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ABSTRACT 

Minimum Population Search is a recently developed metaheuristic for optimization of mono-
objective continuous problems, which has proven to be a very effective optimizing large scale and 
multi-modal problems. One of its key characteristic is the ability to perform an efficient 
exploration of large dimensional spaces. We assume that this feature may prove useful when 
optimizing multi-objective problems, thus this paper presents a study of how it can be adapted to 
a multi-objective approach. We performed experiments and comparisons with five multi-objective 
selection processes and we test the effectiveness of Thresheld Convergence on this class of 
problems. Following this analysis we suggest a Multi-objective variant of the algorithm. The 
proposed algorithm is compared with multi-objective evolutionary algorithms IBEA, NSGA2 and 
SPEA2 on several well-known test problems. Subsequently, we present two hybrid approaches 
with the IBEA and NSGA-II, these hybrids allow to further improve the achieved results. 

KEYWORDS: Evolutionary Algorithm, Minimum Population Search, Thresheld Convergence, 
Multi-objective Optimization 

 

 

 

 



GECONTEC: Revista Internacional de Gestión del Conocimiento y la Tecnología. ISSN 2255-5648 
Reyes-Fernández-de-Bulnes, D., Bolufé-Röhler , A. y Tamayo-Vera, D. Vol. 7(2). 2019 

2 
 

 

INTRODUCTION 

Many industrial domains are concerned about large and complex optimization problems involving 
multiple criteria. Indeed, optimization problems encountered in practice are seldom mono-
objective. In general, there are many conflicting objectives to handle. Multi-objective 
Optimization (MOO) is dedicated to solve problems in which a set of objective functions 

ଵ݂ሺݔሻ, ଶ݂ሺݔሻ, … , ݂ሺݔሻ must be optimized simultaneously (1): 

ሻݔሺܨ	݊݅݉  ൌ 〈 ଵ݂ሺݔሻ, ଶ݂ሺݔሻ, … , ݂ሺݔሻ〉, ݔ ∈ ܦ ሺ1ሻ

where ܦ is known as the decision space. The image set ܱ, which results from projecting :ܨ	ܦ →
ܱ is called the objective space, which is the space where the objective vectors belong. 

Multi-objective Optimization Evolutionary Algorithms (MOEAs) are among the state of the art 
in solving Multi-objective Optimization Problems (MOPs), however, these algorithms still face 
important challenges. For instance, the scalability of algorithms by increasing the dimensions of 
both the decision space and the objective space, or the need to increase efficiency with respect to 
the number of evaluations of objective functions (Zitzler and Thiele, 1999). For that reasons, the 
development of new MOEAs remains an active area of research (Talbi, 2009). Following this 
approach, this paper proposes a new MOEA based on the heuristic Minimum Population Search 
(MPS) (Bolufé-Röhler and Chen, 2013). 

Minimum Population Search is a recently developed metaheuristic for optimization of mono-
objective continuous problems. A novel and key contribution of MPS is that its design is based 
on the hypothesis that the effectiveness of exploration can be affected by the concurrence with 
exploitation, thus, MPS attempts to separate these two processes (Bolufé-Röhler and Chen, 2014). 
To achieve this, Minimum Population Search is the first metaheuristic to use Thresheld 
Convergence (TC) as an integral part of its design. Thresheld Convergence is a diversification 
technique which attempts to separate these processes through the use of a “threshold” function to 
establish a minimum search step, managing this step makes it possible to influence the transition 
from exploration to exploitation, convergence is thus “held” back until the last stages of the search 
process (the word thresheld is a combination of threshold and held). 

The goal of a controlled transition is to avoid an early concentration of the population around a 
few attraction basins which can bias exploration towards these regions, causing a loss of diversity 
and premature convergence. Thresheld Convergence has been successfully applied to several 
population-based metaheuristics such as Differential Evolution (Bolufé-Röhler et al., 2013), 
Evolution Strategies (Piad et al., 2015) and Estimation of Distribution Algorithm (Tamayo-Vera 
et al., 2016), but MPS is the first evolutionary algorithm to have TC built into its original design. 
This allows MPS to provide an effective and unbiased exploration of the search space, which has 
proven to be very effective as part of hybrid algorithms. A comprehensive third party study 
(Glorieux et al., 2017) has rated MPS-CMAES hybrid as the second best of 15 tested methods for 
Large Scale Global Optimization. 
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In this paper we hypothesize that the strong exploration of MPS will lead to good results in multi-
objective optimization. Five multi-objective selection methods are tested on MPS and 
computational results are analyzed using quality indicators and nonparametric statistical tests. The 
proposed Multi-objective Minimum Population Search (MMPS) is compared against other 
MOEAs considering several MOPs of a standard benchmark. 

