal search spaces with a highly reduced budget of FEs 
(Bolufé-Röhler and Chen, 2013) (Bolufé-Röhler and Chen, 2014). This efficient use of the 
available computational effort/function evaluations may become useful in real-world 
applications where computing the objective function can be very time consuming. The 
molecular docking problem is one such real-world applicationwhere the objective function 
is highly multi-modal as well as costly to compute. Thus, we consider it to be a good real-
world problem to test the performance of MPS.  
 
In addition to comparing MPS against a wide range of algorithms on the molecular docking 
problem, this work also presents a first approach for hybridizing MPS. A distinctive feature 
of MPS is providing a strong exploration with a small population. It allows detecting 
promising regions of the search space with a highly reduced budget of function evaluations. 
If stopped before converging, the population of MPS may become a good starting point 
for heuristics with a stronger local search strategy. Simple hybrids based onheuristics such 
as Covariance Matrix Adaptive Evolutionary Strategy (CMA-ES) (Hansen et al., 2003), 
Nelder-Mead (NM)(Lagarias et al., 1998) and Pattern Search (PS) (Audet, and Dennis, 
2003)are presented and analyzed. Computational results demonstrate the potential for MPS 
hybrids as the hybrid algorithms outperform both MPS and the (stand-alone) method used 
to find a local optimum. 
 
The next section describes the molecular docking problem. Section III presents a 
background on the optimization of multimodal functions and thresheld convergence. In 
Section IV, MPS is introduced from its basic ideas to its current state of the art. 
Computational results for MPS and a broad range of other metaheuristics are presented in 
Section IV. The hybrids of MPS using the standard and adaptive threshold functions are 
presented in Section V and VI, respectively. Conclusions about the research are finally 
presented in Section VII. 
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MOLECULAR DOCKING 
 
Molecular docking is a computational method which aims to predict the three-dimensional 
structure of a protein-ligand complex. In the field of rational drug design, solution of the 
docking problem is of great value, as it allows prediction of binding conformations and 
affinities between drug molecules and target proteins (Brooijmans and Kuntz, 2003). The 
docking problem has been extensively addressed, both academically and commercially 
(DOCK, AutoDock, GOLD, ICM, and FlexX). However, docking is still a time-
consuming task even with the most powerful computing resources currently available. For 
these reasons, the development of faster and more accurate docking methods remains an 
active field of research (Trott and Olson, 2009). 
 
There are two key components to docking. First, there is the search strategy which is in 
charge of sampling the configuration space. Optimization algorithms are frequently used 
for this purpose. Second, there is the "scoring function" which allows the ranking and 
selection of the best solutions found by the search algorithm. Generally, these scoring 
functions are approximations of the free binding energy of the complex, and they allow 
finding the correct binding mode by assuming that the configuration with the lowest 
energy is the "right" one (i.e. the experimentally observable one). Ideally, a scoring function 
should be as simple as possible to compute, have few local minima, and its global optimum 
should correspond to the correct binding conformation (Kitchen et al., 2004).  
 
The correct binding mode can usually be found by using methods like X-ray 
crystallography and NMR spectroscopy, but as docking simulations are much cheaper and 
faster, these methods complement each other in practice(Haile, 1992). Large sets of 
complexes can be sampled by using docking first, and then experimentally tested by using 
one of the aforementioned methods. The experimentally observed structure can be used to 
test the accuracy of a docking method through the root mean square deviation (RMSD) 
measure (Kroemer, 2007). A solution with a RMSD less than 2 Å is classified as docked 
and it is considered a very good result. A solution with a RMSD less than 3 Å is classified 
as partially docked (Magalhães et al., 2004). 
 
Many approximations are made in order to speed up docking. One of the most common 
approaches is to assume that the receptor conformation does not change throughout the 
docking process. This approach highly reduces the dimensionality of the problem. Even so, 
the scoring function remains the most computationally expensive component in docking 
algorithms. Scoring functions are also highly multimodal and rugged, so they are difficult to 
optimize (Tavares et al., 2002). Therefore, previous work has used several heuristics such as 
Simulated Annealing (Goodsell and Olson, 1990), Iterated Local Search (Trott and Olson, 
2009), Genetic Algorithms (Tavares et al., 2002), Differential Evolution (Thomsen, 2003), 
Particle Swarm Optimization (Namasivayam and Günther, 2007), among others. 

