
GECONTEC: Revista Internacional de Gestión del Conocimiento y la Tecnología. ISSN 2255-5648 
Chen, S., Montgomery, J.,  Bolufé-Röhler , A. y Gonzalez-Fernandez, Y.  Vol. 3(1). 2015 
 

1 
 

 
Invited paper: A Review of Thresheld Convergence 

 
Stephen Chen 

sychen@yorku.ca 
York University 

James Montgomery 
james.montgomery@utas.edu.au 

University of Tasmania 
  Antonio Bolufé-Röhler 

bolufe@matcom.uh.cu 
Universidad de La Habana 

Yasser Gonzalez-Fernandez 
ygf@yorku.ca 
York University 

 
 

ABSTRACT 
 
 A multi-modal search space can be defined as having multiple attraction basins – 
each basin has a single local optimum which is reached from all points in that basin when 
greedy local search is used. Optimization in multi-modal search spaces can then be viewed 
as a two-phase process. The first phase is exploration in which the most promising 
attraction basin is identified. The second phase is exploitation in which the best solution 
(i.e. the local optimum) within the previously identified attraction basin is attained. The 
goal of thresheld convergence is to improve the performance of search techniques during 
the first phase of exploration. The effectiveness of thresheld convergence has been 
demonstrated through applications to existing metaheuristics such as particle swarm 
optimization and differential evolution, and through the development of novel 
metaheuristics such as minimum population search and leaders and followers. 
 
KEY WORDS: Exploration, Exploitation, Heuristic Algorithms, Optimization, Multi-
modality.  
 
 
INTRODUCTION 
 
The goal of optimization is to find the best solution in a search space. In a unimodal search 
space, this task is relatively simple. First, search can be concentrated around the best-
known solution since all solutions have a monotonic path to the global optimum, and the 
best solution should have the shortest path. Second, local exploitative search steps are 
sufficient since there are no local optima in which the search process can become stalled. 
Optimization in multi-modal search spaces is more complex, but the foundation of many 
metaheuristics is still derived from concepts initially developed for unimodal search spaces. 
 
For continuous domain search spaces, particle swarm optimization (PSO) (Kennedy and 
Eberhart, 1995) and differential evolution (DE) (Storn and Price, 1997) are two of the most 
popular and well-studied metaheuristics. Both have their search mechanisms initially 
developed/conceptualized for unimodal search spaces: PSO begins with a cornfield vector 
(see Section 3.2 in (Kennedy and Eberhart, 1995)) and DE builds its foundation from a 
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simple unimodal cost function (see Figure 1 in (Storn and Price, 1997)). Since exploration 
is not required in unimodal search spaces, the concept of attraction basins is not initially 
present in either PSO or DE. Through the consideration of attraction basins, it can be 
observed that local search/exploitation will only occur in an attraction basin that is 
represented by a stored solution. Therefore, the fitness of stored sample solutions in PSO 
and DE determines if the local optima will be found from these attraction basins.  
 
Particle swarm optimization and differential evolution are just two examples of the many 
metaheuristics that will only perform local search around currently stored solutions. Since 
current solutions are stored on the basis of their fitness, an implicit assumption is made 
that the promise of an attraction basin can be estimated by the fitness of a sample solution. 
The accuracy of this estimate depends on the “relative fitness” of these sample solutions 
with respect to their local optima. A simple example is if the relative fitness of every sample 
solution is zero – if each attraction basin is represented by its local optimum, then the best 
attraction basin is easily identified by the fittest local optimum. Knowing all the local 
optima is of course a computationally infeasible task akin to exhaustive search. 
 
Search efficiency demands that the promise of an attraction basin will be determined by 
something other than the fitness of its local optimum. Therefore, we make it explicit that 
we will use the fitness of a sample solution as an estimate for the promise of its attraction 
basin. The effectiveness of comparing these sample solutions to identify the most 
promising attraction basin (i.e. perform exploration) depends on all of the sample solutions 
having similar relative fitness. In general, metaheuristics do not worry about maintaining 
similar relative fitness among their solutions, and they instead often allow concurrent 
exploration and exploitation. Since exploration tends to produce solutions of low relative 
fitness and exploitation tends to produce solutions of higher relative fitness, concurrent 
exploration and exploitation will often lead to solutions of highly dissimilar relative fitness. 
 
