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Abstract: 

The practical implementation of the Multiattribute Utility Theory is limited, partly for the 

lack of operative methods to elicit the parameters of the Multiattribute Utility Function, 

particularly when this function is not linear. As a consequence, most studies are 

restricted to linear specifications, which are easier to estimate and to interpret. We 

propose an indirect method to elicit the parameters of a nonlinear utility function to be 

compatible with the actual behaviour of decision makers, rather than with their answers 

to direct surveys. The idea rests on approaching the parameter estimation problem as 

a dual of the decision problem and making the observed decisions to be compatible 

with a rational decision making process. 
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1. INTRODUCTION 

 

The Multiattribute Utility Theory (MAUT) provides a conceptual framework that allows 

linking Multicriteria Decision Making (MCDM) to economics and decision theory by 

defining a Multiattribute Utility Function (MAUF). This utility function comprises all the 

relevant attributes to be optimized by the decision maker, subject to all the constraints 

of the problem (see Keeney and Raiffa 1976 for a classic reference). 

 

Once the existence of a MAUF is accepted, the practical implementation of this 

approach faces at least two technical difficulties. First, the mathematical specification 

for the MAUF must be chosen, and second, the parameters of this function need to be 

elicited by some estimation or calibration procedure. Actually, both problems are 

strongly connected in practice, because the availability of an elicitation procedure 

strongly determines the selection of a specific function. 

 

Assume there are n relevant attributes and the preferences of the decision maker for 

these attributes are represented by the monoattribute utility functions ui (i=1,…,n). 

Keeney (1974) and Keeney and Raiffa (1976) demonstrated that, if the attributes are 

mutually utility independent, then the MAUF ),...,( 1 nuuU  can be expressed as follows: 
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where U and u1,…,un are normalized to be bounded between zero (for the worst 

possible value) and one (for the best possible value) and k is a scaling constant that 

must satisfy the normalizing constraint ( )∏ +=+
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consequence, 0≠k , then the general utility function proposed by Keeney and Raiffa 

can be expressed in the following multiplicative form: 
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ik , then 0=k  and the Keeney and Raiffa function 

collapses to the following linear form: 
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where n-1 parameters need to be elicited and the n-th one can be calculated from the 

condition 1
1

=�
=

n

i
ik . 

 

The conventional way to elicit the parameters of the MAUF in applied studies is to use 

face-to-face surveys in order to get direct information from decision makers about the 

weight attached to each criterion in the decision making process (see Tiwari et al., 

1999, Linares and Romero, 2000, Prato and Hajkowicz, 2001). On the other hand, 

Sumpsi et al. (1997) proposed a non-interactive method to elicit the weights given by 

farmers to each criterion, so that these weights are “compatible not with the answers of 

the farmers to artificial questionnaires but compatible to the actual behavior which they 

follow” (p. 65). These weights can be understood as sensible estimates for the 

parameters nkk ,...,1  in a linear MAUF as [2] (see Sumpsi et al., 1997, Gómez-Limón 

and Berbel, 1999, Berbel and Gómez-Limón, 2000, or Gómez-Limón and Riesgo, 

2004). 

 

Specification [2] can be understood as a limiting case of [1], implying that [2] is more 

restrictive or, equivalently, that [1] is more general and flexible, so that it could be 

potentially more accurate in some real situations. Nevertheless, specification [2] is 

chosen much more often than [1] for obvious technical reasons: the linear structure of 

[2] makes the interpretation of the parameters much more apparent and, therefore, it is 

easier for the decision makers to reveal their preferences as measured by these 

parameters in a survey. Furthermore, the linear structure of [2] allows the natural use of 

an indirect linear elicitation method such as the one proposed by Sumpsi et al. (1997) 

without the need of interactive surveys1. 

 

To the best of our knowledge, there is no equivalent (non interactive) method to elicit 

the parameters of a nonlinear function as [1] and the only available procedures require 

                                                 
1 As a further argument to use a linear MAUF, some authors have claimed that, in some cases, it seems to 
represent a reasonably close approximation to a hypothetical real utility function (Edwards, 1977; Farmer, 
1987; Huirne and Hardaker, 1998; Amador et al., 1998). As a matter of fact, a linear expression can be 
considered as a good local approximation to a nonlinear one, so that, if the environment under which the 
decision making process takes place is very stable and close to a initial observed situation, the linear 
approach is likely to be accurate enough. Nevertheless, an estimated linear function will not be probably 
very suitable to reproduce decisions made under a changing environment. 
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direct surveys. Furthermore, the nonlinear structure makes the interpretation of the 

parameters more obscure so that the questions in the surveys need to be more 

artificial, typically involving lotteries rather than the values of the criteria themselves 

(see, for example, Herath, 1981, Herath et al., 1982, Le Galès et al., 2002). 

