
GECONTEC: Revista Internacional de Gestión del Conocimiento y la Tecnología. ISSN 2255-5684 
Tapia-Moore, E. y Tapia-Yañez, J. Vol. 4 (1). 2016 
 

1 
 

 
 
 
 

The occurrence of prime numbers revisited 
 

Ernesto Tapia Moore 
ernesto.tapia-moore@kedgebs.com 

e.tapiamoore@odipme.org 
Kedge Business School 

 
José Tapia Yañez 

j.tapiayanez@odipme.org 
DMV 

Universidad de Chile (Retired) 
 
 
ABSTRACT 
 
 Based on an arithmetical and autocatalytic approach, the authors propose a solution for 
the occurrence of prime numbers. Exact arithmetical calculations are provided for: the closest 
prime to any given positive integer (or any number of bigger or smaller primes from that integer); 
the quantity of prime (and composite) numbers between 1 and any positive integer; the quantity 
of prime (and composite) numbers between any two positive integers. 
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INTRODUCTION 

The occurrence of prime numbers has been described as  “a mystery into which the mind will 
never penetrate” (Euler in Blinder, 2008, p. 20).  Alan Turing was one of the main contributors to 
the promotion of this concept, to the point that most business transactions executed via 
electronic media are encoded through the use of prime numbers, mostly based on their seemingly 
unpredictable occurrence. 

Research on the occurrence of prime numbers follows the lines of three different streams: 
Prescriptive (probabilistic and non-probabilistic), descriptive, and applicative. The probabilistic 
stream  is mainly fueled by business cryptology, especially electronic transactions requiring risk 
exposure predictions targeting the probability of decrypting a prime-encoded sequence during the 
time it takes to complete the transaction (Kadane & O'Hagan, 1995; Kelly & Pilling, 2001; 
Holdom, 2009).  Non-probabilistic research, has not been able to solve issues related to integers 
2 and 3, although providing slow solutions for the occurrence of primes	൒ 5 (Soundararajan, 
2006; Arpe & La Chioma, 2008; Park & Youn, 2012).  Descriptive research deals mainly with the 
prime number phenomenon itself (Holt, 2007; Cusick, Yuan, & Stanica, 2008; Selvam, 2008; 
Cristea & Darafsheh, 2010).  Applicative research mainly provides solutions for cryptologic 
applications (Luo, 1989; Quesada, Pritchard, & James Iii, 1992; Arnault, 1995; Ker-Chang Chang 
& Hwang, 2000; Jones & Moore, 2002). 

Our work, although non-probabilistic and descriptive, does not fit in any of the above streams, as 
we have sought to reconsider the problem from an arithmetical point of view, wherein a 
multiplication is a simplified sum of the same integer.  We first explored the partition of natural 
numbers finding many of the classic patterns described in extant literature, noting that none of 
these provided a satisfying solution beyond their announced limits.  The simple evidence 
provided in the form of the partition, however, primed us to pursue in the direction of Turing’s 
work, provided one can focus the problem as a dynamic system where only first-time and unique 
occurrences are allowed, all other occurrences being inhibited by the first.  We have found that 
the occurrence of prime numbers can be solved by a process similar to Alan Turing’s two-
component reaction-diffusion system (1952).  We have observed that the occurrence of 
composite and prime numbers is predictable yet irregular.  Furthermore, we have found that the 
process behind the occurrence of prime numbers also follows a regular pattern. 

In its simplest form, our work is a form of autocatalytic sieving.  Our work, however, does solve 
the problem of calculating the closest prime to any given positive integer; the problem of 
enumerating the primes located close to any given positive integer as well as those located in 
between any two positive integers.  In doing so, the time lag associated to calculating the prime 
elements of prime-based encryption keys used for electronic transactions is reduced to that of 
solving a simple three variable containing one unknown equation.  This is not new: It is believed 
that the complexity of the occurrence of primes is such that the time required to identify which 
prime is used for the encryption key takes longer than the transaction itself.  This belief may need 
to be revised. 