The negative effects of dissimilar relative fitness can be seen in the example shown in 
Figure 1. The simple search space used for illustrative purposes consists of attraction basins 
which all have the same size and shape (e.g. a sinusoid super-imposed over a linear slope). 
The (black) lines show the average fitness of all of the solutions in each attraction basin. If 
each attraction basin is represented by a random solution, it can be expected that the fittest 
of these sample solutions will be from the fittest attraction basin – i.e. the one with the 

Figure 1: For a series of random solutions with similar relative fitness (blue 
circles), the fittest sample solution will often represent the fittest attraction basin. 
However, if one of these solutions benefits from local optimization (red star), the 

fittest solution will often no longer represent the fittest attraction basin. 
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global optimum. However, if an unpromising attraction basin is represented by a sample 
solution with a much better than random relative fitness (e.g. its local optimum), then this 
attraction basin can appear to be more promising than it is. 
 
The comparison of sample solutions with highly dissimilar relative fitness occurs frequently 
and often rapidly in metaheuristics such as PSO and DE. As opposed to distinct phases of 
exploration and exploitation, PSO and DE both share the following search characteristic. If 
all of the solutions are in different attraction basins, it is still possible to create a new 
solution within an existing attraction basin. However, if all of the solutions are in the same 
attraction basin, it is largely impossible to create a new solution from a different attraction 
basin. There is a natural transition from the first, mostly explorative phase to the second, 
highly exploitative phase, and the existence of concurrent exploration and exploitation is a 
key part of this natural transition. 
 
It is proposed that the effectiveness of metaheuristics in multi-modal search spaces can be 
improved through explicit separation of the processes for exploration and exploitation. 
Strict exploration is enforced by ensuring that sample solutions are not drawn from the 
same attraction basin. This was initially achieved by using a threshold function – in 
“thresheld convergence”, exploitation is restricted and convergence is “held” back through 
the use of a threshold function. The separation of exploration and exploitation has also 
been achieved in leaders and followers – a new metaheuristic which uses a novel 
population control mechanism which supports exploration that is unbiased by previous 
exploitation. 
 
Thresheld convergence has similar objectives to crowding, niching, and other 
diversification techniques that are described in the Background. However, thresheld 
convergence focuses specifically on attraction basins and their sampling, and these 
concepts are developed in Section III. The first implementations of thresheld convergence 
are presented in Section IV with current and future work presented in Section V. The 
alternate development of leaders and followers is presented in Section VI with the explicit 
integration of thresheld convergence into leaders and followers proposed as part of future 
work. The paper then finishes with a Summary in Section VII. 
 
BACKGROUND 
 
The ideal case for thresheld convergence is to have one sample solution from each 
attraction basin, and for each sample solution to have the same relative fitness with respect 
to its local optimum. The concept of having one sample solution from each attraction 
basin is a specific example of diversity. Diversity is a concept borrowed from biology, so 
the field of evolutionary computation is filled with many examples such as crowding, 
niching, fitness sharing, etc. (Talbi, 2009). Thresheld convergence has many similarities 
with these techniques, but it also has important differences. 
 
The standard population control mechanism in evolutionary computation is that the fittest 
solutions survive to create new offspring solutions while the least fit solutions are removed 
from the population. Crowding methods will instead remove solutions from the population 
based on their distance to other solutions. For example, instead of comparing a new 
offspring solution with the least fit member of the population, it could instead be 
compared with the closest member of the current population. When nearby solutions are 
replaced, the formation of crowds is avoided and diversity is maintained. (De Jong, 1975) 
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Crowding has several weaknesses. First, the n distance measurements required to find the 
nearest solution in the current population represents a relatively high computational 
overhead. Second, crowding does not explicitly attempt to identify attraction basins, so 
eliminating the nearest solution could eliminate the consideration of a different and highly 
promising attraction basin. Thresheld convergence addresses the first weakness through 
the use of a threshold function against which only one distance measurement is required. 
This threshold function can be matched to the (measured) size of attraction basins which 
provides an opportunity for thresheld convergence to address the second issue. 
 
