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Abstract

This paper describes a new method for solving non-standard cons-
trained optimization problems for which standard methodologies do
not work properly. Our method (the Rational Iterative Multisection
-RIM- algorithm) consists of di¤erent stages that can be interpreted
as di¤erent requirements of precision by obtaining the optimal solu-
tion. We have performed an application of RIM method to the case of
public inputs provision. We prove that the RIM approach and com-
parable standard methodologies achieve the same results with regular
optimization problems while the RIM algorithm takes advantage over
them when facing non-standard optimization problems.
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1 Introduction

The use of numerical methods is a standard feature in many areas of Eco-
nomics. This is due, among other things, to the need of �nding clear-cut
results beyond the ambiguity of algebraically-developed analyses and the in-
terest for replicating the characteristics of real world in policy-oriented exer-
cises. A good example of this is given by the debate on the optimal level
of public spending when distortionary taxation is involved. On the basis of
the paper by Atkinson and Stern (1974), contributions such as Gaube (2000,
2005), Chang (2000) or Gronberg and Liu (2001) discuss when the �rst-best
level of public goods exceeds the second-best level. The point here is that it
is not straightforward to derive a general rule to elucidate analytically the
question and numerical exercises have to be carried out.
A similar circumstance is found in the presence of public inputs: an ana-

lytic discussion concerning the optimal levels of public inputs on the basis
of optimality rules is not conclusive and numerical simulations are required.
Moreover, the case of productivity-enhancing public spending shows particu-
lar features and deserves a speci�c treatment (Feehan and Matsumoto, 2000,
2002; Martinez and Sanchez, 2008). Indeed, under plausible assumptions
related to the way through which the public input enters the production
function, standard numerical methods may fail out. Particularly, when in-
creasing returns to scale in all the production factors are present (then the
public input is named factor-augmenting), non-convexities arise and stan-
dard methods such as Newton-Raphson or Nelder-Mead algorithms may have
problems to achieve the solution.
This paper introduces a new method, the Rational Iterative Multisection

(RIM, hereafter) algorithm, for solving non-standard constrained optimiza-
tion problems, overcoming the caveats of conventional algorithms. This new
approach is applied to the controversy on the optimal level of public inputs.
The paper gives some insights on this issue under di¤erent tax settings.
Our method is based on evaluations of the objective function in a multi-

section of the initial set of possible values, reaching the optimum through an
iterative process. Therefore, our proposal is related to direct search methods
in which the aim is to �nd global solutions by comparing the values of the ob-
jective function at di¤erent points (see Casado et al. (2000), Kolda (2003),
Burmen et al (2005), Mathews and Fink (2004), Coope and Price (2000),
and others). With the procedure we propose here, the level of precision with
which the constraints of the problem are ful�lled becomes a crucial criterion.
Starting from an initial set of decision variables, the RIM method selects the
compatible values where the constraints are ful�lled with a certain precision.
Subsequent evaluations of the objective function lead to choose the optimal
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values of decision variables for each level of precision. Moreover, non-optimal
solutions (and information to assess how far they are from the local or global
optima) are obtained. In this sense, the path followed by the iterative process
towards the global optimum is clearly shown and a wide-ranging set of non-
optimal values according to the precision required is provided, making richer
the discussion of results. Finally, if multiple equilibria are detected, they are
discriminated by using this additional information.
With the aim of exploring its consistency, we compare this new method to

a standard methodology which has been widely used in general equilibrium
models, the Newton-Raphson method (NR, hereafter), in a context where its
regularity requirements are satis�ed. In this framework, our method achieves
the same results at optimum than NR. The point is that RIM algorithm is
una¤ected by situations in which NR method does not properly work. Many
of these situations are linked to non-convex problems, such as increasing
returns to scale in the production function, which is the case we study as
application in this paper.
Additionally, we have adapted the RIM algorithm to unconstrained opti-

mization problems by using a di¤erent selection criterion in each stage which
detect the changes in monotonicity of the objective function. Moreover, we
check the performance of RIM approach within this framework by comparing
to the standard methodology of Nelder-Mead algorithm (NM, hereafter), and
we obtain the same results. This �nding shows the �exibility of our proposal.
The structure of the paper is as follows. Section 2 explains how the RIM

methodology works with a brief description of the problem to be solved and
other methods used as reference (NR and NM). Section 3 presents an appli-
cation of RIM algorithm in which both regular and non-regular constrained
optimization problems are solved; a discussion of the results is also included.
Finally, section 4 concludes.