Table 1: Description of the complexes used in the experiments 
 

PDB 
code 

Protein receptor Box dimensions 
(A) 

Ligand 
torsions 

1adb Alcohol dehydrogenase 28×20×22 15 
1bmm Alpha-Thrombin 17×19×22 10 
1cjw Serotonin N-acetyltransferase 26×22×30 26 
2z5u Lysine-specific histone 

demethylase 1 
28×32×24 20 
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Population-heuristics are generally reported to obtain better results than algorithms that 
consider only one conformation at a time (Halperin, 2002). Hybridization of global and 
local search algorithms is also a very frequent strategy used to improve docking accuracy 
(Thomsen, 2003). 
 
For our experiments, we will be using the four complexes described in Table 1. These were 
examples selected because of their relative high number of rotatable bonds, since it is 
harder for current search algorithms to deal with these types of complexes. The scoring 
function used is the Autodock 4 scoring function. Autodock is a flexible software that is 
available free for academic usage, and it is frequently used in docking research (Morris et 
al., 2009). 
 
BACKGROUND 
 
In multi-modal search spaces, following a gradient doesn’t necessarily lead the search in a 
good direction. Thus, a general guideline for optimization in these search spaces is to 
perform an initial exploratory search to detect the most promising regions. Once these 
regions have been found, local search is required to converge to the corresponding (local) 
optima. A limitation of this approach is that usually a large amount of function evaluations 
are required to effectively perform both processes of global and local search. Increasing the 
efficient use of FEs is thus an important goal in multi-modal search spaces. 
 
In evolutionary algorithms, the population size is a crucial parameter strongly related with 
the efficient use of FEs (Grefenstette, 1986). Larger populations, for instance, allow more 
exploration and reduce the risk of premature convergence and stagnation. However, 
evolving a large population usually requires larger budgets of FEs to achieve convergence. 
With smaller populations, efficiency in the use of FEs is increased and convergence can be 
achieved with fewer evaluations, but the risk of premature convergence and stagnation also 
rises. Many research works have been conducted to develop population-based algorithms 
with small populations, also called micro-algorithms.  
 
The key concern when using a small population is how to increase/maintain diversity and 
exploration. Previous research has applied the idea of reducing the population size to a 
wide range of evolutionary algorithms such as Estimation Distribution Algorithms (EDA) 
(Hong et al., 2007), Genetic Algorithms (GA) (Reeves, 1993), Differential Evolution 
(Caraffini et al., 2013), Particle Swarm Optimization (Cabrera and Coello, 2010) and multi-
swarm systems (Bolufé-Röhler and Chen, 2011). The increased efficiency achieved by these 
algorithms have proven to be useful in fields such as Interactive Evolutionary Computation 
(IEC) (Takagi, 2001), Multi-Objective Optimization (MOO) (Cabrera and Coello, 2010) 
and Large Scale Global Optimization (LSGO) (Brest et al., 2008). In each case, explicit 
techniques to preserve the diversity of the population were developed. 
 
Crowding and niching are among the most popular diversification techniques. These 
methods allow allocating and maintaining multiple optimal/suboptimal solutions in a 
population (Thomsen, 2004). Inspiration for niching stems from nature, where diverse 
species coexist through adaptation to different niches. To maintain diversity, explicit 
mechanisms are employed to split the search efforts across different parts of the search 
space. To achieve this, niching frequently involves the use of minimally-interacting 
subpopulations. Crowding, on the other hand, maintains diversity by comparing each new 
solution against a subset of the population and replacing the one most similar to it (Brits et 
al., 2002).  
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Although conceived to maintain a diversified population, these methods do not address the 
effects of having global and local search occurring concurrently during the search process. 
In many heuristics, large (global) and small (local) search steps are made at the same time. 
As a result, the process of detecting the best regions may be compromised. Better solutions 
are likely to be found in attraction basins (regions in which greedy descent will lead to the 
same local optimum) where several small/local search steps have been performed. This 
attraction basin may then look more promising than a better attraction basin where less 
local search has been done. Figure 1 illustrates how a solution found through excessive 
local search (red) may have a better fitness, despite being located in a worse attraction 
basinthan a randomly picked solution (blue) from a better attraction basin. 
 