Niching and speciation increase diversity by effectively splitting the overall population into 
a series of sub-populations. Each sub-population exists in its own “niche” with its subset 
of solutions potentially forming a (sub) species. It is possible for an attraction basin to be a 
niche, so many aspects of thresheld convergence and niching represent similar ideas. 
However, thresheld convergence is designed to eventually converge onto a single attraction 
basin and produce a single final solution. This design may help thresheld convergence to be 
more efficient than implementations of niching which produce multiple final solutions (e.g. 
(Brits, Engelbrecht, and Van den Bergh, 2002)) when only one is desired.  
 
Many diversification techniques have also been developed for multi-objective optimization 
(MOO). Fitness sharing is one of the most popular (Talbi, 2009), and it involves reducing 
the fitness of similar solutions so that highly similar solutions become less likely to 
participate in reproduction. The distance metric which measures similarities among 
solutions and the sharing function which determines how fitness is reduced are both 
complicated aspects of fitness sharing. Further, the differences between diversification in 
search space and objective space mean that MOO techniques may not be suitable for 
single-objective, multi-modal search spaces. 
 
Diversification is also a specific concept in tabu search (Glover and Laguna, 1997) in 
addition to the general concept that has been described so far. Recent moves (e.g. those 
used to enter a local optimum) become tabu/disallowed so that an immediate retracing of 
the search path is not possible (e.g. returning to the most recent local optimum). By 
disallowing (short) cycles, greater coverage of the search space (i.e. exploration) is achieved. 
Tabu steps which make more sense in combinatorial/discrete search spaces are an example 
of the difficulties involved with transferring concepts between continuous and discrete 
search spaces. 
 
ATTRACTION BASINS 
 
It is useful to think of a multi-modal search space as a search space with many attraction 
basins, each with a single (local) optimum. It is also useful to define the fitness of an 
attraction basin as the fitness of this optimum. Optimization in a multi-modal search space 
can then be thought of as a two-phase process. The first phase of exploration is tasked 
with finding the fittest attraction basin. The second phase of exploitation will then be 
tasked with reaching the optimum within the selected attraction basin. 
 
Focusing on the first phase of exploration, the goal of finding the fittest attraction basin is 
complicated by the difficulty of estimating the fitness of an attraction basin. The accurate 
measurement of an attraction basin’s fitness often requires local optimization to reach the 
actual local optimum. Since any precise measurement is likely to be excessively expensive 
computationally, many metaheuristics use the fitness of a current sample solution to 
estimate the potential fitness of its attraction basin. The accuracy of comparing attraction 
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basins with these estimates depends on having a similar relative fitness for each sample 
solution being used to make an estimate. 
 
The challenges faced by metaheuristics attempting to estimate the fitness of an attraction 
basin by the fitness of a single solution are demonstrated through an in-depth study of 
particle swarm optimization on the Rastrigin benchmark function. For this study, it is 
useful to think of PSO as a system with two populations: a population of personal best 
(pbest) solutions which represent promising attraction basins for further exploration and 
exploitation, and a population of current solutions which explore for better solutions. 
During each iteration, a new current solution is generated and evaluated. This solution is 
only stored if it is fitter than its corresponding pbest solution. 
 
The pbest solutions guide the search processes of PSO. When velocities are small, the 
current solutions will be close to their pbests. Thus, the later phases of search in PSO can be 
described as local optimization within the attraction basins represented by the pbest 
solutions. The early phases of search in PSO (when velocities are larger) can then be 
thought of as an exploration for the best attraction basins. From this perspective, it should 
be noted that large velocities mean that current positions can make large movements, but 
these large movements can still create new current solutions that are close to existing pbest 
solutions. In its standard form, PSO can concurrently perform exploitation during its early 
exploration phase. 
 