 

AUTOCATALYSIS 

Reaction-diffusion systems, also known as autocatalysis, are part of the activator-inhibitor 
systems where the “activator generates more of itself by autocatalysis, and also activates the 
inhibitor.  The inhibitor disrupts the autocatalytic formation of the activator.  Meanwhile, the two 
substances diffuse through the system at different rates, with the inhibitor migrating faster” (Ball, 
1999, p. 80). 
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The two-component reaction-diffusion system specific to generating prime numbers follows the 
structure of a subcritical Turing bifurcation, in two interdependent stages, pertinent to two 
positive integer categories. 

In the first stage, the cardinal (“|ܿ|”) period (|ݖ|; ݖ ∈ ܼା) generates a first set of activators, which 
beyond a certain point will generate their inhibitors in a linear monotonic fashion at the ordinal 
level.  The remaining activators found in the area of first-stage inhibition, will generate their own 
inhibitors in a rhythmic alternating-period manner. 

The second-stage inhibition is multi-linear, yet is better understood under planear settings 
(explaining the use of a cardinal-ordinal notation |ݖ| ∙  The remaining set   .(ݖ|ݖ| simplified to ,ݖ
of non-inhibited second-stage activator positive integers coincides with the set of all prime 
numbers. 

Conceptually, the “root” of the system is |1|ݖ, also named the meta-integer. It determines the 
smallest interval of the scale in which the phenomenon is observed.  

Autocatalysis happens in stages. The first stage typically offers a stable zone, followed by a 
second turbulent or hysteretic one. 

First stage autocatalysis 

We refer to this stage as the “proto-autocatalysis.”  It has a period of |1|ݖ.  It offers a clear 
boundary between the stable and the hysteretic regions.  Furthermore, the configuration of the 
stable region does not offer any room for the appearance of an inhibitor.  The characteristics of 
this stage are the following: 

- The boundary is situated at |1|2ଶ; 

- The stable region is ൏ |1|2ଶ (includes |2|1 and |3|1); 

- The hysteretic region is ൒ |1|2ଶ. 

The mechanics of this first stage are as follows: 

- First |2|1 occurs and then “autocatalytically migrates” at |2|1 intervals towards +∞.  As 
it proceeds, it inhibits all |2|ݖ ൐ |2|1 at |1|ݖ level, effectively inhibiting all even integers; 

- Then, |3|1 occurs and following the same mechanism inhibits all larger |3|ݖ, or multiples 
of 3 at the |1|ݖ level, amongst the remaining non-inhibited |1|ݖ integers. 

Once the first-stage inhibition has taken place, the remaining integers are all odd, are not 
multiples of 3, and are all located in the hysteretic region of this first autocatalysis.  We refer to 
these remaining integers as “alphas” (ߙ).  Namely:  ܼା\ሼ	|2|ݖ		, ሽݖ|3| ൌ  .ݖ|ߙ|

Alphas present themselves in pairs.  We designate the first α of a pair α’; the second α of the same 
pair is written α”.  The interval between	 	′ߙ and	 	′′ߙ is	 2; so that ߙᇱ ൅ 2 ൌ 	.′′ߙ 	The interval 
between two neighboring pairs of alphas is	2ଶ.		That is:  the second alpha (α’’) of a given pair of 
alphas is at	  2ଶ from the first alpha (α’) of the following pair of alphas.  This generates the|ݖ|
sequence of |1|37 ,35 ,31 ,29 ,25 ,23 ,19 ,17 ,13 ,11 ,7 ,5  :ߙ, …, +∞.	

Consequently, the occurrence of alphas in the hysteretic region of the proto-autocatalysis, has an 
alternating period of	|2|ݖ	and	|2|ݖଶ. 

Furthermore:  |ߙଵ| ൌ ,	5|ݖ| |ଶߙ| ൌ ,	7|ݖ| |ଷߙ| ൌ ,	11|ݖ| |ସߙ| ൌ ,	13|ݖ| |ହߙ| ൌ ,	17|ݖ| |଺ߙ| ൌ
,	ଵߙ) allowing for an ordinal sequence of alphas … ,19|ݖ| ,	ଶߙ ,	ଷߙ ,	ସߙ ,	ହߙ ,	଺ߙ … ,  .(ାஶߙ
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Fig. 1: First‐stage proto‐integer autocatalysis generating pairs of alphas in the ortho‐integer, or proto‐hysteretic, region. 