However, we believe that the original design of Threhseld Convergence, designed to achieve a 
complete convergence upon a single point, may affect the diversification of solution throughout 
the Pareto front. Thus we will test some modification to TC, in an attempt to adjust this technique 
to the requirements of MOO. We also test whether hybrid algorithms that use MPS for an initial 
exploration, and then rely on well-known MOEA for the final diversification, allow to further 
improve results.   

The remainder of the paper is organized as follows. In the next two sections several concepts of 
multi-objective optimization and the MPS algoithm are presented. Then, the Multi-objective MPS 
approach is described, as well as two hybrid algorithms based on MMPS. In the final section the 
computational results are described and analyzed. Finally, conclusions and future work are 
discussed. 

 

MULTI-OBJECTIVE OPTIMIZATION 

A Multi-objective Optimization Problem (MOP) involves a number of objective functions which 
are to be either minimized or maximized. As in a mono-objective optimization problem, the MOP 
may contain a number of constraints which any feasible solution (including all optimal solutions) 
must satisfy (Deb, 2001), (Deb, 2011). The MOEAs solution quality is commonly expressed in 
terms of Pareto dominance (Talbi, 2009). An objective vector $ݑ	 ൌ 	 ሺݑሼଵሽ, … ,  ሼሽሻ is said toݑ

dominate v	 ൌ 	 ൫vሼଵሽ, … , vሼ୫ሽ൯ if and only if no component of ݒ is smaller than the corresponding 

component of ݑ and at least one component of ݑ is strictly smaller, that is (2): 

 ∀݅ ∈ ሼ1,… ,݉ሽ:	ݑሼሽ  ሼሽݒ ⋀ ∃݅ ∈ ሼ1, … ,݉ሽ: ሼሽݑ ൏ ሼሽ ሺ2ሻݒ

 

Multi-objective optimization problems 
MOPs can be divided into two categories: those whose solutions are encoded with real-valued 
variables, also known as continuous MOPs, and those where the solutions are encoded using 
discrete variables such as combinatorial MOPs. This paper focuses in continuous MOPs. 

Some continuous test functions have been proposed to easily carry out MOEAs experiments 
(Zitzler et al., 2000), (Deb et al., 2005). Test problems allow a fairer evaluation of the efficiency 
and the effectiveness of MOEA. Some well-known test problems are used in the literature for 
continuous MOPs, such as the DTLZ and ZDT benchmarks (Deb et al., 2005). For some test 
problems, the optimal PF is known a priori which makes easier to assess the performance of 
MOEAs. Indeed, in the ZDT class of instances, a simple procedure has been designed to construct 
bi-objective optimization problems in which different characteristics of the PF landscape and 
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difficulties are introduced (Talbi, 2009). The test presented on this paper were performed with 
DTLZ and ZDT benchmark problems, using the Platform and programming language 
independent Interface for Search Algorithms (PISA) framework (Bleuler et al., 2003) which 
contains implementations of these standard MOPs in C++ language. 

 

Multi-objective optimization evolutionary algorithms 
Evolutionary algorithms are population-based stochastic search procedures which iteratively 
emphasize the best solutions. The best solutions are recombined and locally perturbed in the hope 
of creating a new and better population until a predefined termination criterion is met. There are 
many MOEAs in the literature. However, there are a few MOEAs that have stood out for their 
good performance and that are used on this paper for comparison and hybridization: 

 Indicator-Based multi-objective Evolutionary Algorithm (IBEA): Its fitness assignment 
scheme is based on a pairwise comparison of solutions contained in a population by using 
a binary quality indicator. The selection scheme is a binary tournament between randomly 
chosen individuals. The replacement strategy is an environmental one that consists in 
deleting, one-by-one, the worst individuals and in updating the fitness values of the 
remaining solutions each time there is a deletion; this step is iterated until the required 
population size is reached (Zitzler and Kunzli, 2004). 

 Non-dominated Sorting Genetic Algorithm II (NSGA-II): Individuals are ranked 
according two criteria. First, using the non-dominance concept. Within a given rank, 
solutions are ranked again according to the crowding distance. Solutions with high 
crowding distance are considered better solutions, as they introduce more diversity in the 
population (Deb et al., 2002). 

 Strength Pareto Evolutionary Algorithm 2 (SPEA2): It maintains a fixed number of Pareto 
solutions in a separate archive. This elite archive participates exclusively in the generation 
of the solutions and is used in the fitness assignment procedure. A clustering algorithm is 
used to control the cardinality of the archive by maintaining the diversity among the Pareto 
solutions of the archive (Zitzler et al., 2001). 