The thresheld convergence (TC) technique has been developed to address this issue (Chen 
and Montgomery, 2011). The key idea is to avoid small steps (local search) during the early 
stages of the search process. This allows the search method to sample, without bias, 
different attraction basins. Once enough exploration has been performed, a transition into 
local search occurs in order to find the local optima of the best detected attraction basins. 
Thresheld convergence achieves this by enforcing a minimum size on the search step. The 
minimum step (threshold) decays as the search progresses and convergence is thus “held” 
back until the last stages of the search process. By controlling the decay rate of the 
threshold function, it is possible to effectively determine the amount of exploration and 
exploitation performed by the algorithm(Bolufé-Röhler et al. 2013). 
 
MINIMUM POPULATION SEARCH 
 
Minimum Population Search is a recently developed metaheuristic specifically designed for 
optimizing multi-modal functions. The key idea is to guarantee a full search into all 
dimensions using the minimum required population size. Similarly to other population-
based heuristics, MPS uses line segments as its main search mechanism. However, if the 
population size becomes smaller than the dimensionality of the problem, line segments will 
be restricted to the n-1dimensionalhyperplane formed by the n population members. To 
overcome this limitation the population size is set equal to the dimensionality of the 
problem (n = d), and a subsequent step orthogonal to the d-1 dimensional hyperplanethen 
guarantees searching into all dimensions. (Bolufé-Röhler and Chen, 2014). 
 

Figure 1: A solution found through local search (red) may look more promising 
than a random solutionfrom a better attraction basin (blue). 
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Every generation a new solution (triali) is created from each population member (xi). First, 
from each parent solution xi a step inside the d-1hyperplane (formed by the n population 
members) is performed. Then, an orthogonal step is made to search into the missing 
dimension. The “in-plane” step is made using the difference vector between the parent 
solution (xi) and the centroid of the current population (xc). The orthogonal step is made 
taking a random vector orthogonal (orth) to the parent-centroid difference vector (Figure 
2). This two-step process for generating the new trial solutions (triali) is represented in (1). 
The direction and size of the difference and the orthogonal vectors are determined by the 
scaling factor Fi and Ostep_i, respectively.  
 

orthOxxFx=trial istepciiii  _)(   (1)
 
To promote diversification,thresheld convergence forces new solutions to be a minimum 
(min_step) threshold distance away from their parent solutions. To avoid new solutions 
from being sampled too far away from the best found regions, MPS also enforces a 
maximum search threshold (max_step = 2 * min_step). To guarantee that the difference 
vector step doesn’t exceed the maximum allowed threshold distance, the Fi factor is drawn 
with a uniform distribution from [-max_step, max_step]. To ensure that the new solution 
(triali) falls in the correct (min_step, max_step) threshold interval,the Ostep_i factor is selected 
with a uniform distribution from [min_orthi, max_orthi]. The min_orthi and max_orthi values 
are calculated using (2) and (3), respectively. The difference vector (xi-xc) and the 
orthogonal vector (orth) are normalized before scaling. Once the new solutions are created, 
clamping is performed if necessary, and the best n solutions among the parents and 
offspring survive into the next generation. 
  

)0,max(min__ 22
iii Fstep=orthmin     (2)

 

)0,max(max__ 22
iii Fstep=orthmax     (3)

 

Figure 2: Generation of a new solution (trial) in MPS. 
 

 

Figure 2: Generation of a new solution (trial) in MPS. 
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The min_step values are updated by a rule similar to that used in previous attempts to 
control convergence for PSO (Chen and Montgomery, 2011) and DE (Montgomery and 
Chen, 2012) in which an initial threshold is selected that then decays over the course of the 
search process, see (4). Equation (4) shows how min_step is calculated:α represents a 
fraction of the main space diagonal, FEs is the total available amount of function 
evaluations, k is the number of evaluations used so far, and γ is the parameter that controls 
the decay rate of the threshold. The current implementation uses α= 0.3 and γ = 3, as 
suggested in (Bolufé-Röhler and Chen, 2013). 
  