 

In this paper, we propose a non interactive method to elicit the parameters of nonlinear 

utility functions starting from the structure of the problem and from the observed 

behavior of the decision makers. From an analytical point of view, the method consists 

of writing the problem of determining the values of the parameters, given the observed 

decision, as a dual problem of that of making the optimal decision, given the values of 

the parameters. From a conceptual point of view, the idea is to make the observed 

decision to be consistent with a rational decision making process by finding an 

expression of the utility function that reaches its maximum at the observed point. We 

use the fact that a rational decision maker will always choose an efficient solution, so 

that we can restrict the feasible set to an auxiliary set given just by the efficient 

solutions. When the efficient set is not fully known, an operative approximation is 

needed. Our proposal to elicit the parameters of the MAUF is independent of the 

method used for this approximation, but we present an application in which the efficient 

set is approximated by means of a simple linear procedure combining the elements of 

the payoff matrix. This procedure gives satisfactory results for our case study, but more 

sophisticated methods can be applied if required. 

 

Section 2 presents the problem to be solved and the method proposed to solve it. 

Section 3 offers an application for a Spanish agricultural system in which we compare 

the simulation ability of both the linear and the multiplicative form of the function 

proposed by Keeney and Raiffa (1976). We come up with the result that, in most 

cases, the multiplicative specification provides a better approximation to the observed 

behavior of farmers. Section 4 presents the main conclusions and some discussion. 

 

2. METHODOLOGY 

 

2.1 The problem 

 

The main idea of our proposal is to make observed decisions to be consistent with a 

rational decision making process. To illustrate this idea, assume that a decision maker 
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has a vector x of decision variables and two criteria over which his preferences are 

represented by the mono-attribute utility functions )(1 xu , )(2 xu . Let us postulate the 

existence of a multiattribute utility function: 

[ ])(),( xu xuU 21      [ ]3  

which is partially unknown. To focus on the proposed method to elicit U , assume that 

)(1 xu  and )(2 xu  are fully known. For the decision maker the problem is to choose the 

value of x to maximize [ ]3  subject to Ω∈x , where Ω  is the feasible set for the 

decision variables in x. Figure 1 shows an example where the feasible set, in terms of 

1u  and 2u , is given by the polygon ABCDE. The figure also shows the map of 

indifference curves of the decision maker (those combinations providing a fixed value 

of function U ). It is important to stress that, the decision maker being rational, the 

optimal solution will belong to the efficient set which in this example is represented by 

segment AB. Specifically, the optimal decision is located at point *P , where an 

indifference curve (that one as far as possible from the origin) is tangent to the efficient 

set. Using the fact that the solution necessarily belongs to the efficient set, we can 

represent the decision problem as the following auxiliary problem: 

ABuuts

uuU
uu

∈),(..

),(max

21

21
, 21     [ ]4  

where the feasible set is replaced by the efficient set. This simplification is both 

theoretically sound and operationally convenient for our methodology. Moreover, in [4] 

the decision variables are 1u  and 2u  rather than x, which is an innocuous change of 

variable if the mono-attribute utility functions are known. 

 

The elicitation problem can be stated in the following terms: we can observe the 

decision actually made (in the example, point *P ) and, typically, we also know the 

feasible set, from which we can construct, or at least approximate, the efficient set. 

Using this information we need to find a function such that the tangency condition holds 

exactly at the observed point *P . If we postulate a specific parametric expression for 

U , the problem can be seen as finding the value of the parameters in this expression 

in such a way that the tangency conditions are satisfied at *P . 

 

2.2. A simple example 
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Assume the efficient set is given by the equation 9.15.1 21 =+ uu  and, by construction, 

the mono-attribute utility functions are bounded so that 1,0 21 ≤≤ uu . Let us postulate a 

multiplicative multiattribute utility function of the Cobb-Douglas type, as in Stam and 

Duarte-Silva (2003): 

21 )()(),( 2121
ww uuuuU =     [ ]5  

where 1w , 2w  are unknown parameters to be elicited. Assume, furthermore, that we 

can observe the decisions made by the decision-maker and these decisions provide 

the values 7.01=u , 8.02=u , which can be understood as the solution for the problem 

of maximizing [ ]5  subject to 9.15.1 21 =+ uu . From the first order conditions of this 

problem, we get 2121 5.1 wwuu =  and, using the observed values for 1u , 2u , we can 

conclude that 12 712 ww = . Finally, using the common normalization 121 =+ ww , we 

get the estimates 19/71 =w , 19/122 =w . 

 

2.3 Determining the efficient set and the reference point: a simple linear 

approach 

 

The proposed procedure has two main steps: first, determining the efficient set and the 

reference point, and second, finding the values of the parameters such that the 

tangency conditions meet exactly at the reference point. This section elaborates on the 

first part. 