 

Once the MOEAs are executed, it is necessary to measure the quality of the obtained PFs. This 
task is performed using quality indicators. We employ three quality indicators for measure 
convergence to the optimal PF and diversity of solutions along the PF: Epsilon (Zitzler et al., 
2003), Hypervolume (Bader, 2010) and R (Hansen and Jaszkiewicz, 1999). 

Nonparametric statistical tests perform paired comparisons of algorithms applied to the test 
problem and estimate by means of the p-value which one is the best. A p-value provides 
information about whether a statistical hypothesis of a test is significant or not (lower p-value, 
stronger is the evidence against hypothesis null Hሼሽ, which states that the means of the two 
samples analyzed are equivalents). We employ one statistical testing procedures for comparing 
quality indicator values samples: Fisher-Indep (Conover, 1999). 
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Quality indicators are implemented within PISA framework. PISA performance assessment is 
based on separating the optimization process into the optimization problem (Variator) and the 
selection process (Selector). It extends it by a set of statistical tools that allow assessing and 
comparing different optimization methods. 

 

MINIMUM POPULATION SEARCH 

MPS is a recently developed metaheuristic for optimization of mono-objective continuous 
problems. The key idea is to guarantee a full search into all dimensions using the minimum 
required population size (Bolufé-Röhler and Chen, 2014), (Bolufé-Röhler et al., 2014). To generate 
new solutions, line segments are used to search within the d - 1 dimensional hyperplane, and full 
coverage of the search space is then achieved by taking a subsequent step that is orthogonal to 
this hyperplane. To preserve the diversity of the (small) population and avoid premature 
convergence, the Thresheld convergence (Chen et al., 2015) technique is used. By establishing a 
minimum search step, thresheld convergence disallows new solutions which are too close to 
members of the current population, and this ensures a strong exploration during the early stages 
of the search. The minimum step threshold decays as the search progresses and convergence is 
thus held back until the last stages of the search process. 

When multi-modal functions are optimized, the search process is commonly divided by two 
stages: 

 

 Exploration: Consists of finding the best attraction basin. 

 Exploitation: Consists of converging to the local optimum of a given attraction basin. 

 

At every generation a new solution	݈ܽ݅ݎݐ is created from each population member ݔ . First, from 
each parent solution x୧ a step inside the d - 1 hyperplane (formed by the n population members) 
is performed. Then, an orthogonal step is made to search into the missing dimension. The “in-
plane” step is made using the (normalized) difference vector between the parent solution ݔ and 
the centroid of the current population ݔ . The orthogonal step is made taking a random vector 
orthogonal ܸܱݐݎ to the parent-centroid difference vector (Figure 1). This two-step process for 
generating the new trial solutions trial୧ is represented in (3). The direction and size of the 
difference and the orthogonal vectors are determined by the scaling factor ܨ and	ݐݎܱܨ , 
respectively (Bolufé-Röhler and Chen, 2014). 

 

݈ܽ݅ݎݐ  ൌ 	 ݔ 	ܨ ∗ ሺݔ െ ሻݔ  ݐݎܱܨ ∗  ሺ3ሻݐݎܱܸ
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Figure 1. Visualization of MPS search process in three dimensions. Centroid vector and 
orthogonal step.  

 

 

To promote diversification, Thresheld convergence forces new solutions to be a minimum 
min_step threshold distance away from their parent solutions. To avoid new solutions from being 
sampled too far away from the best-found regions, MPS also enforces a maximum search 
threshold max_step = 2 * min_step. To guarantee that the difference vector step does not exceed 
the maximum allowed threshold distance, the ܨ factor is drawn with a uniform distribution from 
[-max_step, max_step]. To ensure that the new solution ݈ܽ݅ݎݐ falls in the correct [min_step, max_step] 
threshold interval, the ݐݎܱܨ factor is selected with a uniform distribution from [min_orti, 
max\_orti]. The min_orti and max\_orti values are calculated using equations (4) and (5), 
respectively. The difference vector ݔ 	െ	ݔ  and the orthogonal vector	ܸܱݐݎ are normalized 
before scaling. Once the new solutions are created, clamping is performed if necessary, and the 
best n solutions among the parents and offspring survive into the next generation (Bolufé-Röhler 
and Chen, 2014).  