Concurrent exploration and exploitation can interfere with a search technique’s processes 
for exploration. Specifically, when the potential fitness of an attraction basin is estimated 
by the fitness of a single solution (e.g. a pbest solution in PSO around which future 
exploitation will occur), then the accurate comparison of attraction basins depends on 
these solutions having similar relative fitness. However, search techniques such as PSO 
which allow exploitation to occur concurrently with exploitation will often compare new 
random sample solutions (with poor relative fitness) with locally optimized reference 
solutions (with better relative fitness). Comparisons of this nature are biased in favour of 
the stored reference solutions (e.g. pbests in PSO), and this bias will reduce the effectiveness 
of a search procedure’s processes of exploration. 
 
The existence and effects of these biased comparisons have been demonstrated by a 
comprehensive study with the Rastrigin function in (Gonzalez-Fernandez and Chen, in 
press). The Rastrigin function (in n dimensions) is based on a sinusoid super-imposed on a 
quadratic base function (1). It produces attraction basins of similar size and shape (the ideal 
case for thresheld convergence) with local optima at known locations (i.e. all the integer 
values along each coordinate axis). This second feature makes it easy to find the nearest 
local optimum for any solution in the search space (i.e. round each solution component to 
its nearest integer value) which makes it possible to quickly measure both the relative 
fitness of the current solution and the actual fitness of the attraction basin that it 
represents. 
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The ability to measure the fitness of each attraction basin makes it possible to observe the 
effectiveness of a search technique’s processes for exploration. During exploration, the 
goal is to find the fittest attraction basin – not necessarily the fittest solution. Since search 
techniques are normally unable to measure the fitness of an attraction basin, they often use 
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the fitness of a sample solution as an estimate for the potential fitness of its attraction 
basin. The study performed in (Gonzalez-Fernandez and Chen, in press) shows how 
solutions with similar relative fitness can lead to accurate comparisons of attraction basins 
while solutions with dissimilar relative fitness can lead to inaccurate comparisons.  
 
The study begins by picking a random solution in the x = -3 attraction basin. If this 
solution is part of the initial swarm in PSO, then it would be stored as a pbest solution. The 
goal of exploration is to find a fitter attraction basin. However, when a solution from a 
fitter attraction basin is sampled, it does not necessarily replace the stored solution – the 
solution from the fitter attraction basin must also be fitter than the stored solution (e.g. a 
pbest in PSO). Successful exploration thus has two requirements: first, a sample solution 
must be drawn from a fitter attraction basin, and second, this sample solution must be 
fitter than the stored solution which represents the stored attraction basin. 
 
The first requirement for successful exploration depends on how solutions are created. The 
design of metaheuristics has tended to focus on this aspect (Lones, 2014). The second 
requirement for successful exploration depends on how solutions are compared. Thresheld 
convergence focuses on this aspect by identifying the need to compare sample solutions of 
similar relative fitness. The study in (Gonzalez-Fernandez and Chen, in press) shows how 
comparing sample solutions of dissimilar relative fitness can greatly reduce the rate of 
successful exploration. 
 
Starting with 10,000 sample solutions from across the entire search space, only those from 
fitter attraction basins are kept. Since these kept solutions satisfy the first condition for 
successful exploration, the study can now focus on the effects of relative fitness for 
achieving the second condition. The sample solution in the x = -3 attraction is initially at a 
random point, and then it is moved in ten equal steps towards its local optimum (i.e. x = -
3). These steps simulate and demonstrate the effects of exploitation/local search which 
reduce the relative fitness – i.e. the difference in fitness between a solution and its local 
optimum. It is shown in Figure 2 how random sample solutions from fitter attraction 
basins have a high probability (around 75%) of achieving successful exploration when 
compared against the initial random solution from the x = -3 attraction basin. However, 
the probability of successful exploration drops rapidly as local search is performed, and it 
reaches near 0 after as little as 50% local optimization (i.e. moving the original random 
sample solution half of the distance towards its local optimum). 