2 General description of the methods

In this section we set up the general framework of the problem to be solved
and the three methods used in its resolution as well. Obviously, we focus our
attention upon the RIM algorithm given that the others two procedures are
well-known.
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2.1 The problem

The problem we are interested in solving is:8<:
max f(u; p)
s:t: : R(u; p) = 0
u 2 U; p 2 P:

(1)

where f : U � P � Rn�Rz �! R is the objective function to be optimized,
R : U � P � Rn � Rz �! Rm the set of constraints of the problem, which
are assumed to be di¤erentiable1, U the set of feasible values for the decision
variables (u) (which can be an interval or the union of several intervals), and
P the set of parameters �xed throughout all the process (p). The number of
decision variables is denoted by n, z is the number of parameters and m the
number of constraints.

2.2 Newton-Raphson (NR) method

This iterative method has at least two advantages: its high convergence speed
and its simple structure. Using the properties of the gradient, it is straight-
forward to achieve the point in which the objective function is maximized.
The performance of NR method is simple:
Let $ be the function to be optimized2:

$ : X � Rn �! Rm
x �! $(x);

where $ is di¤erentiable. The method is used to solve $(x) = 0. Given
x0 2 X � Rn=9r$(x0)�1, the iterative process has the following steps for
each i > 0:

1. Evaluate r$(xi).

2. If 9r$(xi)�1, the point to be used in the next iteration is computed3:
xi+1 = xi �$(xi) � r$(xi)�1.

3. The stop criterion is de�ned as follows: given � > 0, if kxi+1 � xik < �,
then xi+1 is the root of the function; otherwise, the procedure continues
until this condition holds4.

1This assumption is required for using gradient-based algorithms. RIM method works
properly even if this property is not satis�ed.

2The problem (1) has been adapted to this nomenclature using the lagrangian function.
3If n 6= m, the generalized inverse is considered.
4There are others possibilities for setting the stopping criterion. For example, � could

be de�ned as kxi+1�xixi+1
k < �.
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Further information on NRmethod can be found in the large bibliography
existing about this approach (see Beninga (1989), Kelley (2003) and others).
However, this widely-used method has some relevant caveats. First, it does
not work properly when the domain of objective function is non-convex.
Second, it is necessary to have the gradient of function $ di¤erent to zero;
otherwise, the method does not converge. Third, if the objective function
has multiple solutions, there exists the risk of jumping from a root near the
initial point to other possible solutions, neglecting closer and more accurate
solutions. And �nally, convergence problems may appear when several local
optima are involved in the problem.

2.3 Nelder-Mead (NM) algorithm

This algorithm is probably the most popular direct search method. According
to Burmen et al (2005), the performance of this approach could be shortly
summarized as follows.
Let g the function to be minimized5:

g : X � Rn �! R
x �! g(x);

The algorithm manipulates a set of n+1 vertices in Rn (a simplex6) which
are ordered according to the objective function values so that g (x1) � � � � �
g (xn+1). The centroid of the n vertices with the lowest values is de�ned as
xcb =

Pn
i=1 x

i. The centroid and xn+1 de�ne the line along which candidates
are examined for replacing the vertex with the highest objective function
value. The examined points can be expressed as x () = xcb+

�
xcb � xn+1

�
.

They are denoted by xr, xe, xoc, and xic with the corresponding values of
 denoted by r, e, oc, and ic. They are often referred to as the re-
�ection, expansion, outer contraction, and inner contraction points. Under
certain circumstances, the simplex is shrunk towards x1 using the formula
x1 + S

�
xcb � xn+1

�
for i = 2; 3; : : : ; n + 1. Above values of  satisfy these

requirements

0 < r < e; e > 1; 0 < oc < 1; �1 < ic < 0; 0 < S < 1

Nelder and Mead proposed originally the following values: r = 1, e = 2,
and oc = �ic = S = 0:5. The typical iteration of this algorithm can be
described as follows:

5The problem (1) has been adapted to this nomenclature using g = �f
6A triangule when n = 2.
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1. Order the simplex.

2. Evaluate gr = g (xr). If gr < g1; then evaluate ge = g (xe). Therefore,
xn+1 is replaced by xe if ge < gr; otherwise, xn+1 is replaced by xr.