 )/]([_ FEskFEsdiagonal=stepmin i     (4)

 
To ensure good spacing in the initial population, the initial points are selected to be on the 
diagonal of the search space. Assuming that the search space is bounded by the same lower 
and upper bound in each dimension, each population member is initialized using (6): sk is 
the k-th population member, rsi are random numbers which can be -1 or 1, and bound is the 
lower and upper bound in each dimension. This initialization method leads to a better 
distribution of the initial solutions in the search space than did uniform random solutions. 
A detailed pseudo-code is presented in Figure 3. 
  

)2/*  ...,  ,2/*  ,2/*( 21 boundsrboundsrboundsr=s nk   (5)
 
The molecular docking problem presents different (and asymmetric) bounds for each 
variable. Several components of MPS, such as the initialization method and the thresheld 
convergence minimum and maximum step, were designed having in mind equal bounds for 
variables, centered on the search space origin (as in most benchmark functions). Thus, to 
guarantee the correct functioning of MPS, the algorithm is executed with each variable 
bounded on [-1, 1]. Before evaluating the objective function, each solution is scaled back to 
the molecular docking search space using (6). In (6), vark is the value of the kth variable on 
the [-1, 1] search space, rangek and midk are respectively the range and middle point for the 
bounds of variable k in the molecular docking search space, and md_vark is the value for 
variable k after scaling back to the molecular docking problem. 

Figure 3: Minimum Population Search Algorithm 
 

MPS (α,γ, maxFEs) 
X ← InitialPopulation()       // Equation (5) 
while FEs <maxFEs 
 min_step ← UpdateThreshold(α,γ)     // Equation (4) 
 max_step ← 2 * min_step 
 xc ← CalculateCentroid() 
 for i = 1 : popsize 
  Fi ← UniformRandom(-max_step, max_step) 
  orthi ← OrthogonalVector(xi- xc)    // normalized vector 
  orth_step ← UniformRandom(min_orth, max_orth)  // Equations (2) and (3) 
  triali ← xi + Fi*(xi - xc) + orth_step*orthi   // clamping if necessary 
  Offpsring.Add(triali) 
 endfor 
 X ← BestSolutions(X, trial) 
endwhile 
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kkkk rangemid=md var*var_   (6)

 
 
COMPUTATIONAL RESULTS 
 
A set of experiments has been designed to test the effectiveness of MPS on the molecular 
docking problem. The experiments include comparisons to other population-based and 
local search metaheuristics such as Genetic Algorithms, Differential Evolution, Particle 
Swarm Optimization and the Univariate Marginal Distribution Algorithm (UMDA), 
Pattern Search (PS), the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) 
and the simplex-based search method Nelder-Mead (NM).  
 
The UMDA algorithm is a standard implementation using Gaussian density functions and 
truncation selection (Larrañaga and Lozano, 2011), the population size is n = 200 and the 
selection coefficient is c=0.2(Bolufé-Röhler and Chen, 2012). PSO is a standard version 
with ring topology (Bratton and Kennedy, 2007), with zero initial velocities (Engelbrecht, 
2012) and “Reflect-Z” for particles that exceed the boundaries of the search space (Helwig 
et al., 2013). The DE method is the highly common and frequently effective variant labeled 
DE/rand/1/bin,from the implementation provided in (DE code, 2014). As recommended 
in (Bratton and Kennedy, 2007) and (Bolufé-Röhler and Chen, 2013), a population of n = 
50 was used for DE and PSO. The CMA-ES code is the MATLAB version 3.61.beta 
available in (CMA-ES code, 2014), the default set of parameters was used. The Nelder-
Mead and Pattern Search algorithms use the implementation provided by MATLAB with 
the default set of parameters.The Genetic Algorithm implementation is also from 

 

Table 2: Performance of different heuristics on the molecular docking problem 
 

  MPS PSO UMDA GA DE CMAES PS NM 

 

