
 
 

    Working papers series 

   Department of Economics 

 
 
   

 
 

WP ECON 06.30 
 
 

 UP Methods in the Allocation of Indivisibilities 

when Preferences are Single-Peaked  

 
  

 
 

Carmen Herrero  (U. de Alicante & IVIE) 
Ricardo Martínez (U. de Alicante & U. Pablo de Olavide) 

 
 
 
 
 
 
 
 
 

JEL Classification numbers: D61, D63, D74. 
Keywords: Allocation problem, indivisibilities, single-peaked 
preferences, standard of comparison, up method. 
  
  

 
 



 
 

 
 
 

 
http://www.upo.es/econ 

UP METHODS IN THE ALLOCATION OF

INDIVISIBILITIES WHEN PREFERENCES ARE

SINGLE-PEAKED∗

Carmen HERRERO†

Universidad de Alicante & IVIE

Ricardo MARTÍNEZ‡
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Abstract

We consider allocation problems with indivisible goods when agents’ preferences are
single-peaked. We propose natural rules (called up methods) to solve such a class of prob-
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1 Introduction

Imagine that we face up the problem of allocating shifts among doctors at a health center, when
each doctor has single-peaked preferences over worked hours. This means that she has a most
preferred amount of hours to work. And, if she has to work more than this preferred amount,
the less the better. Similarly, if she has to work less than this preferred amount the more the
better. We find analogous situation in the allotment of crew members to flights or teaching hours
to faculty members, among others. The above situation belongs to a general class of problems
called allocation problems with indivisibilities when preferences are single-peaked.

We propose here a sequential procedure to solve allocation problems. It is based on accommo-
dating the task unit by unit. At each step of the process we need to decide the agent getting
the unit. To do that we use a sort of order, called monotonic standard of comparison.

When the task is completely divisible, one of the most widely studied rules is the so-called
equal-distance rule. It proposes to treat all agents as equally as possible with respect to their
losses, subject to efficiency. We provide arguments to defend the up methods as the discrete
version of the equal distance rule.

The rest of the paper is structured as follows: In Section 2 we set up the model. In Section 3 we
define an allotment procedure: up methods. In Section 4 we analyze the properties up methods
satisfy in and we present our main result. In Section 5 we establish the connections between up
methods and the equal-distance rule.

2 Statement of the model

A preference relation, R, defined over Z+ is single-peaked if there exists an integer number
p(R) ∈ Z+ (called the peak of R) such that, for each a, b ∈ Z+,

aPb ⇔ [(b < a < p(R)) or (p(R) < a < b)] ,

where P is the strict preference relation induced by R. Let S denote the class of all single-peaked
preferences defined over Z+. Let N be the set of all potential agents and N be the family of all
finite non-empty subsets of N.

An allocation problem with single-peaked preferences, or simply a problem, is a triple
e = (N, T, R) in which a fixed number of units T (called task) has to be distributed among
a group of agents, N ∈ N , whose preferences over consumption are single-peaked,
R = (Ri)i∈N ∈ SN . Let AN denote the class of problems with fixed-agent set N , and A
the class of all problems, that is,

AN =
{
e = (N,T, R) ∈ {N} × Z+ × SN

}
and

A =
⋃

N∈N
AN .
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For each problem, we face the question of finding a division of the task among the agents. An
allocation for e ∈ A is a list of integer numbers, x ∈ ZN

+ , satisfying the condition of being a
complete distribution of the task, i.e.,

∑
i∈N xi = T . Let X(e) be the set of all allocations for

e ∈ A. A rule is a function, F : A −→ ZN
+ , that selects, for each problem e ∈ A, a unique

allocation F (e) ∈ X(e).

3 Up methods

We propose now a very natural rule to solve allocation problems with indivisibilities when
preferences are single-peaked. It is a sequential procedure by distributing the task one by one.
At each step of the process we need to decide the agent getting the unit. To do that we use a
sort of order, called monotonic standard of comparison.