 
Second stage autocatalysis 

We refer to this stage as the “ortho-autocatalysis.”  It is located in the proto-hysteretic region. 
The activators in this stage are alphas generated in the preceding one.  Alphas behave as 
autosolitons in the proto-hysteretic region, coexisting with the |1|ݖ periods of both proto and 
ortho-autocatalysis. 

Alphas generate ortho-inhibitors, referred to hereafter as “betas” (ߚ), where |ߙ௜|ߙ௝ ൌ   .௠ߚ
Inhibitions occur when ߙ ൌ ߙ that is when ,ߚ െ ߚ ൌ 0.   

Alphas possess the same characteristics as the activators of the proto-autocatalysis: 

- Their boundary is situated at |ߙଶ| ൌ ௜ߙ|௜ߙ| ൌ ଶߙ ൌ  ;|ଵߚ|

- their stable region is ൏  ;|ଶߙ|

- their hysteretic region is ൒  .|ଶߙ|

Fig. 2:  First and second stage autocatalysis.  The second stage inhibitions are dashed‐out.  Please note the boxed‐in z² 
boundaries separating stable and hysteretic regions in the |z|z plane. 

 

 
Furthermore, betas have the same periodic characteristics as alphas.  Likewise, betas occur in 
pairs, so that |ߚ|ߙᇱ ൅ 2|ߙ| ൌ  2ଶ|ߙ|	and the second beta (β’’) of a given pair of alphas is at ′′ߚ|ߙ|
from the first beta (β’) of the following pair of betas. 

Like alphas, betas allow for an ordinal sequence (ߚଵ	, ,	ଶߚ ,	ଷߚ ,	ସߚ ,	ହߚ ,	଺ߚ … ,  :ାஶ) whereߚ

|ଵߚ| ൌ ଵߙ|௜ߙ| ൌ ,	ଶߙ |ଶߚ| ൌ ,	ଶߙ|௜ߙ| |ଷߚ| ൌ ,	ଷߙ|௜ߙ| |ସߚ| ൌ ,	ସߙ|௜ߙ| |ହߚ| ൌ ,	ହߙ|௜ߙ| |଺ߚ|
ൌ  ଺ߙ|௜ߙ|

|z |

16 1 2 2 2 2 2 2 2 2 3 2

15 1 2 3

14 1 2 3

13 1 2 3

12 1 2 3

11 1 2 3

10 1 2 3

9 1 2 3

8 1 2 3

7 1 2 3 5 7

6 1 2 3

5 1 2 3 5 7

4 1 2 3

3 1 2 3 5 7 11 13

2 1 2 3 5 7 11 13 17 19 23

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 z
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Also, when |ߚଵ| is generated by an odd alpha (such as ߙଵ, ,ଷߙ ,ହߙ ,଻ߙ …) the period between 
 ଵ| isߚ| When  .(′ߚ|௜ߙ|) ௜|2, meaning this is the first beta of a pairߙ| ଶ  isߚ|ଵ and |ܽ௜ߚ|௜ߙ|
generated by an even alpha (such as ߙଶ, ,ସߙ ,଺ߙ ,଼ߙ …) the period between หߙ௝หߚଵ and ห ௝ܽหߚଶ  is 
หߙ௝ห2ଶ, meaning this is the second beta of a pair (หߙ௝หߚ′′). 

However, unlike the activators of the first stage, alphas do not share a common stable region.  
The stable regions of alphas include proto-inhibitions as well as any lesser alpha inhibitions. 

For example: 

- When  ߙ ൌ 5 ൌ  :ଵߙ

 generates (in |1| values):  5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, …  Where ݖ|ଵߙ|
10,15, 20, 30, 40, 45, 50, and 60 are the first |2|ݖ and |3|ݖ inhibitions; 25 is the boundary 
 ௜; inhibitionsߙ|ଵߙ| 35, 55, and 65, are the first of the subsequent betas generated by ;(|ଵߚ|)
10, 15, 20 are proto-autocatalytic occurring before the boundary.  There are no ortho-
autocatalysis inhibitions for |ߙଵ|. 