 

In practice, it may well be the case that decision makers are not fully efficient, so that 

their decisions may not belong to the efficient set (for example, point P  in Figure 1). 

Since an inefficient decision cannot be reconciled with a rational decision making 

process, we propose to project the observed point on the efficient frontier by finding 

that efficient point as close as possible to the observed one. For example, in Figure 1, 

point P  is projected on *P . We can interpret the distance between both points as an 

error made by the decision maker. We label P* as reference point, and it is taken as a 

surrogate of P . If the observed point is efficient, then the reference point is the 

observed point itself. 
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INSERT FIGURE 1 

 

If the knowledge of the problem allows us to specify an analytical expression for the 

efficient set, this can be used as the “landing surface” for the utility function. Otherwise, 

some approximation technique for the efficient set is needed. In this section, we 

propose a simple linear method which is used in the application presented below 

(section 3), but the rest of the elicitation procedure is independent of the approach 

followed to construct the efficient set. Our proposal is to approximate the efficient set 

by the hyperplane connecting the elements of the payoff matrix. As noted by André et 

al. (2004), these elements turn out to be efficient if properly constructed, an we claim 

that combining them can provide a good enough approximation in some cases. 

Specifically, it seems to work rather well for our case study but more precise 

approximations can be made (at the cost of a higher computational burden) if needed2. 

In Annex A we present in detail how to compute the elements of the payoff matrix to 

ensure that they are efficient. Moreover, we propose to express those elements in 

terms of (mono-attribute) utilities. Although this step is not crucially needed, it is 

convenient for operational purposes: by working with utilities we eliminate any problem 

of heterogeneity between units of measurement, because all ui(x)’s are normalized by 

construction (typically between 0 -for the worst value- and 1 -for the best value). 

Furthermore, we do not need to distinguish between “more is better” or “less is better” 

attributes, because “more” is always better when dealing with utilities. 

 

Assume the feasible set is given the polygon ABCDEFG shown in Figure 2. In this 

example, the set of efficient solutions is given by BCD. The linear convex combinations 

of the points of the payoff matrix are given by the hyperplane BD. Concerning the 

reliability of this approximation, in some cases (such as the example in Figure 1) a 

linear combination of the elements of the payoff matrix provides exactly the efficient 

set, so that there is no approximation error. In other cases (such as the example in 

Figure 2), some approximation error can be made3. 

 

                                                 
2 Other classic methods to obtain the efficient set are the constraint method, the weighting method or the 
multicriterion Simplex method (Romero and Rehman 1989, pp. 71-74, for a brief introduction). See also 
Evans (1984) for an overview. 
3 We could also get the paradoxical situations that, if the decision maker is not fully efficient (so that the 
observed point is below the efficient set), projecting on the linear combinations of the payoff matrix 
provides a better approximation to the real observed behaviour than projecting on the true efficient set. For 
example, if the observed point is P in Figure 2, the projection (P*) on the linear approximation of the payoff 
matrix can be closer to reality than the projection (P**) on the real efficient set. 
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INSERT FIGURE 2 

 

Once we have constructed the payoff matrix (in terms of utilities), we need to determine 

the reference point. If the observed point belongs to the hyperplane BD, then it should 

be taken as the reference point itself. Otherwise, it needs to be projected on the 

(approximation of the) efficient set. Following Sumpsi et al. (1997), this can be done by 

solving the following system of 1n +  equations: 

� =ω

� ==ω
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     [ ]6  

                                

where iu  is the observed value of the i-th criterion and iju  is the ij-th element of the 

payoff matrix. If a positive solution exists, then the observed point is a linear convex 

combination of the payoff matrix (in terms of Figure 2, it belongs to BD) and it can be 

taken as the reference point. Otherwise, we need to project the observed point on the 

hyperplane connecting the points of the payoff matrix. We propose to do this by finding 

the closest point (according to the Euclidean metric) by solving the following goal 

programming problem: 
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           [ ]7  

where ni (pi) is the negative (positive) deviation variable from the observed value ui. 

The reference point is then constructed as �ω=
=

n

i
ji uu

1

*  where ju  is the j-th column of 

the payoff matrix. 

 

Finally, we need to find an analytical expression for (the approximation of) the efficient 

set, i.e. an equation like 

0),...,( 1 =nuuF ,     [ ]8  
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to be satisfied by all the elements in the efficient set. We follow the simplest approach 

which is to estimate a linear function4: 

0...),...,( 22101 =β++β++β= nnn uuuuuF    [ ]9  

that needs to be met by the q columns of the payoff matrix and from which the 

parameters β  can be calculated by standard linear methods. 