 
1adb 

Median -8.1e+0 -8.1e+0 -8.9e+0 -8.5e+0 2.4e+1 -8.9e+0 -4.0e+0 1.3e+4 

Mean -7.3e+0 -8.4e+0 -8.7e+0 3.2e+1 2.6e+1 -5.6e+0 2.2e+3 6.6e+4 

Std.Dev. 6.7e+0 2.2e+0 6.2e+0 1.5e+2 2.2e+1 1.7e+1 8.6e+3 1.2e+5 

RMSD 2.3e+0 1.1e+0 2.1e+0 9.1e-1 6.5e+0 7.1e+0 2.8e+1 4.9e+1 

 

1bmm 

Median -9.9e+0 -9.4e+0 -8.9e+0 -7.9e+0 -8.5e+0 -7.6e+0 -4.8e+0 1.9e+1 

Mean -1.0e+1 -9.6e+0 -8.9e+0 -7.7e+0 -8.0e+0 -5.4e+0 7.7e+1 1.0e+4 

Std.Dev. 1.5e+0 1.4e+0 1.4e+0 2.2e+0 1.9e+0 5.3e+0 5.5e+2 3.5e+4 

RMSD 3.2e+0 4.5e+0 6.9e+0 7.3e+0 4.4e+0 8.1e+0 1.3e+1 7.4e+0 

 

1cjw 

Median -9.6e+0 -5.9e+0 -9.2e+0 -4.7e+0 8.9e+1 -9.3e+0 2.5e+1 1.2e+4 

Mean -7.4e+0 -5.2e+0 2.2e+1 3.7e+0 1.3e+2 -1.5e-1 4.6e+3 8.0e+4 

Std.Dev. 1.3e+1 4.0e+0 1.8e+2 2.2e+1 1.2e+2 2.1e+1 1.8e+4 1.4e+5 

RMSD 5.9e+0 5.4e+0 8.9e+0 6.1e+0 6.2e+0 8.1e+0 7.3e+0 1.1e+1 

 
2z5u 

Median -3.5e+0 2.0e+2 1.6e+1 2.5e+2 5.7e+3 3.7e+1 4.3e+3 1.4e+5 

Mean 3.3e+1 3.9e+2 1.1e+2 1.6e+3 9.7e+3 2.8e+2 3.8e+4 2.0e+5 

Std.Dev. 1.1e+2 5.1e+2 3.5e+1 5.0e+3 1.2e+4 5.9e+2 7.8e+4 1.9e+5 

RMSD 7.8e-1 2.6e+0 9.1e-1 8.5e-1 3.9e+0 5.7e+0 1.8e+1 9.7e+0 
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MATLAB using heuristic crossover, adaptive mutation, and a population size of 100 
individuals.  Minimum Population Search uses the parameters recommended in (Bolufé-
Röhler and Chen, 2013), i.e. α=0.3 and γ=3 for the threshold function. 
 
The amount of function evaluations is one of the most frequently used stop conditions, but 
on previous work this range is from 10.000 to 2.500.000. Taking into account that function 
evaluations in molecular docking are time consuming, results in Table 2 are presented with 
a maximum of 50.000 function evaluations, as in (Hou et al., 1999).Results in Table 2 
include the mean, standard deviation and median over a 100 trials on every complex. The 
mean value for the root mean square deviation is also presented. 
 
As it can be noticed MPS provides the best mean and median on 3 of the 4 complexes, 
providing a very solid performance among all the tested problems. On the 2z5u complex, 
MPS achieves an advantage of at least one order of magnitude against all of the other 
algorithms. The square root mean deviation achieved by MPS is the best one in 2 of the 4 
complexes, and a successful docking (RMSD≤2.0Å) is achieved in 3 of the complexes. It is 
worth noticing the large difference between the reported mean and median values for all 
the tested methods. Due to the high multimodality, ruggedness, and deceptiveness of the 
scoring function, occasional executions of the algorithms get trapped at low quality local 
optima strongly affecting the overall mean performance. Thus, we consider the median as a 
more accurate measurement of the algorithms’ performance. 
 