A monotonic standard of comparison is a linear order (complete, antisymmetric and transitive
binary relation) over the cartesian product potential agent-integer number, N× Z.1

Monotonic standard of comparison σ : N×Z −→ Z such that: (1) for each i ∈ N and each
a ∈ Z, σ(i, a + 1) < σ(i, a) and (2) for each a, b ∈ Z, if a > b, then σ(i, a) < σ(j, b).2 Let ΣM

denote the class of monotonic standards of comparison.

In other words, monotonic standards of comparison always give priority to agents with larger
integer numbers.

Let {(i, ai)}i∈M be a collection of pairs agent-number. Let σ ∈ Σ be a standard of comparison.
The pair with the highest priority in {(i, ai)}i∈M , according to σ, is the pair (i, ai) such
that σ(i, ai) < σ(j, aj) for all j ∈ M r {i}.

For each monotonic standard of comparison we construct a rule. As we mentioned this rule is
a sequential process. At each step, we allocate one unit of the task, and we decide the agent
gaining such a unit by using the monotonic standards of comparison. We call those rules up
methods.

Up method associated to σ, Uσ: Let e ∈ A. Associate to each agent her peak, that is,
ai = p(Ri). Identify the pair with the highest priority according to σ. Give one unit of the
task to this agent, and reduce her number by one unit. Identify again the pair with the highest
priority according to σ, and proceed in the same way until the task is exhausted.

Next example illustrates how up methods work.

Example 3.1. Assume that the standard of comparison σ is such that, restricted to agents
in N = {1, 2, 3}, it happens that σ(2, x) < σ(1, y) < σ(3, z), for all x, y, z ∈ Z. Furthermore,
σ(1, x) < σ(2, x) < σ(3, x) if x is odd, and σ(1, x) < σ(3, x) < σ(2, x) if x is even. Now, consider
the allocation problem where N = {1, 2, 3}, T = 8, and R = (R1, R2, R3) such that R2 = R3

1The notion of standard of comparison was formulated by Young (1994). Here we concentrate in the subclass

introduced by Herrero and Mart́ınez (2006a).
2If σ(i, a) < σ(j, b) we will understand that the pair (i, a) has priority over the pair (j, b).
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and p(R) = (1, 3, 3). We associate to each agent her peak, that is, we consider the pairs (1, 1),
(2, 3), and (3, 3). According to σ, the pair with the highest priority is (2, 3). Then we give one
unit to agent 2, and we now consider the new pairs (1, 1), (2, 2), and (3, 3). According to σ, the
pair with the highest priority is (3, 3). Then we give one unit to agent 3, we consider the new
pairs (1, 1), (2, 2), and (3, 2). By repeating this process until allocating the 8 units, we conclude
that Uσ(e) = (2, 3, 3).

4 Properties

An allocation is efficient if there is no other allocation in which all the agents are better off.
Efficiency requires the rule to select efficient allocations.3

Efficiency: For each e ∈ A, there is no allocation x ∈ X(e) such that, for each i ∈ N , xiRiFi(e),
and for some j ∈ N , xjPjFj(e).

The principle of efficiency is equivalent to asking for each agent to consume, no more than her
peak when the task is too little, and no less than her peak when the task is too much. That is,
if F is efficient, Fi(e) ≤ p(Ri) for each i ∈ N when

∑
i∈N p(Ri) ≥ T , and Fi(e) ≥ p(Ri) for each

i ∈ N when
∑

i∈N p(Ri) ≤ T .

In any rationing framework, a minimal fairness condition is always desirable. The first try would
be the equal treatment of equals principle. It says that agents with identical preferences should
be indifferent among their respective allocations. Paired with the requirement of efficiency, it
simply means that agents with identical preferences receive the same amount. It is easy to check
that no rule can fulfill equal treatment of equals in the context of problems with indivisibilities.
Young (1994), and Herrero and Mart́ınez (2006b) formulate a milder version of this condition:
balancedness. It postulates that equal agents should be treated, if not equal, at least as equal as
possible. Balancedness requires that the awards of equal agents to differ, at most, by one unit
(representing this unit the size of the indivisibility).