Figure 2: As a random sample solution is moved closer towards its local 
optimum, the probability of successful exploration rapidly approaches 0. 
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An implementation of standard PSO (Bratton and Kennedy, 2007) has also been run on 
the Rastrigin function. In Figure 3, the fitness of the best overall solution (i.e. gbest) is 
plotted along with the fitness of its attraction basin. The difference between the two lines 
represents the relative fitness. The convergence of the two lines means that the relative 
fitness has improved and this is indicative of exploitation/local search. Exploration is 
indicated by improvements to the fitness of the gbest attraction basin (dotted line), and the 
rate of these improvements vanishes rapidly as the relative fitness improves. Overall, these 
experiments show the negative effects of concurrent exploration and exploitation which 
thresheld convergence aims to address. 
 
EARLY THRESHELD CONVERGENCE 
 
We view optimization in a multi-modal search space as a two-phase process. The first 
phase of exploration is tasked with finding the fittest attraction basin, and the second phase 
of exploitation is tasked with attaining the local optimum within an (existing) attraction 
basin. Most metaheuristics do not have an explicit demarcation point which separates their 
processes of exploration and exploitation. Therefore, we will consider any search step 
which involves two solutions from two different attraction basins as exploration, and any 
search step which involves two solutions from the same attraction basin as exploitation. 
The goal of thresheld convergence is thus to achieve two distinct phases: phase one, all 
search steps/comparisons involve two different attraction basins, and phase two, search 
steps/comparisons occur within the same attraction basin. 
 
Thresheld convergence was first developed for particle swarm optimization (Chen and 
Montgomery, 2011) (Chen and Montgomery, 2013). In PSO, the population of personal 
best (pbest) solutions can be viewed as representatives of the fittest attraction basins. To 
create an explicit first phase of (only) exploration, we initially disallow comparing/updating 
an existing pbest solution with a new solution from its current attraction basin. The 
determination of whether or not two solutions are in the same attraction basin is based on 
a threshold value – solutions closer than the threshold are deemed at risk to be in the same 
attraction basin. Without any specific knowledge of the search space, threshold values were 
initially based on a simple threshold function (2). 
 

 )/]([*)*( FEsiFEsdiagonalthreshold     (2)

Figure 3: Concurrent exploration and exploitation is shown in PSO. During 
exploration, improvements to the dashed line occur. However, exploitation also 

occurs – as indicated by the convergence of the solid and dashed lines. 
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The threshold function (2) starts with a set size (parameterized by α as a preset fraction of 
the search space diagonal), and it decays over time (γ specifies the decay rate, and γ = 2 or 3 
often works well (Chen and Montgomery, 2011)) as the current iteration i reaches the 
maximum allowed number of function evaluations (FEs). At some point during this decay, 
the threshold size should match the size of the attraction basins in the search space. Prior 
to this point, exploitation/local search cannot occur (concurrently with exploration/global 
search), so the addition of thresheld convergence to PSO creates an explicit two-phase 
search process that should be more suitable for multi-modal search spaces. Experiments on 
benchmark functions (Hansen et al., 2009) show improvements on the targeted multi-
modal functions at the cost of reduced performance on unimodal functions (Chen and 
Montgomery, 2011). 
 
It should be noted that the first work with threshold functions in (Chen and Montgomery, 
2011) was not actually an implementation of thresheld convergence. The goal of thresheld 
convergence is to support the unbiased comparison of attraction basins through the 
elimination of concurrent exploration and exploitation. In (Chen and Montgomery, 2011), 
the threshold function was used to ensure that a particle would not update its pbest position 
to form a crowd with its local best (lbest) attractor. This early work with threshold functions 
was actually an attempt to create an efficient mechanism for crowding and niching. The 
single distance measurement makes thresheld convergence an efficient form of crowding, 
and the niches created by the threshold distance support diversity. However, the true 
implementation of thresheld convergence in (Chen and Montgomery, 2013) eliminates all 
updates to pbest within the threshold distance, and not just those which form crowds. 
Compared to niching techniques which allow concurrent exploration and exploitation, 
thresheld convergence supports both diversity and more accurate comparisons of the 
potential fitness of attraction basins. 
 