- When ߙ ൌ 7 ൌ  :ଶߙ

 ,generates (in |1| values):  7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, …  Where 14   ݖ|ଶߙ|
21, 28, 35, and 42 are the first |2|ݖ and |3|ݖ inhibitions; 49 is the boundary (|ߚଵ|); 77 and 91 
are the following betas generated by |ߙଵ|ߙ௜ ; inhibitions 14, 21, 28, 35, 42 are the proto-
autocatalytic inhibitions occurring before the boundary.  There is only one ortho-autocatalytic 
inhibition for |ߙଶ| in its stable region, which is |ߙଶ|ߙଵ ൌ ଶߚ|ଵߙ| ൌ |1|35. 

Likewise, the ortho-autocatalytic inhibitions in the stable region of the following greater alphas 
are: 

ଵߙ|ଷߙ|  :ଷ| (|1|11)ߙ| - ൌ ଷߚ|ଵߙ| ൌ |1|55 , and |ߙଷ|ߙଶ ൌ ଶߚ|ଶߙ| ൌ |1|77; 

ଵߙ|ସߙ|  :ସ| (|1|13)ߙ| - ൌ ସߚ|ଵߙ| ൌ |1|65	, ଶߙ|ସߙ| ൌ ଷߚ|ଶߙ| ൌ |1|91 , and 

ଷߙ|ସߙ| ൌ ଶߚ|ଷߙ| ൌ |1|143; 

ଵߙ|ହߙ|  :ହ| (|1|17)ߙ| - ൌ ହߚ|ଵߙ| ൌ |1|85	, ଶߙ|ହߙ| ൌ ସߚ|ଶߙ| ൌ |1|119 , 

ଷߙ|ହߙ| - ൌ ଷߚ|ଷߙ| ൌ |1|187, and |ߙହ|ߙସ ൌ ଶߚ|ସߙ| ൌ |1|221; 

And so on. 

Betas positioned in a |ߙ|ߙ plane form commutative diagrams, where the |2|ߙ period betas 
generate |2ଶ ∙ or |1|12) ݖ|3 ∙  2ଶ period betas generate|ߙ| as a commutative constant, and (ݖ
|2ଷ ∙ or |1|24) ݖ|3 ∙  diagonals in the said ݖ commutative constant values, both following the (ݖ
plane. 
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Fig. 3: Beta values (in black) and their commutative diagram values. 

 

The remaining uninhibited alphas (ߚ\ߙ) are not composite integers (݇;	݇௜ ∈  therefore ,(ܭ
uninhibited alphas are all prime integers (;ߨ	ߨ௜ ∈  .Inhibitors are all composite integers  .(ߎ

 

THEOREM 

Synthesizing the developments of both sections above, we state: 

ܼା ≡ ܭ ∪ ;ߎ ܭ	 ≡ ሼ	|2|ݖ	, ,	ݖ|3| ሽ	ݖ|ߚ| 	 ∴ 	 ܼା\ሼ	|2|ݖ	, ,	ݖ|3| ሽ	ݖ|ߚ| ≡  ߎ

Given ܼା\ሼ	|2|ݖ		, ሽݖ|3| ൌ ݖ|ߚ|		and  ݖ|ߙ| ∈  :our theorem is therefore ,ݖ|ߙ|

ݖ|ߚ|	\	ݖ|ߙ|	∀ ≡  ߎ

Consequently, our two-stage diffusion-reaction system yields prime and composite numbers in a 
predictable and exact manner. 

 

PROOF 

We first solve the question of knowing if a positive integer ݖ ൒ 4 is prime (ߨ	; ߨ	 ∈   .or not (ߎ
For ݖ to be prime, it must satisfy two conditions: 

- Pass ݖ ൌ  ;because alphas contain all prime integers and some composite ,(alpha test) ߙ

- Fail ݖ ൌ  .because betas are all composite integers ,(beta test) ߚ

Previous screening of numbers whose unit digit is even or 5 will avoid unnecessary calculations, 
as these are all multiples of 2 and 5.  This leaves numbers ending in 1, 3, 7, 9. 