Balancedness: For each e ∈ A and each {i, j} ⊆ N , if Ri = Rj then |Fi(e)− Fj(e)| ≤ 1.

It happens many times that the number of agents is so large that collecting all the information
regarding to the whole preferences becomes an issue. Peaks only is a condition of informational
efficiency. It requires agent’s allocation to depend only on her peak.

Peaks only: For each e = (N,T, (Ri, R−i)) ∈ A and each e′ = (N,T, (R′
i, R−i)) ∈ A such that

p(R′
i) = p(Ri), then Fi(e) = Fi(e′).

The next principle, ar-truncation, can be interpreted as an instance of a general principle of
independence of irrelevant alternatives. Given e ∈ A, let ar(e) =

P
j∈N p(Rj)−T

n . The number
ar(e) is simply the average rationing of the task among the agents in N . Ar-truncation requires
any information on the agents’ preferences below ar(e) to be ignored. In consequence, all those

3It is worth noting that if Condition (2) in the definition of monotonic standard of comparison is not satisfied,

the up method may violate efficiency.
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problems whose preferences coincide in [ar(e),+∞[ are indistinguishable.

Ar-truncation: For each e = (N,T, R) ∈ A and each e′ = (N,T, R′) ∈ A, if for each i ∈ N ,
Ri = R′

i on [ar(e),+∞[, then, F (e) = F (e′).

Imagine now that when estimating the value of the task this falls short, so that the real value is
larger than expected. Then two possibilities are open, either to forget about the initial allocation
and just solve the new problem, or keep the tentative allocation and then allocate the rest of the
task among the agents, after adjusting the preferences by shifting them by the amount already
obtained. Agenda independence requires the final allocation not to depend on this timing.

Agenda independence For e = (N,T, R) ∈ A and each T ′ ∈ Z++, F (e) = F (N,T ′, R) +
F (N,T − T ′, R′), where R′

i = πFi(N,T ′,R)(Ri).4

Next property refers to an stability condition with respect to changes in population. Suppose
that, after solving the problem e = (N,T, R) ∈ A, a proper subset of agents, S ⊂ N , decides
to reallocate the total amount they have received, that is, they face a new allocation problem:
(S,

∑
i∈S ai, RS), where RS = (Ri)i∈S and a is the allocation corresponding to apply the rule to

the problem e. Consistency requires each agent i ∈ S to receive the same amount of units in
problem (S,

∑
i∈S ai, RS) as she did in problem e. In other words, the new reallocation is only

a restriction to the subset S of the initial one.5

Consistency: For each e ∈ A, each S ⊂ N , and each i ∈ S, Fi(e) = Fi(S,
∑

j∈S Fj(e), RS).

The family of up methods satisfy all the aforementioned properties. Moreover, in our main
result, we obtain that such a family is the unique one satisfying those properties. The proof,
preceded by some technical results, is relegated to Appendix B.

Theorem 4.1. A rule F satisfies balancedness, peaks only, agenda independence, ar-truncation,
and consistency if and only if there exists a monotonic standard of comparison σ ∈ ΣM such
that F = Uσ.

5 Relations between the discrete and the continuum

The properties in Theorem 4.1 characterizing the family of up methods are in line with the
characterization of the equal-distance rule in Herrero and Villar (1999), with identical proviso.6

This fact suggests a relationship between our methods and the equal-distance rule. Actually, any
up method can be interpreted as a discrete version of the equal-distance rule. This statement is

4For a given a ∈ Z, πa : S −→ S is defined as follows: For each R ∈ S, xπa(R)y iff (x + a)R(y + a). Given

R ∈ S, we call πa(R) the shifting of R by a.
5The reader is referred to Thomson (2004) for a widely exposition of consistency and its converse.
6Under the assumption that the task were completely divisible, one of the most widely studied rules is the

so-called equal distance rule. The underlying idea of this rule is equality on losses, above or below, depending on

the case, with respect to the peaks.