 

2.4 Eliciting the parameters of the utility function: a dual approach 

 

As shown in section 2.1, the problem of the decision maker can be expressed as 

deciding the values of u1,…,un to 

0),...,(..

),,...,(max

1

1

=
γ

n

n

uuFts

uuU
     [ ]10  

where 0),...,( 1 =nuuF  represents the efficient set and we postulate a parametric 

multiattribute utility function ),,...,( 1 γnuuU , γ  being a vector of parameters to be 

elicited. Assume also that the function is concave so that the first order conditions of 

problem [ ]10  provide a maximum. Manipulating these first order conditions we get the 

following system of n-1 equations: 

11
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   [ ]11  

where, if the linear approximation [ ]9  is used, iin uuuF β=∂∂ ),...,( 1 . By substituting 

the reference values (those obtained from P*) of u1,…,un in [ ]11  we get a system of 

equations where the parameters γ  are unknowns. This is the key system to be solved 

in order to elicit the values of the parameters. Typically, we need to solve the system 

[ ]11  including some normalization constraint and/or some restriction on the values of 

the parameters for the utility function to have desirable properties (for example, the 

parameters being nonnegative and smaller than one, etc).  

                                                 
4 Since the generic equation of a q-dimensional hyperplane has n+1 parameters ( 0β , 1β , …, nβ ) we can 

arbitrarily normalize one of them to be equal to 1. We choose 1β =1 for computational convenience: since 

we need later on to compute the ratios of the β ’s, fixing the denominator to be always equal to one can 
avoid part of the numerical errors due to rounding. 
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If we represent these constraints as �∈γ , where �  is the feasible set for the 

parameters, the resulting system is [ ] �},11{ ∈γ . We can find three cases: 

1.- The easiest case happens when there is a unique feasible solution for the system, 

as illustrated in the example shown in section 2.2. Then this solution provides the 

elicited parameter values. 

2.- If the system [ ] �},11{ ∈γ  is unfeasible, we can conclude that the reference point 

(observed or surrogate) cannot be explained as the result of a decision making process 

with the postulated utility function5. Nevertheless, we can understand it as an 

approximation by solving the following goal programming problem: 

�
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3.- The most interesting case is that in which there are multiple solutions, which 

typically happens when there are more parameters to be elicited than conditions to be 

satisfied by these parameters in the system [ ] �},11{ ∈γ . To deal with this case, we 

propose to formulate the parameter elicitation problem as a dual problem of [ ]10 . We 

do this by taking advantage of the general formulation of duality proposed by Johri 

(1993 and 1994). Consider problem [ ]10  as the primal problem, which can be 

formulated as: 

 ),,...,(max 1
),,...,( 1

γ
Γ∈γ

n
uu

uuU
n

     [ ]13  

*
1 1{( ,..., , ) / ( ,..., ) 0, }n nu u F u uΓ ≡ γ = γ = γ  being the feasible set for ),,...,( 1 γnuu , where 

the value of γ  is fixed and denoted as γ* (since the decision maker is assumed to take 

it as given). Nevertheless, we include γ  as a (trivial) decision variable to fit the problem 

into Johri’s setting. The Johri’s general dual problem can be expressed as: 

 
�
�
�

�
�
� γ

Γ∈γΓ⊇∆
),,...,(maxmin 1

),,...,( 1
n

uu
uuU

n

     [ ]14  

                                                 
5 For example, assume that, in the numerical example shown in section 2.2, we have the additional 
constraint 5.01 ≥w . Since the only combination of parameters that guarantee tangency in the observed 
point is 19/71 =w , 19/122 =w , we have an infeasible problem. 
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where the minimization is carried out over all the sets ∆  which include Γ . Given the 

particular nature of our problem, we have more relevant information which we can 

include, as a constraint, in order to tighten the feasible set and pin down the solution. 

By hypothesis, we know the solution of [10] in terms of (u1,…,un) –which we label as 

)( *
n

*
1 u,,u … . If we include this information, by constraining (u1,…,un) to be equal to 

)( *
n

*
1 u,,u … , the resulting restricted dual problem collapses to decide just γ. Moreover, 

we need to guarantee that the value of γ  is such that )( *
n

*
1 u,,u …  maximizes 

U( 1 qu , ,u… ,γ ). In an operational way, we can do it by including the optimality 

conditions [11]. Furthermore, any feasibility constraint �∈γ  on the parameter values 

should also be included. Since the constraint 0),...,( **
1 =nuuF  holds by construction, it 

does not need to be explicitly imposed. Summing up, we propose to solve the following 

problem in order to elicit the values of the parameters: 

Θ∈γ

=
∂∂
∂∂=

∂γ∂
∂γ∂
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uuuF
uuuF
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ts
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11

1

11

1

**
1

               [ ]15  

 

Figure 3 shows a flow chart summarizing the proposed method. Note that case 1 

(single solution) can be seen as a particular case of case 3 (multiple solutions), so that, 

in practice, it is enough to solve [ ]15  and, if we are in case 1, i.e., the feasible set 

contains a single point, that point will trivially be the solution of [ ]15 . 