 

Alpha test 

Alphas are all neither even nor multiples of 3 (ߙ ∉ ሼ|2|ݖ,  is odd, if the result ݖ ሽ). Assumingݖ|3|
of ሼݖ 3⁄ ሽ ∈ ܳ, then ݖ ∉  and is therefore an alpha.  In other words, having excluded all even ݖ|3|
integers, the alpha test is simply: 

|z| 0 12 24

25 575 50 625 725 50 775 875 50 925

24 46 0 50 58 12 62 70 24 74

23 529 46 575 667 46 713 805 46 851

22 0 12 24

21

20 0 12 24 36

19 323 38 361 437 38 475 551 38 589 665 38 703

18 34 0 38 46 12 50 58 24 62 70 36 74

17 289 34 323 391 34 425 493 34 527 595 34 629

16 0 12 24 36

15

14 0 12 24 36 48

13 143 26 169 221 26 247 299 26 325 377 26 403 455 26 481

12 22 0 26 34 12 38 46 24 50 58 36 62 70 48 74

11 121 22 143 187 22 209 253 22 275 319 22 341 385 22 407

10 0 12 24 36 48

9

8 0 12 24 36 48 60

7 35 14 49 77 14 91 119 14 133 161 14 175 203 14 217 245 14 259

6 10 0 14 22 12 26 34 24 38 46 36 50 58 48 62 70 60 74

5 25 10 35 55 10 65 85 10 95 115 10 125 145 10 155 175 10 185

4 0 12 24 36 48 60

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 z
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ݖ 3⁄ ≟ ;	ݍ ݍ	 ∈ ܳ              (1) 

The result is interpreted as follows: 

- ሼݖ 3⁄ ∈ ܳሽ ⇒ ݖ ൌ ;	ߙ ߙ ∈ ޿ ∋  ݖ

- ሼݖ 3⁄ ∉ ܳሽ ⇒ ݖ ് ;	ߙ ݖ ∈  ݖ|3|

If ݖ ∈ ݖ could be prime, provided ݖ we may then proceed on to the beta test because ,޿ ൒
|1|25. 

If ݖ ∈ ݖ and if ޿ ൏ |1|25, the test would end here since the small value of ݖ implies it cannot 
enter the beta test, because the smallest value of ߚ is |1|25. Consequently, ∀	ሼߙ ൏ 25ሽ ∈  .ߎ

Otherwise, if	ݖ ∉  would have failed the alpha test, and no further ݖ ,would be composite ݖ ,޿
testing would be required as the first condition would not have been satisfied. 

 

Beta test: 

Betas are all products of alphas.  In order for ݖ to be a beta, two conditions must be met: 

ݖ - ∈  ;as tested above ,޿

ݖ - ൒ |1|25, because the first beta has a value of |1|25 ൌ ଵߙ|1|
ଶ ൌ  .ଵߚ|1|

Considering the highest inhibition a single alpha can perform is |ߙ|ݖ௜
ଶ ൌ ௜ߚ|ݖ| , when seeking to 

test ݖ௜ ≟  ௛ where one does not know the values of betas, one must reason in terms of productsߚ
of alphas, where ߙ௜ ∙ ௝ߙ ൌ ௝ߙ|௛ and |1ߚ

ଶ ൌ  :௝ห1 “ceiling” calculated as followsߙ௟ with a หߚ|1|

උห√ݖห1ඏ ≅ หߙ௝ห1              (2) 

All beta inhibitions occurring in a หඋ√ݖඏหݖ ∙  rectangular plane, we seek to know how many ݖ|ଵߙ|
alphas are found between |ߙଵ|1 and the උห√ݖห1ඏ ceiling.  Given that alphas occur in an alternate 
period for which the average period is 3, the sought quantity of alphas is determined as follows: 

උห√ݖห1 3⁄ ඏ ൌ  (3)              ߛ

However, gamma will not indicate the closest |ߙ௜|1 to the ceiling since ߙఊ ∙ 3 ് උห√ݖห1ඏ.  In 
order to find the |ߙ௜|1 value of the closest  ߙ found near the |1|ݖ position of gamma, one needs 
to observe if උห√ݖห1ඏ is even or odd. 