Equal distance rule, ed: For each e ∈ A, selects the unique vector ed(e) ∈ RN such that ed(e) =

max{0, p(Ri) + λ} for some λ ∈ R.
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supported in the following. For any problem, the allocation prescribed by the equal-distance rule
is the ex-ante expectations of the agents under the application of up methods, if all monotonic
standard of comparison are equally likely.

Proposition 5.1. Let e ∈ A. Let ΣM
e denote the subset of ΣM of the different partial standards

involved in problem e.7 Then
1

|ΣM
e |

∑
σ∈ΣM

e

Uσ(e) = ed(e).

7In ΣM we consider all possible standards over N × Z++. Notice that, for a given e, not all of them rank

the pairs (i, ai) involved in that particular problem in different ways. ΣM
e denotes precisely the subset of those

different standards.
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Appendix A. On the tightness of characterization result

We present now a collection of examples to illustrate the independence of properties used in
Theorem 4.1.

Example 5.1 (Peaks Only). Let us define the rule Fα for the two-agent case, N = {i, j}. Let
us define the order α : N × Z× S2 −→ Z++ such that, if x > y, then α(·, x, ·) < α(·, x, ·). And,
if x = y, then

Ri = Rj ⇒ α(i, x, (Ri, Rj)) < δ(j, x, (Ri, Rj))
Ri 6= Rj ⇒ α(j, x, (Ri, Rj)) < δ(i, x, (Ri, Rj))

The order α determines, in case of having only one unit, the agent who gets it. It will de-
pend on the agent, the peaks, and the preferences. To obtain the allocation prescribed by
the rule associated to that order α, Fα, we proceed in the following way. Let us consider
the problem ({i, j}, T, (Ri, Rj)). Then, identify the agent with the smallest α for the problem,
let us say agent i. Give one unit of the task to i. Shift agent i’s preferences by a unit to
R′

i = πFi({i,j},1,(Ri,Rj))(Ri). In the new problem, ({i, j}, T − 1, (R′
i, Rj)), proceed in the same

way. Repeat this process until the task runs out.

Example 5.2 (Balancedness). Select one particular agent i ∈ N from the set of all potencial
agents. For each σ ∈ ΣM , the rule Hσ is defined as

Hσ
j (e) =


Uσ

j (e) if
∑

k∈N p(Rk) ≥ T

p(Ri) if
∑

k∈N p(Rk) < T and j = i

Uσ
j (N r {i}, T − p(Ri), RNr{i}) if

∑
k∈N p(Rk) < T and j 6= i

Example 5.3 (Agenda independence). Let σ ∈ ΣM , then

Eσ(e) =

{
Uσ(e) if

∑
j∈N p(Rj) ≤ T

TSσ(e) if
∑

j∈N p(Rj) ≥ T

where TSσ is the M-temporary satisfaction method associated to σ define by Herrero and
Mart́ınez (2006b).

Example 5.4 (ar-truncation). Let �: N −→ Z++ be an order defined over the set of potential
agents such that agent labeled i has priority over agent labeled i + 1, i.e., i � i + 1. And let
σ ∈ ΣM a monotonic standard of comparison. Both � and σ are independent. Now, for each
problem e ∈ A, the rule K works as follows. If no subset of agents have equal peaks (i.e., all the
peaks are different), then we give one unit of the task according to the up method associated
to σ, Uσ, and we reduce one unit the peak of the agent who has received the unit. If a subset
of agents, let say S, have equal peaks, then we give one unit of the task to the agent in S who
has the smallest label (that is, the agent in S with the highest priority according to �) among
all of them involved in S. If there were two or more subsets of agents, let us say S and T , with
equal peaks, then we give unit of the task to the agent with the smallest label among all of them
involved in S and T . After that, we reduce this agent’s peak by one unit. We repeat the process
until the task runs out.