 
ݐݎ_݊݅݉ ൌ ටmaxሺ݉݅݊_݁ݐݏ

ଶ െ ܨ
ଶ, 0ሻ ሺ4ሻ

  

 
ݐݎ_ݔܽ݉ ൌ ටmaxሺ݉ܽ݁ݐݏ_ݔଶ െ ܨ

ଶ, 0ሻ ሺ5ሻ

 

The min_step values are updated by a rule similar to that used in previous attempts to control 
convergence for Differential Evolution (Bolufé-Röhler et al., 2013) and Estimation of 
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Distribution Algorithms (Tamayo-Vera et al., 2016) in which an initial threshold is selected that 
then decays over the course of the search process. Equation (6) shows how min_step is calculated: 
 represents a fraction of the main space diagonal, FEs is the total available amount of function ߙ
evaluations, k is the number of evaluations used so far, and ߛ is the parameter that controls the 
decay rate of the threshold (Chen et al., 2015). 

 

 
݁ݐݏ_݊݅݉ ൌ ߙ ∗ ݈ܽ݊݃ܽ݅݀ ∗ ൬

ሾݏܧܨ െ ݇ሿ
ݏܧܨ

൰
ఊ

 ሺ6ሻ

 

To ensure good spacing in the initial population, the initial points are selected to be on the 
diagonals of the search space. Assuming that the search space is bounded by the same lower and 
upper bound in each dimension: ݏ is the k-th population member, ݏݎ are random numbers 
which can be -0.5 or 0.5, and bound is the lower and upper bound in each dimension, see (7). This 
initialization method leads to a better distribution of the initial solutions in the search space than 
did uniform random solutions. A detailed pseudo-code is presented in Algorithm 1. 

 

 
ݏ ൌ ൬

ଵݏݎ ∗ ݀݊ݑܾ
2

,
ଶݏݎ ∗ ݀݊ݑܾ

2
,… ,

ݏݎ ∗ ݀݊ݑܾ
2

൰ ሺ7ሻ
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Given the excellent performance in optimizing a single objective function and the ability to 
perform a methodical exploration of the search space, it is suggested in (Bolufé-Röhler and Chen, 
2014) that MPS can also have a satisfactory performance in multi-objective continuous 
optimization. In next section, we present an analysis of how to create a Multi-objective MPS 
algorithm following MPS framework. 

 

MULTI-OBJECTIVE MINIMUM POPULATION SEARCH 

In addition to the concepts of mono-objective metaheuristic, a multi-objective metaheuristic 
contains three main search components (Talbi, 2009): 

 Fitness assignment: The main role of this procedure is to guide the search towards Pareto 
optimal solutions for a better convergence. It assigns a scalar-valued fitness to a vector 
objective function. 

 Diversity preservation: The emphasis here is to generate a diverse set of Pareto solutions 
in the objective and/or the decision space. 

 Elitism: The preservation and use of elite solutions (e.g., Pareto optimal solutions) allows 
a robust, fast, and a monotonically improving performance of a metaheuristic. 

 

These three components are implicit in the selection process, thus defining a multi-objective 
selection process for MPS is the key task for adapting MPS to a multi-objective approach. We 
value two general strategies recommended in (Talbi, 2009). 

 Objective function decomposition: This strategy consists in partitioning the original 
objective function into several sub-objectives. The sub-objectives may be defined over a 
subset of the decision variables. This decomposition process will separate the potentially 
conflicting goals of the mono-objective function and will then reduce the number of local 
optima associated with the problem (Knowles et al., 2001). 

 Helper objectives: This strategy consists in adding new objectives. The added objectives 
are generally correlated with the primary objective function (Talbi, 2009). These new 
secondary objectives may be viewed as helper objectives whose introduction will reduce 
the difficulty of the original mono-objective problem. For instance, in a landscape 
characterized by neutral networks (i.e., plateaus), adding helper objectives may break those 
plateaus into smooth networks in which the search is more easy for any metaheuristic. 

 

As we intend to create a generic MOEA, all objectives have the same level of importance and it 
does not exist any primary objective function. For that reasons we apply the strategy objective 
function decomposition. Subsequently, we proceed to experiment with several multi-objective 
selection processes to analyze which is best coupled to MPS. 
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Selection process 
The main element that converts the algorithm into a multi-objective optimizer is the selection 
process it uses. We evaluate five different multi-objective selection processes for MPS in PISA: 

 Dominance count: The dominance count of a solution is related to the number of 
solutions dominated by the solution. This measure can be used in conjunction with the 
other ones (Talbi, 2009) (Figure 2). 

 Dominance-depth: The population of solutions is decomposed into several fronts. The 
nondominated solutions of the population receive rank 1 and form the first front ܧଵ. The 
solutions that are not dominated except by solutions of ܧଵ receive rank 2; they form the 
second front ܧଶ. In a general way, a solution receives the row k if it is only dominated by 
individuals of the population belonging to the unit. 
 