 

INSERT FIGURE 3 

 

3. AN APPLICATION TO AGRICULTURAL ECONOMICS 

 

A number of authors have pointed out that, contrary to the usual assumption in 

conventional economics, farmers are not only concerned with the maximization of 

profit, but other attributes such as risk, management complexity, leisure time, 

indebtedness, etc., are also involved in farmers’ decision making. See Gasson (1973), 

Smith and Capstick (1976) or Cary and Holmes (1982). More recently Willock et al. 

(1999), Solano et al. (2001) and Bergevoet et al. (2004) have also stressed this point. 
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Since farmers take their decisions trying to simultaneously optimize a range of 

conflicting objectives, both the MCDM paradigm and the multiattribute utility theory 

seem to be relevant in this context. In this section we present an application to 

agricultural economics in order to test the multiplicative expression [1] as compared to 

the linear one [2] and to check if the former can provide some better performance (i.e., 

better ability to reproduce the observed behavior) in some cases. 

 

3.1. Case study 

 

The case study is a sample of 22 average farmers from the Douro basin in northern 

Spain. This basin is the greatest of Spanish rivers, with a surface of 78.954 km2. The 

climate is warm Mediterranean6, with long cold winters and short warm summers. The 

average rainfall ranges between 400 and 500 millimeters per year. The most important 

crops in this area are strongly dependent on CAP (Common Agricultural Policy) 

subsidies and low value-added crops. In an average year, the main activities are winter 

cereals (30%), maize (25%), sugar beet (15%), alfalfa (10%), sunflowers (5%) and 

other minor crops (15%). All the data used to feed the models were obtained both from 

official statistics and from a survey developed in the area under study during the 2000-

01 agricultural year. For more information on the survey and other elements of the case 

study see Gómez-Limón and Riesgo (2004).  

 

3.2. Mathematical model 

 

To simulate the farmers’ decision-making process under the MAUT framework, we 

construct a mathematical model where farmers decide the value of their decision 

variables, being limited by certain constraints, in order to achieve various objectives: 

 

Decision variables. Each farmer has a vector x of decision variables xh, where xh 

measures the amount of land devoted to every particular crop, including winter cereals, 

maize, sugar beet, sunflowers, alfalfa, beans, potatoes and set-aside7. 

 

Constraints. We identify the following constraints as applied to each farmer: 

                                                 
6 Papadakis classification (1965) 
7 Specifically, x1 is (amount of land devoted to) winter cereals, x2 is maize, x3 is sugar beet, x4 is alfalfa, x5 is 
potatoes, x6 is sunflowers, x7 is beans, x8 is set-aside 
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� Land constraint. The sum of all crops must be equal to the total surface available to 

each farmer (denoted as sup): 

supx
h

h =�
=

8

1
 

� CAP constraints. To fulfill the CAP requirements, we included 20% of set-aside for 

cereal, oilseed and protein crops (COP crops). Any land devoted to set-aside greater 

than this percentage is excluded of EU subsidies, and this is taken as an invalid 

option in the model: 

Maximum set-aside: ( )6218 %20 xxxx ++⋅≤  

On the other hand, the CAP force farmers to withdraw at least the 10% of the land 

devoted to COP crops to obtain compensatory payments. This withdrawal is made in 

irrigated and non irrigated lands bearing in mind both theoretical yields. A good 

estimation of the set-aside in irrigated land is the observed data in the period under 

study: 

Minimum set-aside: 8x observed withdraw≥  

Furthermore, because of the quota, sugar beet is limited for each farmer to the 

maximum area in the period studied: 

Sugar beet quota: 3x maximum sugar beet≤  

� Agronomic constraints. For rotational conditions, land devoted to alfalfa have to rest 

before cultivating again this crop: 

sup
qp

p
x4 ⋅

+
≤  

where p is the number of years during the crop is on the land (4 for alfalfa) and q is 

the number of years off the land (3 for alfalfa). 

� Market constraints. Alfalfa and potatoes are the only perishable crops considered. 

We limited their surface to the maximum observed in the period 1993-2000: 

areaobservedx

areaobservedx

5

4

≤
≤

 

 

Objectives. After the survey developed in the area, we concluded that farmers take the 

following objectives into account: 

� Maximization of total gross margin (TGM), as a proxy of profit since, in the short run, 

the availability of structural productive factors (land, machinery, etc.) cannot be 

changed and financial viability of farms basically depends on gross margin. TGM data 
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are obtained from the average crop margins in a time series of seven years 

(1993/1994 to 1999/2000) in constant 2000 euros. According to this TGM can be 

calculate as follows: � ⋅=
h

hh xGMTGM , where GMh represents the gross margin 

per unit of crop h. 