Molecular calculations are in general very time consuming. Thus, achieving meaningful 
results with highly restricted budgets of FEs becomes important. Figure 4 presents the 
results of all the algorithms with varying budgets of allowed function evaluations for the 

Figure 4: Performance with variable budgets of FEs. 
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1bmm complex. The plotted values are the median resultfrom 100 trials.As expected, the 
performance of most heuristics clearly drops as the budget of available FEs is reduced. 
However, CMA-ES, NM, and PS show a stable performance as the amount of evaluations 
is reduced. In the case of Pattern Search, this distinctive behavior is characteristic of single-
point local search methods. Local search methods are usually greedier on their exploration 
of the search space allowing a faster convergence (with less FEs) to local optima. Similarly, 
the CMA-ES and Nelder-Mead algorithms are also known for their intense local search 
strategy and the ability to converge with a reduced budget of evaluations (Molina et al., 
2010) (Liu and Yang, 2012). This characteristic suggests that PS, NM, and CMA-ES could 
be effectively used as local exploitation methods in a hybrid algorithm (Payne and 
Eppstein, 2005) (Gao et al., 2011). 
 
HYBRIDIZING MINIMUM POPULATION SEARCH 
 
A distinctive feature of MPS is providing a strong exploration with a small population. It 
allows detecting promising regions of the search space at early generations with a strongly 
reduced budget of function evaluations. Although MPS starts performing local search as 
the threshold size decreases, its search mechanism is highly exploratory (e.g. orthogonal 
step). Thus, if stopped before converging, the population of MPS may become a good 
starting point for heuristics with a stronger local search strategy.   
 
A simple hybrid algorithm was designed to confirm this hypothesis. First, MPS is executed 
and stopped once it reaches half of the FEs budget. Stopping before consuming all of the 
function evaluations keeps the threshold from becoming too small and MPS from 
performing local search. The rest of the FEs are then used to perform a greedier/local 
search. Starting from the best found solution the CMA-ES, PS, and NM methods are 
executed. If further FEs are available after the method converges, the second best solution 
is used as the starting point, and so on until the whole budget of function evaluations is 
consumed. Although CMA-ES and NM are population-based algorithms, the 
implementations provided in (CMA-ES code, 2014) and MATLAB, respectively, allow the 
algorithm to startfrom a singleinitial solution. 
 
Three hybrids of MPS using CMA-ES, PS, and NM were tested. Table 3 shows the median 
results of the three hybrids for 100 trials with a budget of 50.000 FEs. The relative 
performances (%-diff = (a-b)/max(a,b)) achieved by each hybrid versus MPS and the 
hybridizing heuristic are also shown. These values indicate by what amount (percent) the 
given hybrid (b) outperforms each of the hybrid’s components (a). The compared values 

Table 3: Relative performance of the MPS hybrids 
 

 MPS-CMAES MPS-PS MPS-NM 

 Median %-diff 

(MPS) 

%-diff 

(CMAES) 

Median %-diff 

(MPS) 

%-diff 

(PS) 

Median %-diff 

(MPS) 

%-diff 

(NM) 

1adb -9.3e+0 9.4% 2.8% -8.6e+0 4.4% 27.2% -8.6e+0 4.3% 99.9% 

1bmm -9.9e+0 0.4% 27.8% -9.9e+0 0.6% 45.8% -1.1e+1 3.0% 83.4% 

1cjw -9.8e+0 1.5% 3.8% -9.8e+0 1.9% 73.9% -1.1e+1 11.4% 99.9% 

2z5u -2.7e+0 -2.8% 58.5% -2.6e+0 -3.0% 99.3% -8.7e+0 18.9% 99.9% 

Mean %diff.  2.1% 23.2%  1.0% 61.6%  9.4% 95.8% 
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(a) and (b) are the errors (difference) between the best known solution and the achieved 
median value.    
 