ଵܧ  ∪ ଶܧ ∪ …∪ ିଵܧ ሺ8ሻ

 
Then, the depth of a solution corresponds to the depth of the front to which it belongs. 
For instance, this strategy is applied by NSGA-II algorithm (Deb et al., 2002) (Figure 2). 

 Dominance rank: In this strategy, the rank associated with a solution is related to the 
number of solutions in the population that dominates the considered solution (Talbi, 
2009). In MOEAs, the fitness of a solution is equal to the number of population's 
solutions that dominate the considered solution, plus one (Figure 2). This strategy is 
applied by Multi-Objective Genetic Algorithm (MOGA) (Fonseca and Fleming, 1993). 

 Dominance count: Dominance count is used in combination with Dominance rank. For 
instance, this strategy is applied by SPEA2 algorithm (Zitzler et al., 2001). For each 
member of the archive in SPEA2, a strength value proportional to the number of solutions 
this member dominates is computed. Then, the fitness of a solution is obtained according 
to the strength values of the individuals achieved that dominate it. 

 Indicator based: This strategy is applied by IBEA algorithm (Zitzler and Kunzli, 2004). 
The fitness assignment scheme is based on a pairwise comparison of solutions contained 
in a population by using a binary quality indicator. Indeed, several quality indicators can 
be used. 
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Figure 2. Some dominance-based ranking methods.  

 

 

Avoiding centrality 
MPS was originally conceived for mono-objective problems. For that reason, it is designed to 
achieve a central convergence around the attraction basin of the best found solution. This is 
achieved through the use of the centroid vector, which is the centroid of all the individuals in the 
population, as a reference point to generate new solutions (Bolufé-Röhler et al., 2015). We 
considered that this centrality driven mechanism could become an inconvenient when aiming for 
diversity in MOPs. We performed experiments replacing the centroid vector by a random 
individual vector from the same population. A different random vector is chosen in each 
generation of the algorithm. The computational result section shows the achieved performance 
with both approaches. 

 

HYBRID APPROACHES USING MULTI-OBJECTIVE MPS 

Over the last years, interest in hybrid metaheuristics has risen considerably in the field of 
optimization. The best results found for many real-life or classical optimization problems are 
obtained by hybrid algorithms (Talbi, 2009). For that reason, we propose the hypothesis that if 
we hybridize MMPS with other standard MOEAs of the literature, satisfactory results could be 
obtained. The MOEAs IBEA (Zitzler and Kunzli, 2004) and NSGA-II (Deb et al., 2002) are 
selected for this purpose. 

The general idea of hybridization is that MMPS initially acts up to ݉ܽݏ݈ܽݒܧݔ ∗ ߶, where ߶ can 
be equal to 0.5, then MMPS is allowed to evaluate half of the budget of function evaluations. 
Thereafter, the second MOEA begins and take as initial population the last generation of MMPS. 
One of the advantages of MMPS is that it finds good solutions in good regions of the search space 
with very few generations. Pivot ߶ value could be lower than 0.5. 
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COMPUTATIONAL RESULTS 

In this section we present and analyze all the results. Experimental parameters are presented in 
Table 1. Our implementation uses ߙ	 ൌ 	0.3 and ߛ	 ൌ 	3 for thresheld convergence, as suggested 
in (Bolufé-Röhler and Chen, 2013). For all the experiments, the MOPs used were DTLZ and 
ZDT family. 

 

Table 1. Experimental paremeters 

Parameter Value 

Number of runs 30 

Population size 100 

Decision variables (dimension) 30 

Objective functions 2 

Number of generations   1000 

Number of evaluations   100000 

 0.3 (MPS core) ߙ

 3 (MPS core) ߛ

 

 

 

Results of the different selection processes 
Table 2 and Table 3 present the results of executing MMPS coupled with the five multi-objective 
selection processes, best performance is shown in bold. Table 2 shows the performance measured 
by the Epsilon indicator, it can be noticed that the Indicator based selector achieves the best result 
in nine of the twelve MOPs. Table 3 shows the performance measured by the Hypervolume 
indicator; in this case the Indicator based selector achieves the best results in all but one of the 
problems. Results with the R quality indicator values were also analyzed, but are not presented 
because they are very similar to the Epsilon indicator. The second best selection process is 
Dominance-depth, it achieves the best result in two MOPs in Table 2 and one of the best results 
in Table 3. It also consistently achieves the second best results in most of the problems. 
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Table 2. Epsilon means for MMPS with five selection processes 