� Minimization of risk (VAR). As noted by several authors (for example Just and Pope, 

1979, Young, 1979, and Gómez-Limón et al., 2003), farmers typically have a marked 

risk aversion, so that risk is an important factor in agricultural activity. Following the 

conventional Markowitz (1952) approach, risk is measured by the variance of TGM: 

VAR= [ ] hh xCovx ⋅⋅' , where [Cov] is the variance-covariance matrix of the crop gross 

margins obtained from different crops, during the seven-year period. 

� Minimization of working capital (K). This objective represents the aim of reducing the 

level of indebtedness. In order to model this objective we divided the year into 

months, differentiating in this way the periods of cropping activities (capital 

immobilization) and sales (income). In month m, the working capital (NWKm) is the 

sum of the working capital for the present month (� ⋅
h

hhm xWK ) and the working 

capital from the previous month (NWKm-1), whenever sales are less than the capital 

immobilization. Mathematically: 

mNWKxWKNWK mh
h

hmm ∀≥−⋅− −� 01

 
where WKhm is the working capital per unit of crop h in month m. 

The aim of a farmer is to minimize the maximum working capital (K), which can be 

represented as minimizing the maximum NWKm calculated for twelve months. To do 

that we use the minimax method, and therefore we introduce twelve new equations: 

mKNWK m ∀≤  

 

In order to can test the ability of the MAUT approach to reproduce farmers’ behavior 

using both an additive and a multiplicative MAUF specification. we performed the 

following experiment: 

 

1.- Taking into account the observed vector of decision variables of each farmer and 

the constraints of the problem, we elicit the parameters (weights) of a linear MAUF [2] 

using the approach developed by Sumpsi et al. (1997). 
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2.- We simulate the farmers’ behavior (decision variables) by maximizing the linear 

utility function (as estimated in the first step) subject to the constraints of the problem. 

3.- Compare the simulated decisions (obtained in the second step) with the observed 

ones for each farmer. 

4.- Repeat steps 1, 2 and 3 with the multiplicative specification [1] of the MAUF. 

5.- Compare the performance of the linear and the multiplicative specifications to 

replicate observed behavior. 

 

3.3. Results 

 

We applied the procedure described above to each representative farmer in our 

sample. In most cases we came up with the result that the simulation ability of the 

multiplicative MAUF is better than the linear one. For further clarification, we present all 

the intermediate steps of our experiment in a representative case. 

 

Results for the additive MAUF 

 

Firstly we obtain a payoff matrix (in terms of utilities) with efficient solutions for all the 

columns, as explained in Annex A. The results are displayed in Table 1, in which we 

have included an additional column to show the real observed values. 

 

INSERT TABLE 1 

 

Using the data in Table 1, and following Sumpsi et al. (1997) we estimate the weights 

of the different objectives solving problem [7], which takes the following form: 

3,...,10,,

1

562.01843.00
755.0942.010
459.00101.01..

)(min

321

33321

22321

11321

3

1

2

,,

=≥ω
=ω+ω+ω

=−+ω⋅+ω⋅+ω⋅
=−+ω⋅+ω⋅+ω⋅
=−+ω⋅+ω⋅+ω⋅

� +
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i
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   [ ]16  
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Solving this mathematical program, we obtain that the weight given by the analyzed 

farmer to TGM maximization is 1ω =31.9% and the weight of risk minimization is 

2ω =68.1%. On the other hand, minimization of K does not appear to be taken into 

account by the farmer in his decision-making process ( 3ω =0). Using the estimated 

weights for each objective, and taking ki= iω  (i=1,2,3) we get the following algebraic 

expression of the additive utility function [2]: 

�
	



�
�



−
−⋅+�

	



�
�



−
−⋅+�

	



�
�



−
−⋅=

02.297,5606.264,4
02.297,56

0
27.050,704,8122.839,285,9

27.050,704,81
681.0

58.826,2046.337,52
58.826,20

319.0
KVARTGM

U

 

which can be simplified to  

VARTGMU ⋅−⋅= 094.012.10    [ ]17  

 

Afterwards, we simulate the farmer’s behaviour by finding the values of the decision 

variables that maximize [ ]17 . The results are shown in Table 2.  