If even, උห√ݖห1ඏ may be located in between ߙ′ and ߙ′′ of a given pair of alphas, or immediately 
before ߙ′, or immediately after ߙ′′. 

If උห√ݖห1ඏ is odd, it may be located equidistantly between two pairs of alphas (and is a multiple of 
3), or can be one of the two alphas in a pair.  The closest alpha can be then found by adding 1 to 
an even උห√ݖห1ඏ and testing for an alpha as per above, or if උห√ݖห1ඏ is odd, by simply dividing by 
3. 

Testing for the position of උห√ݖห1ඏ  within a pair of alphas including the found alpha is done by 
adding 2 to උห√ݖห1ඏ, and running the alpha test.  We name the closest alpha to หඋ√ݖඏห1 “ߙఊ”, so 
that ൛උห√ݖห1ඏ െ 3ൟ ൑  .ఊߙ

Gamma also indicates the maximum number of iterations the beta test hereunder can be run with 
the |1|ߙ௜ values ranging from the closest alpha to උห√ݖห1ඏ down to |ߙଵ|ߙ௜ . Furthermore, the 
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pertinent betas liable to inhibit ݖ  are limited to a very few, and the number of these few is shown 
by gamma, hence the importance of finding the closest alpha to උห√ݖห1ඏ.  The pertinent |ߙ௜|ߙ௝ 
beta interactions being limited to gamma, are found within the หඋ√ݖඏห1 ∙  plane, along a ݖ|ଵߙ|
hemiparabolic concave path of the closest beta to ݖ, starting at หඋ√ݖඏห1, and ending in |ߙଵ|ݖ.  
One could eventually extend the path to include |3|ݖ and |2|ݖ in the proto autocatalysis zone, if 
the alpha test had not been performed beforehand. 

Since |ߙ௜|ߙ௞ ൌ  ఊห1, and that the inhibition of a beta occursߙ௛, that we know the value of หߚ
when ߚ௛ ൌ  :then the beta test is ,ݖ

൛ݖ ⁄ఊߙ ൟ ≟  ௜              (4)ߙ

If ൛ݖ ⁄ఊߙ ൟ ∉ ܳ, then ൛ݖ ⁄ఊߙ ൟ ൌ ௜ߙ ⇒ 	 หߙఊหߙ௜ ൌ ;	ݖ ௛ߚ ൌ ;	ݖ  .ݖ ௛ inhibitsߚ is composite because ݖ

If ൛ݖ ⁄ఊߙ ൟ ∈ ܳ, then ൛ݖ ⁄ఊߙ ൟ ് ௜ߙ ⇒ ௛ߚ	 ് ;	ݖ ௜ߙఊหߙis not inhibited by any ห ݖ ൌ  ௛ and may beߚ
prime. 

In order to test the inhibition of all of the betas along their inhibition path, we simply place ݖ as 
the numerator, and หߙ௝ห as the denominator, where ݆ will range from gamma to 1, in decrements 
of 1. 

For example, let ݖ ൌ 2003: 

- උห√ݖห1ඏ ൌ 44 ≅ หߙ௝ห1 

- උห√ݖห1ඏ ൅ 1 ൌ 45 and 45 3⁄ ൌ 15	 ∉ ܳ ⇒ 45 ്  ߙ

- උห√ݖห1ඏ െ 1 ൌ 43 and 43 3⁄ ൌ 14	. 33തതതത ∈ ܳ ⇒ 43 ൌ  ߙ

- උห√ݖห1 3⁄ ඏ ൌ ߛ ൌ 14 ⇒ ఊߙ ൌ ଵସߙ ൌ 43 ൌ  ′′ߙ

There will be 13 decrements to calculate using (4): ൛ݖ ⁄ఊߙ ൟ ൌ 2003 43⁄ ൌ 46.58139 ∈ ܳ ്  ௜ߙ	