3. If g1 < gr < gn, then xn+1 is replaced by xr.

4. If gn � gr < gn+1, then evaluate goc = g (xoc). Therefore, xn+1 is
replaced by xoc if goc � gn+1.

5. If gn+1 � gr, then evaluate gic = g (xic). Therefore, xn+1 is replaced by
xic if gic � gn+1.

6. If xn+1 is not replaced, shrink the simplex towards x1.

Further details concerning this method can be found in the large bi-
bliography existing about it (see, for instance, Kelley (1999), Coope and
Price (2000) and others). Convergence problems have been detected even for
smooth functions of low dimension. McKinnon (1998) presents a family of
functions where this method does not work properly because the simplices
become arbitrarily narrow.

2.4 Rational Iterative Multisection method

The new method we propose belongs to the family of direct search methods
(see Casado et al. (2000), Kolda (2003), Kelley (1999), Mathews and Fink
(2004), among others), and consists of an iterative subdivision of the ini-
tial decision set of variables. Previously, we have selected the points of the
grid that satisfy the constraints with a certain precision in each stage. This
process continues until the maximum previously-�xed precision is achieved.
Whereas most of the direct search methods do not consider di¤erent levels of
precision (because they usually solve unconstrained optimization problems)
our numerical approach has been adapted to take into account the precision
with which the constraints are held. Hence, the constraints of the problem
become specially relevant when RIM approach is applied. A formal descrip-
tion of RIM algorithm is next.
The de�nition of some instrumental but essential parameters is necessary

as long as the resolution of the problem consists of using di¤erent stages in
which a certain precision and a bandwidth for each interval are set.

De�nition 1 Let S be the number of stages, then:

� Precision path E = [E1; :::; ES] is the vector containing the precision
required in the di¤erent stages of resolution.
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� Bandwidth path B = [B1; :::; BS] is the vector formed by the length of
the space considered between two points of the grid in di¤erent stages
of resolution.

Both variables are interrelated because Bs refers to the bandwidth used
for achieving the precision Es in Us, i. e., the feasible values set for the stage
s. The choice of these parameters is crucial and may a¤ect the performance
of the method.

De�nition 2 Given the problem (1), � > 0 and the set W � U , let C(�;W )
be the set of compatible values in which the constraints are ful�lled with the
precision �, i.e.,

C(�;W ) = fw 2 W j kR(w; p)kmax < �g

Translating the problem (1) to the new nomenclature, the problem to be
solved is: �

max f(c; p)
c 2 C(�; U); p 2 P (2)

De�nition 3 Let ~c 2 C(ES; US) be the solution to the problem (2), that is,
the value which satis�es the condition:

f(~c; p) > f(c; p);8c 2 C(ES; US) (3)

The implementation of this general procedure must take account several
considerations related to e¢ ciency in computation. And here, the number
of decision variables is the key issue. The following nomenclature is now
introduced for the sake of simplicity: RIMn will refer to the RIM method
which considers n decision variables. For instance, RIM2 refers to the method
facing a problem with two decision variables. In order to make easier the
understanding of the general procedure, the RIM2 is considered next, and
c = (c1 ; c2).7 Let us consider I as an arbitrary interval of Us, i.e., the set of
feasible values for the stage s.8 The resolution for the remaining intervals is
analogous to this one. Applying this particular notation to the problem (2)
yields the following:

7RIM1 method is obviously simpler than RIM2 method, but it does not allow to explain
the particular stages in which we are interested.

8I � Us � R2. The method will converge better or worse towards the optimal values
depending on the initial set of values. Therefore, it is useful to select the initial range of
values with some rationality.
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�
max f(c; p)
c 2 C(Es; I); p 2 P

(4)

With the aim of transforming the continuous problem (4) into a discrete pro-
blem, the interval I is subdivided according to the parameter Bs = (B1s ; B

2
s ).

Hence, the vectors C1 = fc1i g and C2 = fc2jg are built using the above
information:

c1i = I¯1
+ (i� 1)B1s ; i = 1; :::; D1

s + 1
c2j = I¯2

+ (j � 1)B2s ; j = 1; :::; D2
s + 1;

where �Ik = maxfck jc 2 Ig, I
¯k
= minfck jc 2 Ig, and Dk

s =
�Ik � I¯k
Bks

are the

number of subdivisions, k = 1; 2. Depending on the problem, it may be useful
to set B2s = B

1
s to obtain the same scale in the di¤erent decision variables

9.
With these vectors, the grid for the interval Is in this stage is Is = C1�C2.

On the basis of these points all the variables of the problem are evaluated,
constraints R included. Thus, for each value of the �rst decision variable,
the values of the other which satisfy the constraints R with a precision Es
are chosen. In other words, for each c1i , the set of good values of the other
decision variable c2j , G(c