 

INSERT TABLE 2 

 

Results for the multiplicative MAUF 

 

Firstly, we obtain the equation of the hyperplane [ ]9  that connects all the points of the 

payoff matrix. Forcing all the columns of the payoff matrix to satisfy [ ]9 , we have a 

three-equation system with the following solution: 

0)(744.0)(272.0)(1 =⋅+⋅++− KuVARuMBTu     [ ]18  

 

Using the iω ’s obtained in [ ]16 , we get the reference point as a linear combination of 

the elements of the payoff matrix, P* = (0.388, 0.681, 0.574), which by construction 

satisfies [ ]9 . Finally, we elicit the parameters ki’s and k solving [ ]15  which, in this case, 

takes the form: 
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    [ ]19  

where *P  means that the associated expression is evaluated in the reference point 

P*. The result of [16] is k1= 0.359, k2=0.087, k3= 0.274, k=1.665. This gives the following 

multiplicative utility function: 
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359.0

2 KVARTGM

KVAR

KTGM
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U

 

which can be simplified to get: 

KVARTGMKVAR

KTGMVARTGMKVARTGMU

⋅⋅⋅⋅+⋅⋅+
+⋅⋅⋅+⋅⋅+⋅⋅−⋅⋅−⋅⋅=

−29

7221923

1074.111.1

1099.923.51026.51020.11014.1  [ ]20  

 

The last stage of the exercise is to simulate the farmer’s behaviour by maximizing [ ]20  

subject to all the constraints of the model. The results are shown in Table 2, together 

with those from the linear utility function. In order to compare the performance of both 

approaches, we use a common validation approach by comparing the simulated and 

observed values of the surface devoted to each individual crop and calculating the sum 
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of the absolute value of all the deviations as a percentage of total surface (Qureshi et 

al., 1999). In Table 2 we can observe that the deviation from the simulated to the 

observed behaviour is lower when we use the multiplicative specification (34.70%) than 

when we use the additive function (67.28%), meaning that the multiplicative utility 

function allows a better approximation to the farmer’s decision making process. 

Although we just display the results for a representative farmer, the multiplicative 

approach turns out to be superior to the linear one for most of the cases in the sample. 

 

4. CONCLUSIONS AND DISCUSSION 

 

In this paper we have developed a non-interactive method based on duality to elicit the 

parameters of a nonlinear utility function to be compatible with the actual behaviour of 

the decision makers. The main idea is to make the observed decisions to be consistent 

with a rational decision making process by finding an expression of the utility function 

that makes the observed decision to be (approximately) optimal. The information 

needed to apply this method is (some approximation to) the efficient set and the 

observed decisions. Moreover, we need to postulate a specific parametric expression 

for the multiattribute utility function. 

 

To assess the gain from using a multiplicative rather than additive utility function, we 

have developed an application in the field of agricultural economics. In this case study, 

we aim at reproducing the actual decisions of farmers using both the additive and the 

multiplicative specification suggested by Keeney and Raiffa (1976). Since the additive 

utility function can be taken as a limiting case of the multiplicative one, it can be 

reasonably expected that (at least in some cases) the second will be more effective to 

simulate observed decisions. This intuition is confirmed in our empirical application, 

since the multiplicative approach turns out to be superior to the additive one. 

 

Some remarks should be made about the conditions for the suggested method to work 

successfully. This approach rests on the duality relationship between the elicitation 

problem [15] and problem [10], which is taken as a surrogate for the real problem of the 

decision maker. Henceforth, the performance of the elicitation procedure crucially 

depends on how accurate is [10] to approximate the real problem of the decision 

maker. In this sense, the method rests on the assumption that the decision maker is 

rational so that he always makes efficient decisions. If the observed point is close 

 
 

 
 
 

 
http://www.upo.es/econ 



 19 

enough to the efficient set and we have a good enough approximation to the efficient 

set, then the elicitation procedure developed here will provide a good approximation to 

the observed decisions by construction. On the other hand, inefficient decisions cannot 

be reconciled with a rational decision making process, so that the proposed method will 

be less successful to replicate observed decisions the less efficient these decisions 

are.  

 

Our elicitation procedure uses, as an input, an expression for the efficient set and, if the 

observed point is not efficient, a projection of the observed point on the efficient set is 

also needed. We have illustrated a simple linear procedure by combining the elements 

of the payoff matrix, which provides a good enough approximation for our case study 

but the elicitation procedure is also compatible with other (perhaps more sophisticated) 

methods. For more complex problems the efficient set will probably be more complex 

as well, so that it may be impossible to find an analytical expression for the whole 

efficient set. Note that we only need an expression for the relevant part of the efficient 

set, i.e. that where the reference point belongs. We suggest the following procedure for 

more complex problems: 1) find a discrete approximation to the efficient set (a number 

of efficient points). 2) Project the observed unit on the efficient set with a DEA method, 

taking the efficient points as decision making units. This provides n peer units for the 

observed point. 3) Find the equation of the hyperplane connecting these n points. 