7
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Example 5.5 (Consistency). This rule, F , can be defined as follows. Let σ1, σ2 ∈ ΣM be two
different monotonic standards such that σ1(i, x) < σ1(i+1, x) and σ2(i+1, x) < σ2(i, x). Then,
we define the solution F (σ1,σ2) as

F (σ1,σ2)(e) =

{
Uσ1(e) if |N | = 2
Uσ2(e) otherwise

8
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Appendix B. Proofs of the results

Lemma 5.1 (Elevator Lemma, (Thomson (2004))). If a rule F is consistent and coincides with
a conversely consistent rule F ′ in the two agent case, then it coincides with F ′ in general.8

Lemma 5.2 (Herrero and Mart́ınez (2006a)). Efficiency, one-sided resource monotonicity, and
consistency together imply converse consistency.9

Proof of Theorem 4.1.

It is easy to check that each up method satisfies the properties. Conversely, let F be a rule
satisfying the five properties.

Step 1. Definition of the standard of comparison. Let us define the order σ ∈ ΣM as follows

a > b ⇒ σ(i, a) < σ(j, b)

a = b ⇒ [σ(i, a) < σ(j, b) ⇔ Fi({i, j}, 1, (Ri, Rj)) = 1],

where Ri and Rj are two single-peaked preference relations such that p(Ri) = a =
b = p(Rj) (by peaks only it is enough to consider the peaks). It is straightforward
to see that such a σ is complete and antisymmetric. Let us show that σ is transitive.
Suppose that there exist {i, j, k} ⊆ N such that σ(i, x) < σ(j, y), σ(j, y) < σ(k, z),
but σ(i, x) > σ(k, z). By construction and peaks only, this can only happen when
x = y = z. By the definition of σ, in such a case, Fi({i, j}, 1, (Ri, Rj)) = 1,
Fj({j, k}, 1, (Rj , Rk)) = 1, and Fk({k, i}, 1, (Rk, Ri)) = 1, where p(Ri) = p(Rj) =
p(Rk) = x = y = z. Consider the problem ({i, j, k}, 2, (Ri, Rj , Rk)). There
are only three possible allocations: (1, 1, 0), (1, 0, 1), and (0, 1, 1). Suppose that
F ({i, j, k}, 2, (Ri, Rj , Rk)) = (1, 1, 0), by consistency, Fk({i, k}, 1, (Ri, Rk)) = 0, achiev-
ing in this way a contradiction with Fk({i, k}, 1, (Ri, Rj)) = 1. An analogous argument is
applied if F ({i, j, k}, 2, (Ri, Rj , Rk)) = (1, 0, 1), or if F ({i, j, k}, 2, (Ri, Rj , Rk)) = (0, 1, 1).
Therefore σ(i, x) < σ(k, z), and then σ is transitive.

8Let us consider an allocation for a problem with the following feature: For each two-agents subset, the rule

chooses the restriction of that allocation for the associated reduced problem to this agent subset. Converse

consistency requires the allocation to be the one selected by the rule for the original problem. This property was

formulated by Chun (1999) in the context of claims problems.

Let c.con(e; F ) ≡ {x ∈ ZN
+ :
P

i∈N xi = T and for all S ⊂ N such that |S| = 2, xS = F (S,
P

i∈S xi, RS)}
Converse consistency: For each e ∈ A, c.con(e; F ) 6= φ, and if x ∈ c.con(e; F ), then x = F (e).