ఊିଵߙ - ൌ ଵଷߙ ൌ 41 ൌ ݖ൛	ᇱ;ߙ ⁄ఊିଵߙ ൟ ൌ 2003 41⁄ ൌ 48.85365 ∈ ܳ ്  ௜ߙ	

ఊିଶߙ - ൌ ଵଶߙ ൌ 37 ൌ ݖ൛	ᇱᇱ;ߙ ⁄ఊିଶߙ ൟ ൌ 2003 37⁄ ൌ 54.13513 ∈ ܳ ്  ௜ߙ	

ఊିଷߙ - ൌ ଵଵߙ ൌ 35 ൌ ݖ൛	ᇱ;ߙ ⁄ఊିଷߙ ൟ ൌ 2003 35⁄ ൌ 57.22857 ∈ ܳ ്  ௜ߙ	

And so on, until either ൛ݖ ⁄ఊି௡ߙ ൟ ∉ ܳ, indicating ݖ is composite, or ߙఊି௡ ൌ ఊିଵଷߙ ൌ  ଵ isߙ
reached with all ൛ݖ ⁄ఊି௡ߙ ൟ ∈ ܳ, indicating ݖ is prime. 

In the present example, all ൛ݖ ⁄ఊߙ , ݖ ⁄ఊି௡ߙ ൟ ∈ ܳ indicating 2003 is not inhibited by any beta, and 
therefore, ݖ is prime.  In the case of the next alpha, 2009, the results of ൛ݖ ⁄ఊି௡ߙ ൟ show that both 
ሼߙଵଷ	ሺ41ሻ	, ଶሺ7ሻሽߙ ∉ ܳ, meaning 2009 has two betas ሼ|41|49	, |7|287ሽ inhibiting it, and 
therefore, it is a composite integer. 

As mentioned above, all alphas with an odd index are the first of a pair, and those with an even 
index are the second of a pair.  Consequently, going from one alpha to another amounts to 
merely adding or subtracting 2 or 4 from the pertinent alpha, depending of which alpha (ߙᇱ,  (′′ߙ
one is starting from, and in which direction one wishes to move. 

When none of the |ߙ௜|ߙ௝ interactions produce a positive integer, ݖ is said to have failed the beta 
test.  Consequently ݖ cannot be a composite integer and therefore must be a prime one.  
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Closest neighboring prime  

The next question we solve is identifying the neighboring primes to any given positive integer 
൒ 25. 

In order to achieve this, we must first identify the neighboring alphas, and then check if they are 
beta-inhibited.  The closest non-beta inhibited alpha is the closest prime.  We have shown how to 
do this in the above section. 

 

Number of primes between 1 and ࢏ࢠ 

This is obtained simply by first counting how many alphas are found between 1 and ݖ௜ ; second, 
by counting how many pertinent betas are found in the same area; third, by subtracting the 
number of pertinent betas from the total of alphas, since ܼା\ሼ|2|ݖ௛, ,௛ݖ|3| ሽߚ ≡ ;	ߎ ,௛ݖ ߚ ൏ ௜ݖ .  
The pertinent betas are those whose |1|ߚ value is inferior or equal to |1|ݖ௜.  We refer to the 
number of primes as epsilon (ߝ) where ∆ఉ೓

ఈ೔ ൌ  .ߝ

A straight-forward calculation is possible when ݖ௜ ൏ 175, because before this integer, only two 
alphas can produce a beta.  Considering 175 ൌ 5 ∙ 5 ∙ 7 ൌ 25 ∙ 7 ൌ 5 ∙ 35, two different alpha 
factors produce a same beta.  We call these “multi-beta values” because a same beta value will 
have more than two alpha factors, and therefore ߚ௜ ൌ ௜ߙ|௛ߙ| ൌ  ,௝.  Consequently, past 175ߙ|௜ߙ|
a quantitative approach will not produce the exact numbers of primes.  We are currently working 
on a more elegant “qualitative” approach through value, other than systematically testing 
ఈ೓|ఈ೔|ߚ െ ఈ೔|ఈೕ|ߚ ≟ 0 and related subroutines to sum the number of |ߙ௜|ߙ௝with a same ߚ௜value 
needed to add back into our above epsilon in order to obtain an exact count. 