Problem D. count D. depth D. rank D. count I. based 

DTLZ1 1.41E-01 1.05E-02 1.00E+00 1.10E-02 3.04E-03 

DTLZ2 1.21E-01 1.18E-03 7.98E-01  7.49E-04 7.50E-04 

DTLZ3 1.13E-01 6.59E-03 9.94E-01  7.33E-03 4.27E-03 

DTLZ4 9.96E-01 7.59E-03 1.00E+00 6.73E-02 2.87E-03 

DTLZ5 1.21E-01 1.22E-03 8.49E-01 7.22E-04 8.03E-04 

DTLZ6 3.33E-02 2.63E-02 1.00E+00 2.48E-02 1.90E-02 

DTLZ7 9.03E-02 2.93E-03 1.00E+00 2.92E-03  5.35E-03 

ZDT1 1.46E-01 3.58E-03 1.00E+00 3.10E-03  2.80E-03 

ZDT2 1.00E-01 4.79E-03 1.00E+00 5.35E-03 3.46E-03 

ZDT3 2.31E-01 6.78E-03 1.00E+00  8.86E-03 9.28E-03 

ZDT4 1.74E-03 3.49E-04 1.00E+00 4.10E-04 3.69E-04 

ZDT6 1.06E-01 8.34E-02 1.00E+00 7.89E-02 3.95E-03 

 

Conversely, the Dominance-depth selector achieves better diversity in the Pareto Front than the 
Indicator based selector. Figure 3 illustrates this for the DTLZ5 problem, it can be noticed that 
when using the Indicator based selector diversity is lost at the border of the PF, while the 
Dominance-depth selector provides complete cover of the front. Summarizing, MMPS with the 
Indicator based selector achieves a better performance with all the measures, but the Dominance-
depth selector provides more diversity on the PF. This is an expected performance since the 
Indicator based selector focuses more on quality indicator (Epsilon) than Dominance-depth. In 
other words, Indicator based is more responsive to the convergence of solutions. On the other 
hand, Dominance-depth holds both elements simultaneously: convergence and diversity. 

In order to statistically to support these results, a non-parametric statistical test was performed. 
Table 4 shows the results of the Fisher-Indep test for Epsilon indicator on DTLZ6. Statistically 
significant p-values are shown in bold. 

 

 

 

 

 

 



GECONTEC: Revista Internacional de Gestión del Conocimiento y la Tecnología. ISSN 2255-5648 
Reyes-Fernández-de-Bulnes, D., Bolufé-Röhler , A. y Tamayo-Vera, D. Vol. 7(2). 2019 

13 
 

 

Table 3. Hypervolume means for MMPS with five selection processes 

Problem D. count D. depth D. rank D. count I. based 

DTLZ1 1.55E-01 1.47E-03 1.13E+00 1.70E-03 6.28E-04 

DTLZ2 1.22E-01 1.01E-04 1.06E+00 8.61E-05 4.43E-05 

DTLZ3 1.25E-01 8.09E-04 1.14E+00 1.09E-03 6.88E-04 

DTLZ4 1.00E+00 3.13E-03 1.01E+00  3.45E-02 2.98E-04 

DTLZ5 1.22E-01 1.04E-04 1.07E+00 8.45E-05 4.46E-05 

DTLZ6 3.37E-02 1.32E-02 1.11E+00 1.00E-02 9.70E-03 

DTLZ7 4.78E-02 1.76E-03 1.15E+00 1.91E-03 6.29E-04 

ZDT1 1.12E-01 2.24E-03 1.15E+00  2.01E-03 1.30E-03 

ZDT2 4.33E-02 2.42E-03 1.13E+00 2.36E-03 9.18E-04 

ZDT3 1.60E-01 3.43E-03 1.11E+00 4.55E-03 1.91E-03 

ZDT4 1.33E-03 1.60E-04 1.20E+00 2.05E-04 4.40E-04 

ZDT6 6.14E-02 4.33E-02 1.14E+00 3.68E-02 8.47E-04 

 

 

The results for this problem are representative of the results achieved on most of the MOPs and 
allow to conclude that better performance achieved by the Indicator based selector is statistically 
significantly respect to the performance achieved by the other selectors. The difference between 
the other selectors is not statistically significant. 