The development of thresheld convergence for PSO has been mirrored with applications 
to differential evolution (Montgomery and Chen, 2012) (Bolufé-Röhler et al., 2013). In DE, 
the population also has “pair-wise elitism” – a new solution is only stored in the population 
if it is better than the (paired) target solution which it would replace. As DE converges, 
shorter difference vectors will lead to more new solutions being created around existing base 
solutions. From this perspective, each solution in the DE population during the early stages 
of the search process can be viewed as a representative of a promising attraction basin for 
future exploitation. However, standard DE does not have distinct phases of exploration 
and exploitation. The existence of concurrent exploration and exploitation in DE is a key 
instigator of its autocatalytic convergence properties in which local search begets shorter 
difference vectors which begets more local search (Montgomery, 2009). 
 
Thresheld convergence can be used in DE to halt this autocatalytic (and often premature) 
convergence by explicitly creating distinct and separate phases for exploration and 
exploitation. Through the use of the threshold function (2), we can ensure that the new 
solution is not in the same attraction basin as its paired target solution. The new solution 
could still be in the same attraction basin as another member of the population, but the 
threshold function blocks the opportunity for autocatalytic convergence by ensuring that 
these two solutions cannot directly cause local search which would produce more new 
solutions in attraction basins already represented in the population. Experiments on 
benchmark functions show improvements on the targeted multi-modal functions at the 
cost of reduced performance on unimodal functions (Montgomery and Chen, 2012) 
(Bolufé-Röhler et al., 2013). 
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Thresheld convergence is based on a single distance measurement, so it can be 
meaningfully applied to point-search techniques such as simulated annealing (SA) 
(Kirkpatrick, Gelatt, Jr., and Vecchi, 1983). In general, SA is thought of in terms of a high 
temperature phase in which worsening moves have a reasonable chance to be accepted and 
a low temperature phase in which mostly (or exclusively) improving moves are accepted. 
Equally important is that larger moves in the search space are also allowed during the high 
temperature phase. However, like PSO, the higher maximum step size is not accompanied 
by a minimum step size, so small steps which can lead to new solutions being generated in 
the same attraction basin can occur during the high temperature phase. Since improving 
moves are always accepted in SA, this can lead to concurrent exploration and exploitation 
 
The normal operation of (simulated) annealing actually benefits from concurrent 
exploration and exploitation. As a memory-free, single-point (physical) system, it is possible 
to leave a promising attraction basin and then never return. A highly promising attraction 
basin that is represented by a fitter solution is less likely to be discarded, so concurrent 
exploration and exploitation actually plays an important role in helping SA converge upon 
the fittest available attraction basin. Adding thresheld convergence to a memory-free 
implementation of simulated annealing leads to a highly random search which does not 
improve performance (Chen, Xudiera, and Montgomery, 2012). 
 
Adding a memory to simulated annealing allows thresheld convergence to be added. 
During the initial high temperature phase, a threshold of sufficient size can force each new 
solution to be in a different attraction basin. Returning to the best-known solution when 
the temperature/threshold size has decreased sufficiently can then lead to a more distinct 
exploitation phase. The ability to improve the performance of simulated annealing (a point-
search technique) in multi-modal search spaces demonstrates an advantage of thresheld 
convergence over crowding and niching techniques which require multiple population 
members to perform distance measurements.  
 
Thresheld convergence can be used to promote/maintain diversity in single-point and 
population-based metaheuristics. In an attempt to build a new metaheuristic which is more 
scalable to high-dimensional search spaces, thresheld convergence is an integral component 
of minimum population search (MPS) (Bolufé-Röhler and Chen, 2013). MPS derives its 
names from its ability to use the minimum population size of two – a population of size 
one makes a population-based technique indistinguishable from a point-search technique. 
These population members can be used to find exploitable gradients in the search space 
(similar to difference vectors), and thresheld convergence is used to maintain diversity. By 
being able to maintain diversity with a smaller population size, thresheld convergence helps 
improve the efficiency of MPS. The relative performance of MPS versus PSO and DE 
often improves in multi-modal search spaces when a more restricted limit of function 
evaluations is used (Bolufé-Röhler and Chen, 2013) (Bolufé-Röhler and Chen, 2014). 
 