Results in Table 3 confirm that MPS may benefit from a greedier search during the last 
stages of the optimization process. In general, the mean relative improvement over the 
local search methods is very large, rising up to an impressive 95.8% when compared to 
Nelder-Mead. This result and the large standard deviation on Table 2 suggest that Nelder-
Mead is the local search method with the strongest dependence on the initial solutions. 
However, when provided when a good initial guess, Nelder-Mead can be an effective and 
efficient technique for reaching nearby (local) optima. The hybrid between MPS and 
Nelder-Mead provides the best performance, achieving the best results on 3 of the 4 
complexes. The MPS-NM hybrid also achieves the largest relative improvement when 
compared to MPS with an almost 10% average improvement. 
 
ADAPTIVE THRESHOLD FUNCTION 
 
To help local search find different local optima, the final solutions of MPS (i.e. the initial 
solutions for CMA-ES, PS, and NM) should be located in different attraction basins. If the 
distance among the different attraction basins could be known a priori, then the threshold 
could be held longer at this “ideal search scale”. Once the threshold is at this search scale 
MPS could be stopped before solutions start falling inside the same attraction basins. 
However, the size of the attraction basins is not the same for all problems, and it thus 
becomes difficult to predict when to stop MPS. 
 
An alternative approach is to use an adaptive threshold function. By adaptively adjusting γ, 
it is possible to control the convergence speed and stabilize the threshold at the “ideal 
search scale”. A simple strategy can be used to adjust γ. If an improvement is achieved, i.e. 
at least one offspring survives to the next generation, it suggests that exploration is paying 
off and convergence should be delayed – subsequently γ is decreased. Otherwise, if no 
improvements are achieved, it implies that the current search scale has been sufficiently 
explored so more local search may now be necessary – subsequently γ is increased (Bolufé-
Röhler and Chen, 2014). 

Figure 5: Standard and adaptive threshold functions 
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Figure 5 shows the adaptive threshold decay rate (minimum_step) for each of the four 
tested complexes. The standard (non-adaptive) threshold function is also shown. The 
(initial) threshold parameters are α = 0.1 and γ = 3 and the step size to increase/decrease γ 
is 0.005. The threshold function is plotted for a single trial of 50.000 function evaluations. 
As it can be seen, on most complexes, the threshold value of the adaptive function 
decreases until it stabilizes at a potentially “ideal search scale”. This “ideal” scale is 
appropriately different for each complex. When 50% of the FEs budget is consumed 
(vertical red line), MPS is stopped and the heuristics with a stronger local search ability take 
over. It can be noticed that at this point the threshold value is above the final search scale 
(at 50,000 FEs), and this should ensure that the MPS solutions are still located in different 
attraction basins.  
 
Table 4 shows the results of the MPS hybrids when using the adaptive threshold function. 
If compared to hybrids using the standard threshold function (Table 3), it can be noticed 
that performance increases for all hybrids on all complexes. The three hybrids show an 
overall improvement of approximately 25% when compared to MPS. The maximum 
improvement is achieved on the 2z5u complex. On this complex MPS shows the best 
performance compared to other heuristics (Table 2), but the non-adaptive MPS_CMAES 
and MPS_PS hybrids also have a decrease in performance compared to MPS (Table 3). 
These results suggest that MPS can be further improved through hybridization with 
greedier heuristics, but the threshold size has to be kept large enough to avoid solutions 
from falling inside the same attraction basins (which would eliminate the benefit of 
multiple local optimizations). 
 
In practice, the effectiveness of molecular docking algorithms is frequently measured by 
their ability to achieve a successful docking (i.e. an RMSD≤2.0Å). Figure 6 shows the 
amount of successful docking (percent) achieved by each heuristic in every complex. 
Results for Nelder-Mead and Pattern Search are not presented because for most complexes 
they don’t achieve a successful docking. In Figure 6, it can be noticed that the performance 
of the simple heuristics strongly varies depending on the tested complex. Nevertheless, 
MPS shows a stable performance being always among the best three simple heuristics. 
Furthermore, when hybridized the performance strongly improves on all the tested 
complexes. For completeness, the mean, standard deviation, and average RMSD for the 
adaptive hybrids are presented in Table 5. 
 