 

Figure 3. Pareto Fronts examples: MMPS-Dominance depth and MMPS-Indicator based.  
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Table 4. Fisher-Indep test for MMPS with five selection processes with Epsilon on DTLZ6 
problem 

Fisher-Indep test 

Dominance-depth is better than Dominance-count with a p-value < 3.10571e-032

Dominance-rank is better than Dominance-count with a p-value of 1 

Indicator based is better than Dominance-count with a p-value < 3.10571e-032 

Dominance-count is better than Dominance-count with a p-value < 3.10571e-032

Dominance-count is better than Dominance-depth with a p-value of 1   

Dominance-rank is better than Dominance-depth with a p-value of 1 

Indicator based is better than Dominance-depth with a p-value < 3.10571e-032 

Dominance-count is better than Dominance-depth with a p-value of 0.18546 

Dominance-count is better than Dominance-rank with a p-value < 3.10571e-032 

Dominance-depth is better than Dominance-rank with a p-value < 3.10571e-032 

Indicator based is better than Dominance-rank with a p-value < 3.10571e-032 

Dominance-count is better than Dominance-rank with a p-value < 3.10571e-032 

Dominance-count is better than Indicator based with a p-value of 1 

Dominance-depth is better than Indicator based with a p-value of 0.99998 

Dominance-rank is better than Indicator based with a p-value of 1 

Dominance-count is better than Indicator based with a p-value of 0.99926 

Dominance-count is better than Dominance-count with a p-value of 1 

Dominance-depth is better than Dominance-count with a p-value of 0.81548 

Dominance-rank is better than Dominance-count with a p-value of 1   

Indicator based is better than Dominance-count with a p-value of 0.00068 

 

Centrality results 
In order to test how much the use of the centroid affects MMPS two versions were implemented: 
MMPS-Centroid which uses the original MPS with the centroid vector and MMPS-Random which 
uses a randomly selected individual from the population to generate the new solutions (as 
described in previous section). Both algorithms use the Indicator based selector. Table 5 shows a 
comparison of both algorithms in terms of Epsilon and Hypervolume quality indicators, 
respectively. R quality indicator values are very similar results to the Epsilon indicator. Best 
performance is shown in bold. 
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The results in Table 5 show that MMPS-Centroid outperforms MMPS-Random in both quality 
indicators. When measured by the Epsilon indicator MMPS-Centroid achieves the best results in 
8 of the 12 problems. Results with the Hypervolume indicator favor MMPS-Centroid by 7 vs. 5 
problems. In terms of the Pareto Front diversity MMPS-Centroid also shows a more diverse 
distribution along the front than MMPS-Random. After these results we conclude that MMPS's 
sampling mechanism based on the centroid vector does not affect its performance in multi-
objective optimization. 

 

Table 5. Epsilon and Hypervolume means for MMPS-Centroid and MMPS-Random 

Problem Epsilon 

MPS-Centroid 

means 

MPS-Random

 Hypervolume

MPS-Centroid 

means 

MPS-Random 

DTLZ1 3.04E-03 1.99E-04  6.28E-04 5.45E-08 

DTLZ2 7.50E-04 7.51E-02  4.43E-05 4.36E-02 

DTLZ3 4.27E-03 3.91E-05  6.88E-04 4.68E-08 

DTLZ4 2.87E-03 1.18E-01  2.98E-04 4.29E-02   

DTLZ5 8.03E-04 7.92E-02  4.46E-05 4.54E-02 

DTLZ6 1.90E-02 3.53E-02  9.70E-03 3.61E-03 

DTLZ7 5.35E-03 3.64E-03  6.29E-04 3.43E-03 

ZDT1 2.80E-03 4.21E-02  1.30E-03 3.33E-02 

ZDT2 3.46E-03 3.28E-06  9.18E-04 3.57E-06 

ZDT3 9.28E-03 1.48E-01    1.91E-03 9.92E-02 

ZDT4 3.69E-04     3.67E-04  4.40E-04   3.83E-04 

ZDT6 3.95E-03 1.11E-01  8.47E-04 8.64E-02 

 

 

Comparisons between MMPS, hybrid MMPS and three MOEAs 
Several experiments were performed with the two hybrid variants of MMPS proposed in previous 
sections (MMPS-IBEA and MMPS-NSGA-II). In these hybrids, when MMPS reaches the 
ݏ݈ܽݒܧݔܽ݉ ∗ 	߶ evaluations of the objective functions the threshold value ߤ is truncated. This 
value is still relatively large when truncation occurs, for instance in case ߶	 ൌ 	0.3 with 1000 total 
generations, the threshold is still greater than 1. This strategy aims to focus MMPS on exploration 
and allowing the second MOEA to perform exploitation. 
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The MMPS-IBEA and MMPS-NSGA-II hybrids were tested with different values of ߶	 ൌ
	0.3, 0.5, 0.7. Among the hybrids the best results were achieved with MMPS-IBEA and ߶	 ൌ 	0.3. 
Table 6 and Table 7 compare the results of MMPS and MMPS-IBEA for the means of the Epsilon 
and Hypervolume quality indicators, respectively. The R quality indicator was not included 
because of its similarity to the Epsilon indicator results. For a broader analysis, these tables also 
include the results achieved by three MOEAs: IBEA, NSGA-II and SPEA2. Best performance is 
shown in bold. 