 

Finally, we can observe that in general a large number of utility functions could 

reproduce a single observed decision. Then, some additional information should be 

included to select a specific expression for the MAUF. Our procedure uses the 

tangency condition which has to be satisfied in interior solutions, so that corner 

solutions are treated as interior. To illustrate this, assume the problem is that 

represented in Figure 4, where ABCDE is the feasible set. The observed point P is 

projected on the corner point A. This solution can be rationalized by different utility 

functions. We show three possibilities associated with three different indifference 

curves, labelled 1, 2 and 3. By construction, our method picks up the MAUF associated 

to indifference curve 1, which is tangent to the efficient set AB precisely at point A. 
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ANNEX A: Computing the (efficient) payoff matrix 

 

If there are n  criteria and )(xf i  denotes the value of the i-th criterion (i=1,…,n) 

depending on the decision variables, the first element of the first column in the payoff 

matrix can be obtained by solving the problem: 

Ω∈xts

xf

..

)(max 1       [ ]1−A  

 

The optimal value )(xf1  resulting from [ ]1−A , denoted as 11
*

1 ff ≡ , is the first entry 

of the payoff matrix. To obtain the other entries of the first column, we substitute 

)(maxarg 1 xf  in )(xfi , for i=2,…, n. The rest of the columns are obtained by 

implementing similar calculations, i.e., the generic element ijf  is obtained by plugging 

)(maxarg xf j  in )(xfi . In some cases, the payoff matrix could not be unique, that is, 

problem [ ]1−A  could have alternative optimal solutions, and some of them could be 

inefficient. For example, assume there are only 2 objectives and the feasible set is 

represented by ABCDEFG in Figure 2. Then, when optimizing objective 1, we could 

obtain any point on the segment AB8, but it is convenient to choose B, which is efficient, 

while A is not. For this purpose, we solve the following lexicographic problem for every 

objective i: 

Ω

α

∈
�
�
�

�
�
�

�
≠

xts

xfxf
ij

jji

:..

)(),(maxLex
    [ ]2−A  

meaning that objective i is maximized and, if some alternative optima exist, then an 

arbitrary linear combination of the other objectives (with 0 > jα , ij ≠∀ )9 is optimized 

without worsening the performance of objective i . By solving q  problems like [ ]2−A , 

we obtain efficient solutions for all the columns of the payoff matrix. 

 
                                                 
8 More specifically, when using a simplex algorithm, we could obtain either A or B. 

9 Any set of positive values of jα  provide an efficient solution. We propose to use 
�

=α

=

n

j
j

j
j

u

u

1

, i.e., the 

value of the observed (mono) utility of attribute j with respect to (the sum of) all mono-attribute utilities, as 

defined below. 
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Moreover, we transform all the (optimal and observed) objectives by substituting into 

the mono-attribute utility functions, so that the resulting values can be taking as utilities. 

In our application, we select the usual mono-attribute utility transformation 

( ) )ff()f)x(f()x(fu)x(u i*
*
ii*iiii −−=≡  where *

if )( *if  denotes the best (worst) value 

that the i-th attribute achieves in all the columns of the payoff matrix. 
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FIGURE 3 

 

FIGURE 4 
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 Objective to be optimised Observed Value 
Value obtained u(TGM) u(VAR) u(K)  
u(TGM) 1 0.101 0.000 0.459 
u(VAR) 0.000 1 0.942 0.755 
u(K) 0.000 0.843 1 0.562 

 

TABLE 1. PAYOFF MATRIX FOR THE FARMER 

 
 
 
 
 
 

 Multiplicative utility function Additive utility function 

 Values (ha) Values (ha) 

Crops Observed Simulated 

Deviation 
(ha) Observed Simulated 

Deviation 
(%) 

Winter 
cereals 

31.29 26.75 4.54 31.29 14.27 17.02 

Maize 6.33 16.96 -10.63 6.33 13.83 -7.50 

Sugar-beet 16.71 13.2 3.51 16.71 13.11 3.59 

Sunflowers 2.58 0.00 2.58 2.58 15.69 -13.12 

Alfalfa 0.00 0.00 0.00 0.00 0.00 0.00 

Beans 0.00 0.00 0.00 0.00 0.00 0.00 

Potatoes 0.00 0.00 0.00 0.00 0.00 0.00 

Set-aside 4.38 4.38 0.00 4.38 4.38 0.00 

TOTAL 61.29 61.29 
21.27 

(34.70%) 
61.29 61.29 

41.24 
(67.28%) 

 

TABLE 2. COMPARISON BETWEEN BOTH METHODOLOGIES FOR THE 

FARMER’S DECISION-MAKING 
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