1
i ; Es), is de�ned. Formally,

G(c1i ; Es) = fc2j 2 C2=kR(c1i ; c2j)kmax < Esg;
and grouping the di¤erent c1i�s:

G1(Es) = fc1i 2 C1=G(c1i ; Es) 6= ;g:
Using this notation, we �nd out the solution of problem (4) in the stage

s solving the next problem:

max(f(c1i ; G(c
1
i ; Es)))

s:t: : c1i 2 G1(Es)
(5)

It requires to evaluate the objective function at the points satisfying the
constraints with the required precision Es. Additionally, this strategy allows
to get a ranking of results in the intermediate stages, and shows one of key
features of RIM algorithm compared to others numerical methods10.

9For instance, 10 points for c1and 40 for c2 when
�
c1; c2

�
2 [0; 1]� [0; 4] :

10The intermediate solutions can be interpreted as solutions of the problem for less strict
levels of precision.
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Whereas the intra-stage procedure has been brieftly described above, se-
veral comments are necessary to provide some details on the inter-stage al-
gorithm (the step from stage s to stage s+1). The process must continue se-
arching for values in which the constraints R hold with the required precision

Es+1 starting from the discrete set G1(Es)�
D1
s+1[
i=1

G(c1i ; Es) � C(Es; Is). Thus,

for each c1i , we form areas around these values in the following way:

� For c1i , the RIM algorithm forms the interval: [c1maxfi�1;1g; c1minfi+1;D1
s+1g

].

� With respect to the second decision variable, the coordinates which
belong to G(c1i ; Es) are available

11. Grouping the consecutive numbers
obtained, the di¤erent areas where RIM2 approach will search in the
next stage are obtained considering the minimum (h

¯
i
q) and the ma-

ximum (�hiq) coordinate of each consecutive subsequence q = 1; :::; Qi,
where Qi is the number of subsequences12.

Analytically, the process could be summarized as follows: 8c1i 2 G1(Es),
8q = 1; :::; Qi , RIM2 approach chooses [c2h

¯
i
q�1
; c2�hiq+1

], i. e.,

[
c1i2G1(Es)

Qi[
q=1

[c1maxfi�1;1g; c
1
minfi+1;D1

s+1g]� [c
2
h
¯
i
q�1
; c2�hiq+1] � Us+1

The union of all the intervals built for each interval of Us will form Us+1,
that is,

Us+1 =
[
I2Us

[
c1i2G1(Es)

Qi[
q=1

[c1maxfi�1;1g; c
1
minfi+1;D1

s+1g]� [c
2
h
¯
i
q�1
; c2�hiq+1]

Finally, the optimal solution will be achieved among the values of this in-
terval by evaluating the objective function. In summary, the iterative process
followed by RIM algorithm sorts e¢ ciently (grouping bordering areas) the
subsequent initial sets according to the level of precision the problem re-
quires. For an intuitive explanation of the transition inter-stages procedure
of RIM method, see the Appendix.
RIM algorithm has modi�ed our initial problem (1) into a discrete pro-

blem. Although RIM method does not invert this process, we can compute

11Obviously, this step would not be necessary for RIM1 approach.
12Each consecutive subsequence will form an independent area.
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how the objective function and other relevant variables are a¤ected when
slight changes in the decision variables occur. The concept of elasticity is
a useful tool to explore this issue. The elasticity of Y with respect to the
variable X (eYX) is de�ned as follows:

eYX = (4Y=Y )=(4X=X)

Therefore, RIM approach is useful to study the sensitivity of optimal
values to changes in decision variables. Using this concept of elasticity, a
comparison of the e¤ects caused by desviations from the optimal values could
be carried out. Following the example of elasticity, lower absolute values of
eYX imply that the solution achieved is more reliable because there exist less
incentives to take di¤erent options than the optimal values. RIM algorithm
takes advantage here over other methods because this sensitivity analysis is
done during the resolution process.
The RIM method works properly even for non-regular optimization pro-

blems. The following propositon shows that even a weak assumption on the
constraints of the problem ensures the suitable performance of our proposal.

Proposition 1 Let us consider (1). If there exists k subsets of U : U1; :::; Uk

(U =
k[
i=1

Ui; Ui \ Uj = ; if i 6= j), such that R is monotonic in Ui;8i =

1; :::; k:, a solution for this problem can be found using the Rational Iterative
Multisection algorithm.