Overall, initial implementations with particle swarm optimization (Chen and Montgomery, 
2013), differential evolution (Bolufé-Röhler et al., 2013), simulated annealing (Chen, 
Xudiera, and Montgomery, 2012), evolution strategies (Piad-Morffis et al., in press), and 
minimum population search (Bolufé-Röhler and Chen, 2014) demonstrate that thresheld 
convergence can lead to improved performance in multi-modal search spaces. However, 
these improvements are highly dependent on the form/parameters of the threshold 
function. The goal of the threshold function is to create two distinct phases of exploration 
and exploitation, but a decay function leads to relatively indistinct phases. Step-wise 
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threshold functions should be more effective than the current (continuous) decay 
functions. 
 
CURRENT AND FUTURE WORK WITH THRESHELD CONVERGENCE 
 
A key goal of thresheld convergence is to create distinct phases of exploration and 
exploitation. During the exploration phase, the threshold size should be large enough to 
ensure that sample solutions are always drawn from different attraction basins. During the 
exploitation phase, the threshold size should be zero. A continuous decay function is 
essentially exhaustive search for the proper threshold size to support exploration. 
However, it will also create a less efficient exploitation phase due to a non-zero threshold 
size. A step-based threshold function should be more efficient, and specific measurements 
on the size of attraction basins in the search space should also improve the effectiveness 
and efficiency of thresheld convergence. 
 
Step-based threshold functions have been introduced for PSO (Gonzalez-Fernandez and 
Chen, 2014) and DE (Montgomery, Chen, and Gonzalez-Fernandez, 2014). Their biggest 
advantage is that step-based threshold functions eliminate the α and γ parameters from the 
decay function (2) which have to be hand tuned for each specific problem to achieve the 
highest levels of performance. Conversely, step-based threshold functions are highly 
dependent on the accurate measurement of the size of attraction basins. The initially 
developed ad hoc methods often suffered from imprecise and inaccurate measurements, so 
the overall results were hindered by inconsistent performance (Gonzalez-Fernandez and 
Chen, 2014) (Montgomery, Chen, and Gonzalez-Fernandez, 2014). 
 
Current work is focusing on explicitly measuring the size of attraction basins in the search 
space. Challenges with these measurements include attraction basins having different sizes 
and shapes, and attraction basins existing within “metabasins” – especially in the context of 
non-globally convex search spaces. An ideal search strategy with thresheld convergence 
might be to find the fittest metabasin, then the fittest attraction basin within this metabasin, 
and then the optimum within this attraction basin. The three-step threshold function 
would then start at the size of the metabasins, decrease to the size of the internal attraction 
basins after the best metabasin is found, and then go to zero to allow exploitation after the 
best attraction basin is found. 
 
“THRESHELD CONVERGENCE” BY POPULATION CONTROL 
 
The goal of thresheld convergence is to improve exploration by supporting more accurate 
comparisons of the fitness of attraction basins. Ideally, all sample solutions representing 
attraction basins will have the same relative fitness. By preventing exploitation/local search, 
sample solutions will be more likely to have an “average” relative fitness. However, a key 
observation on experiments with Rastrigin (Gonzalez-Fernandez and Chen, in press) is that 
relative fitness improves over time with thresheld convergence – even when the threshold 
size is larger than the maximum distance across an attraction basin. This is a result of 
random search. 
 
The expected fitness of a random sample solution is the average fitness of all of the 
solutions within an attraction basin. By definition, a sample solution with this average 
fitness will also have a relative fitness in the 50th percentile. The first sample solution has an 
expected relative fitness at the 50th percentile, and the second sample solution has a 50% 
chance of having a better relative fitness. After 100 sample solutions, a sample solution in 
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the 1st percentile can be expected, and it will take another 100 sample solutions to get a 
50% chance to find a new solution with a better relative fitness than the best of the first 
100 sample solutions. Over time, the best relative fitness will continue to improve, and the 
effectiveness of exploration in any metaheuristic will decrease the longer each phase of 
exploration lasts.  
 