 

Number of primes between ࢏ࢠ and ࢐ࢠ 

This is computed by first calculating the number of number of primes from 1 to ݖ௜ obtaining ߝ௜ .  
We do the same for ݖ௝, generating ߝ௝ , where ߝ௜ ൏ ௝ߝ .  Then ∆ఌೕ

ఌ೔ൌ  ௞, renders the quantity ofߝ
primes between two given positive integers. 

 

FURTHER RESEARCH AND CONCLUSION 

One can consider the autosoliton phenomenon as a form of sieving, where the autosoliton has a 
period of |1|ߨ; the stable region ranges from |1|ߨ to |ߨ|ߨ െ 1 and includes the inhibitions of 
smaller primes going from |2|ߨ to |ߨ|ߨ െ 1; the hysteretic region begins at |ߨ|ߨ.  This is seen 
respectively at |1|ݖ as |1|ߨ|1| ;ߨ to |1|ߨଶ െ 1; and finally, |1|ߨଶ.  Our autosoliton approach 
may give further insight to the algorithms of Luo (1989) as well as Quesada et al (1992), and 
should allow for their increased speed and efficiency. 

Some interesting phenomena appear in the occurrence of betas (ߚ ൒ 175) of more than 3 
multiplicands such as ൛ߙ௜

௡ ∙ ௛ߙ௝ൟ or ൛ሺߙ ∙ ௜ሻߙ ∙  ,௝ൟ, which seem to follow a pattern.  For exampleߙ
the first thirty of this subset of composites are: 
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Table 1: First thirty multi‐beta values. 

175 = 5 ∙ 5 ∙ 7 595 = 5 ∙ 7 ∙ 17 845 = 5 ∙ 13ଶ 
245 = 5 ∙ 5 ∙ 7 605 = 5 ∙ 11ଶ 847 = 7 ∙ 11ଶ 
275 = 5 ∙ 5 ∙ 11 625 = 5ସ 925 = 5ଶ ∙ 37 
325 = 5 ∙ 5 ∙ 13 637 = 7ଶ ∙ 13 931 = 7ଶ ∙ 19 
385 = 5 ∙ 7 ∙ 11 665 = 5 ∙ 7 ∙ 19 935 = 5 ∙ 11 ∙ 17 
425 = 5 ∙ 5 ∙ 17 715 = 5 ∙ 11 ∙ 13 1001 = 7 ∙ 11 ∙ 13 
455 = 5 ∙ 7 ∙ 13 725 = 5ଶ ∙ 29 1015 = 5 ∙ 7 ∙ 29 
475 = 5 ∙ 5 ∙ 19 775 = 5ଶ ∙ 31 1025 = 5ଶ ∙ 37 
539 = 7 ∙ 7 ∙ 11 805 = 5 ∙ 7 ∙ 23 1045 = 5 ∙ 11 ∙ 19 
575 = 5ଶ ∙ 23 833 = 7ଶ ∙ 17 1085 = 5 ∙ 11 ∙ 31 

Concentrating on the occurrence of primes, the now explained phenomena can be simply 
considered to be the interscalar occurrence of unique หݖ௝ห1 shown at the smallest interval scale of 
 ௝.  Given theݖ|௝ห1 to |1ݖ௜|1  may occur along the path from หݖ| ௝, where no other smallerݖ|1|
uniqueness of |1|ߨ, the authors are led to consider 1 ⁄ߨ|1| ≟ ሼ ሽ, and by extension, John 
Conway’s surreal numbers (2001). 

Our approach is novel in the sense that the authors come from disciplines other than 
mathematics (population genetics and management), and that we adopted a “grounded” 
methodology, starting from the partition of positive integers as suggested by Stein (1976, p. 21). 

For quite obvious reasons algorithms are not provided, although they can be easily derived from 
our proof. 
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