Table 4: Relative performance of the adaptive MPS hybrids 
 

 MPS-CMAES 
(adaptive) 

MPS-PS 
(adaptive) 

MPS-NM 
(adaptive) 

 Median %-diff 

(MPS) 

%-diff 

(CMAES) 

Median %-diff 

(MPS) 

%-diff 

(PS) 

Median %-diff 

(MPS) 

%-diff 

(NM) 

1adb -1.1e+01 19.9% 14.0% -1.0e+01 17.1% 36.9% -1.0e+01 17.5% 99.9% 

1bmm -1.1e+01 12.9% 36.9% -1.1e+01 10.7% 51.4% -1.1e+01 11.4% 84.8% 

1cjw -1.2e+01 16.5% 18.4% -1.3e+01 27.1% 80.6% -1.3e+01 27.6% 99.9% 

2z5u -1.5e+01 42.5% 76.8% -1.6e+01 44.5% 99.6% -1.7e+01 50.3% 99.9% 

Mean %diff.  23.0% 36.5%  24.9% 67.1%  26.7% 96.2% 
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CONCLUSSIONS 
 
Minimum Population Search has been shown to be an effective heuristic for solving 
molecular docking problems, and it can outperform many of the algorithms commonly 
used for this task. The ability to provide full coverage of the search space with the smallest 
population allows MPS to perform more generations and to provide good results with 
reduced budgets of function evaluations. The balance between global and local search 
provided by thresheld convergence disallows premature convergence, and this helps MPS 
to deal with the deceptiveness, ruggedness, and high multi-modality of the docking 
problem. 
 
The optimization of multi-modal problems involves two distinct tasks: identifying 
promising attraction basins and finding the local optima in these basins. To effectively 
perform each of these tasks, heuristics can benefit from different search strategies. To 
identify promising attraction basins, a more global/exploratory approach is useful to avoid 
bias and premature convergence towards low-quality attraction basins. On the other hand, 
finding a local optimum in a given attraction basin benefits from a strong local/exploitive 
search strategy to promote a fast convergence to the optimum. The hybridization of MPS 
tackles this issue by assigning a different heuristics to each task. The search for promising 
attraction basins is performed with MPS while the convergence to the corresponding local 
optima is done through greedier heuristics with stronger local search capabilities. 
 
The promise of an attraction basin is often estimated by the fitness of a single sample 
solution, so an attraction basin represented by a random sample solution can appear to be 
less promising than an attraction basin represented by its local optimum. The use of 
thresheld convergence as a central component in MPS aims to avoid these biased 
comparisons by disallowing local search while global search is still in progress. Ideally, the 

Figure 6: Successful Docking 
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threshold size (i.e. minimum and maximum step size) is correlated to the size of the 
attraction basins in the search space. The minimum step size should avoid sampling 
solutions from the same attraction basins, while the maximum step size should restrict the 
sampling of (low-quality) attraction basins too far away from the current search region. 
However, predicting this “ideal search scale” is very difficult without an a priori knowledge 
of the objective function’s landscape.  
 
The use of an adaptive threshold function attempts to dynamically identify the scale of the 
search space. By holding the minimum step above this search scale the chances of 
oversampling an attraction basin are strongly reduced. This promotes a more exploratory 
search and increases the chances of detecting the most promising attraction basins. If MPS 
is stopped while the minimum step is above this scale then different solutions will most 
likely be located in different attraction basins. Using heuristics with greedier search 
capabilities and faster convergence rates allow function evaluations to be saved – the local 
optima of more attraction basins can thus be found within the given budget of FEs. This 
combination of an adaptive threshold function and hybridization has led to an average 
improvement of approximately 25% over standard MPS on the current problem set. 
 
Future work will focus on extending these results towards large scale global optimization 
(LSGO). In LSGO the key challenge is the exponential increase of the search space volume 
versus the linear increase of function evaluations. Known as “the curse of dimensionality” 
(Bellman, 1957), these mismatched growth rates between search space volume and 
available FEs can cause adequate search space coverage in low dimensional search spaces 
to become exceptionally sparse coverage in high dimensional search spaces. Algorithms for 
solving high-dimensional optimization problems thus need to be efficient in the use of FEs 
and wisely exploit response surfaces (Chu et al., 2011). Through the hybridization of MPS 
with greedier (local search) heuristics, these conditions are met on both tasks of the multi-
modal optimization process. 
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