 

Table 6. Epsilon means for MMPS, hybrid MMPS-IBEA, IBEA, NSGA-II and SPEA2 

Problem MMPS MMPS-IBEA IBEA NSGA-II SPEA2 

DTLZ1 3.04E-03 1.60E-02 3.34E-03 1.65E-02 1.30E-02 

DTLZ2 7.50E-04 4.11E-03 6.18E-03 6.22E-03 4.24E-03 

DTLZ3 4.27E-03 8.26E-04 4.37E-03 3.08E-02 1.96E-02   

DTLZ4 2.87E-03 5.20E-03 3.04E-01 3.05E-01 6.78E-02 

DTLZ5 8.03E-04 4.03E-03 6.18E-03 6.22E-03 4.24E-03 

DTLZ6 1.90E-02 3.81E-03 1.87E-02 5.07E-02 4.97E-02 

DTLZ7 5.35E-03 1.90E-02 1.83E-02 6.15E-03 3.95E-03 

ZDT1 2.80E-03 4.05E-03 3.92E-03 7.46E-03 4.38E-03 

ZDT2 3.46E-03 8.48E-03 7.00E-01 4.33E-01 5.75E-02 

ZDT3 9.28E-03 1.86E-02 2.39E-02 5.20E-03 4.20E-03 

ZDT4 3.69E-04 4.12E-03 2.18E-01 1.55E-02 1.26E-02 

ZDT6 3.95E-03 4.68E-03 4.68E-03 1.67E-02 2.00E-02 
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Table 7. Hypervolume means for MMPS, hybrid MMPS-IBEA, IBEA, NSGA-II and SPEA2 

Problem MMPS MMPS-IBEA IBEA NSGA-II SPEA2 

DTLZ1 6.28E-04 1.16E-02 7.20E-05 6.98E-04 4.44E-04 

DTLZ2 4.43E-05 1.08E-03 2.43E-03 2.45E-03 2.06E-03 

DTLZ3 6.88E-04 1.05E-05 1.00E-04 2.81E-03 8.40E-04 

DTLZ4 2.98E-04 1.19E-03 1.01E-01 1.01E-01 3.50E-02 

DTLZ5 4.46E-05 1.10E-03 2.43E-03 2.45E-03 2.06E-03 

DTLZ6 9.70E-03 3.94E-04 6.17E-03 2.04E-02 1.97E-02 

DTLZ7 6.29E-04 2.43E-03 2.16E-03 1.83E-03 1.76E-03 

ZDT1 1.30E-03 2.45E-03 2.32E-03 3.45E-03 2.89E-03 

ZDT2 9.18E-04 2.99E-03 3.03E-01 1.87E-01 2.53E-02 

ZDT3 1.91E-03 4.10E-03 4.68E-03 1.33E-03 1.40E-03 

ZDT4 4.40E-04 2.46E-03 2.37E-01 1.47E-02 1.19E-02 

ZDT6 8.47E-04 2.88E-03 2.76E-03 1.74E-02 1.97E-02 

 

For both quality indicators MMPS achieves the best results among all the algorithms in 8 of the 
12 problems, while the MMPS-IBEA hybrid is the best in 2 (DTLZ3 and DTLZ6) of the other 4 
problems and second best in most problems. These results show that MMPS hybrids can be 
effectively used for multi-objective optimization. 

 

CONCLUSIONS AND FUTURE WORK  

In this paper, we designed a multi-objective MPS algorithm (MMPS) following the MPS 
framework. The proposed MMPS is the result of testing five different multi-objective selection 
methods on the original MPS and critically testing the centroid vector mechanism. MMPS was 
compared with others MOEAs and the achieved results show that MMPS produces satisfactory 
results on all the benchmark problems considered in this paper. The proposed MMPS algorithm 
has as its key feature that it achieves solutions with an excellent convergence. Computational 
results between MMPS, hybrid MMPS and three state of the art MOEAs show that MMPS and 
the MMPS hybrids are competitive with the state of the art algorithms. Nevertheless, the PFs 
diversity must be improved in future research. The proposed hybrids take a step forward achieving 
solutions with a competitive quality in term of convergence and diversity. Moreover, future work 
should also include and exhaustive study on how the algorithms' parameters should be adjusted 
depending on the problem's characteristics. 
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In future work, we are also interested to review others selection processes approaches like criteria-
based methods; we also want to parallelize the algorithm to reduce runtimes and to apply MMPS 
in a practical MOP such as the molecular docking problem. Thereafter, it should be possible to 
test MMPS optimizing many-objectives optimization problems, for example, adding NSGA-III 
selection process (Deb and Jain, 2014). 
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