It is worth noting that converse consistency implies consistency. Besides, Thomson (2004) formulated the

following useful result involving both properties.
9One-sided resource monotonicity, considers the case in which the change in the task does not alter the type

of rationing associated to the initial problem, i.e, if initially we have to ration labor, it is still labor to be rationed

after the task increasing, or else, if in the initial problem we have to ration leisure, then again, we have too much

labor to allocate even after the decreasing of the task. In either case, the property states that no agent should

suffer.

One-sided resource monotonicity: For each e, e′ ∈ A such that e = (N, T, R) and e′ = (N, T ′, R). If (a)
P

j∈N p(Rj) ≥ T ′ > T , or (b)
P

j∈N p(Rj) ≤ T ′ < T . Then for each i ∈ N, Fi(e
′)RiFi(e).
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Step 2. Let us prove now that F = Uσ. It is straightforward that Uσ is efficient, one-sided
resource monotonic, and consistent. Then, by Lemma 5.2, Uσ is conversely consistent.
Therefore, in application of Lemma 5.1, it is sufficient to show that both F and Uσ

coincide in the two-agent case. Then, let us consider the problem e = (S, T, R) ∈ A where
S = {i, j}. Without loss of generality we can assume that pi ≡ p(Ri) ≤ p(Rj) ≡ pj .
Suppose first that pi = pj . By peaks only, balancedness, agenda independence, and the
definition of the standard, F (e) = Uσ(e). Let us suppose now that pi 6= pj . We distinguish
now the following cases:

Case 1. If pi + pj = T . Let us show that F (S, T, (Ri, Rj)) = (pi, pj) = Uσ(S, T, (Ri, Rj)).
By ar-truncation, F (S, pj − pi, (Ri, Rj)) = (0, pj − pi). Once we have allotted the
amount pj − pi, both agents have the same preference relation: R′

i = R′
j , and T −

(pj−pi) = 2pi units remain to allocate. By balancedness, F (S, 2pi, (R′
i, R

′
j)) = (pi, pi).

In application of agenda independence, F (S, T, (Ri, Rj)) = F (S, pj − pi, (Ri, Rj)) +
F (S, 2pi, (R′

i, R
′
j)) = (0, pj − pi) + (pi, pi) = (pi, pj).

Case 2. If pi + pj < T . Let us define T ′ = pi + pj . Then F (S, T ′, R) = (pi, pj) =
Uσ(S, T ′, R) by Case 1. Once we have allotted the amount T ′, both agents have the
same preference relation: R′

i = R′
j . And then F (S, T − T ′, (R′

i, R
′
j)) = Uσ(S, T −

T ′, (R′
i, R

′
j)). By agenda independence, F (e) = F (S, T ′, R) + F (S, T −T ′, (R′

i, R
′
j)) =

Uσ(S, T ′, R) + Uσ(S, T − T ′, (R′
i, R

′
j)) = Uσ(e).

Case 3. If pi + pj > T . If T is such that 0 ≤ T ≤ pj − pi, then ar(e) ≤ pi. By ar-
truncation, F (e) = (0, T ) = Uσ(e). If T is such that pj − pi ≤ T ≤ pi + pj , then, by
agenda independence, F (e) = F (S, pj−pi, R)+F (S, T−(pj−pi), R′), where R′

i = R′
j .

Note that, by ar-truncation, F (S, pj − pi, R) = (0, pj − pi) = Uσ(S, pj − pi, R). By
balancedness and the definition of the standard, F (e) = F (S, pj − pi, R) + F (S, T −
(pj − pi), R′) = Uσ(S, pj − pi, R) + Uσ(S, T − (pj − pi), R′) = Uσ(e).

Then, F coincides with Uσ in the two agents case, and therefore they do so in general.

Proof of Proposition 5.1.

On one hand, it is known that the equal-distance rule satisfies converse consistency. On the
other hand, it is easy to check that the up methods are consistent. Then the average given by
the left hand side in the formula is also consistent (see Thomson (2004)). By using Lemma 5.1
it is enough to consider the two-agent case. But it is straightforward that in this case both the
equal-distance rule and the average coincide.
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