Fair, unbiased comparisons among sample solutions require that only solutions of similar 
relative fitness will be compared against each other. A new metaheuristic is designed to 
achieve these fair comparisons by creating two populations: a population of “leaders” 
which represents the best attraction basins and which guides the search, and a population 
of “followers” in which unbiased exploration can occur. Specifically, leaders affect the 
creation of new followers, but the survival of followers depends only on comparisons with 
other followers. Compared to other metaheuristics which focus on how new solutions are 
created (e.g. attraction vectors in PSO and difference vectors and crossover in DE), the 
new metaheuristic of “leaders and followers” focuses on how (new) solutions are 
compared. 
 
Particle swarm optimization can also be viewed as a technique with two populations: a 
population of pbests which guide the search and a population of current solutions which 
perform exploration and exploitation. Current solutions become pbest solutions when they 
have better fitness, but concurrent exploration and exploitation allows pbests to improve 
their relative fitness which leads to more biased comparisons over time. Followers are only 
compared with followers which reduces biased comparisons, but unless followers have the 
opportunity to become leaders, the search trajectory cannot advance. When new leaders 
and selected, it is important for the existing leaders and followers to have similar fitness to 
ensure that neither population is favoured over the other. This is achieved by selecting new 
leaders when the two populations have the same median fitness (Gonzalez-Fernandez and 
Chen, in press). 
 
The first implementation of leaders and followers has rapid convergence of the median 
fitness for each population. Each selection of new leaders causes a reset of the followers 
population, so the effect is a large number of restarts. An additional benefit of these rapid 
restarts is that the effects of random search on relative fitness have less time to accumulate, 
so there is more opportunity for the unbiased comparisons which support effective 
exploration to occur. This effect can be viewed as an implicit implementation of thresheld 
convergence – leaders and followers achieves the unbiased comparison of attraction basins 
without the use of a threshold function. The effectiveness of the new population control 
mechanism is demonstrated through experiments on benchmark functions (Liang et al., 
2013) which show that leaders and followers has performance advantages over PSO and 
DE in multi-modal search spaces (Gonzalez-Fernandez and Chen, in press). 
 
Current work is focusing on explicitly adding thresheld convergence to leaders and 
followers. In the first implementation (Gonzalez-Fernandez and Chen, in press), there is no 
minimum step size. Thus, the rapid restarts caused by the population control mechanism is 
the only feature which supports the unbiased comparison of attraction basins. The addition 
of a minimum step size during the creation of followers and/or the selection of new 
leaders can both improve diversity which should lead to improved performance. In general, 
since leaders and followers focuses on how solutions are compared, any work on how 
solutions are created (Lones, 2014) represents a promising opportunity for future 
improvements. 
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SUMMARY 
 
Memory-free search techniques such as simulated annealing (Kirkpatrick, Gelatt, Jr., and 
Vecchi, 1983) and early genetic algorithms (with pure, non-elitist generational populations) 
(Holland, 1992) require concurrent exploration and exploitation. Exploration without a 
memory means that only the current attraction basins are known and the best-visited 
attraction basin can be forgotten. To reduce this risk of losing highly promising attraction 
basins, memory-free search techniques perform concurrent exploration and exploitation. 
The improved fitness through exploitation increases the odds of survival for these sample 
solutions and the attraction basins which they represent. 
 
Search techniques with a memory have the opportunity to have an initial phase of pure 
exploration, but many metaheuristics (e.g. PSO and DE) still allow concurrent exploration 
and exploitation. This bias to exploitation may improve the performance of a metaheuristic 
in unimodal search spaces, and many benchmark function sets start with unimodal 
functions (e.g. (Hansen et al., 2009) (Liang et al., 2013)). However, the concept of “No 
Free Lunch” (Wolpert and Macready, 1997) suggests that techniques designed to perform 
well in unimodal search spaces will likely do so by making sacrifices to their performance in 
multi-modal search spaces.  
 
Thresheld convergence is a search concept designed explicitly for multi-modal search 
spaces. It provides the ability to efficiently and accurately compare the fitness of attraction 
basins which is presented as a key factor in the performance of metaheuristics in multi-
modal search spaces. In addition to the threshold function used to limit concurrent 
exploration and exploitation in thresheld convergence, leaders and followers is introduced 
as a new metaheuristic which uses a novel population control mechanism to avoid the 
biased comparison of attraction basins. Both techniques lead to improved performance in 
multi-modal search spaces. 
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