Proof. Initially, consider the k subintervals in which the function R is
monotonic. Then, next stages will increase the level of precision to be satis-
�ed depending on the minimum value of the function R. Finally, the solution
for problem (1) is achieved.13

3 The optimal level of public inputs. An
application of RIM method

In this section, RIM algorithm is used to solve an optimization problem where
non-regular conditions may be present. In particular, we shed some light on
a controversial issue, namely, the optimal level of public spending under di-
¤erent tax settings. The debate comes from the literature on theory of public

13A solution could be obtained even if R > 0, depending on the desired level of precision.
For instance, consider R / min(R) = 10�6.
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goods (Samuelson, 1954; Pigou, 1947), with extensions until present (Gaube,
2000, 2005; Chang, 2000). The underlying idea is that using distortionary
taxation leads to an optimal level of public goods below its �rst-best level.
In this paper we translate this debate to the case of public inputs. The

point is that the way through which the public input enters the produc-
tion function is crucial for this controversy and its resolution. Particularly,
dealing with factor-augmenting public inputs implies to solve a non-convex
optimization problem as long as increasing returns to scale appear in the
production side of the economy.
Martinez and Sanchez (2008), using the approach by Gronberg and Liu

(2001), show that it cannot be analytically determined whether the �rst-
best level of public input will exceed the second-best level. Consequently,
a numerical approach has to be used, and under these circumstances RIM
algorithm appears as the unique alternative which is able to solve the di¤erent
scenarios considered in this example.

3.1 The model

We assume an economy of n identical households whose utility function is
expressed by u(x; l), where x is a private good used as numeraire and l the
labor supply14. Let Y be the total endowment of time such that h = Y � l
is the leisure. Output in the economy is produced using labour services and a
public input g according to the aggregate production function F (nl; g) : The
type of returns to scale does not matter at the moment, and consequently
using the Feehan�s (1989) nomenclature, the public input can be treated
as �rm-augmenting (constant returns to scale in the private factor and the
public input combined, creating rents) or as factor-augmenting (constant
retuns to the private factor, and therefore scale economies in all inputs).
Output can be costlessly used as x or g.
Labour market is perfectly competitive so that the wage rate ! is given

by the marginal productivity of labour:

! = FL (nl; g) ; (6)

where �rms take g as given. Pro�ts may arise and de�ned as:

� = F (nl; g)� nl!; (7)

14The properties of u (x; l) are the standard ones to ensure a well-behaved function:
strictly monotone, quasiconcave and twice di¤erentiable.
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which will be completely taxed away by government given their inelastic
supply15.
We distinguish two di¤erent tax settings. First, we consider a lump-sum

tax T so that the representative household faces the following problem:

Max u (x; l) (8)

s:t: : x = !l � T ,

which yields the labour supply l (!; !Y � T ) and the indirect utility function
V (!; !Y � T ). It is to be assumed that l! � 0.
The optimization problem of government in the �rst-best scenario is then

as follows:

Max
R

V (!(g); !Y �R) (9)

s:t: : g = nR,

where R = T + � (g; T ) =n is the renevue per person16.
A second scenario is that using a speci�c tax on labour � . Under this tax

setting, the consumer�s optimization problem could be expressed as:

Max u (x; l) (10)

s:t: : x = (! � �) l

obtaining l (!N ; !Y ) and V (!N ; !Y ), where !N = ! � � is the net wage
rate. In this scenario, the optimization problem of government is given by:

Max
R

V (!(g); !Y � TEB �R) (11)

s:t: : g = nR,

with R = � l + � (g; �) =n and TEB denoting the total excess burden.

3.2 Simulation and results

Next, we give an insight into the debate on the optimal level of public inputs
using numerical procedures to solve particular cases. With this aim, we
consider three di¤erent utility functions in an attempt to achieve results
as general as possible and related to previous references on public goods.

15Pestieau (1976) analyzed how the optimal rule for the provision of public inputs has
to be modi�ed when these rents are not taxed away.
16It is useful here to consider that rents accrue to consumers before being taxing away

by government.
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Particularly, we have chosen the quasi-linear utility function (Gronberg and
Liu, 2001); the Cobb-Douglas utility functions (Atkinson and Stern, 1974;
Wilson, 1991a); and the CES utility function (Wilson, 1991b; Gaube, 2000).
Speci�cally,

U(x; h) = x+ 2h
1
2 (12)

U(x; h) = a log x+ (1� a) log h (13)

U(x; h) = (x� + h�)
1
� ; (14)

where Y = 24; a 2 (0; 1) and � = 0:5. The relevant point in our case comes
from the speci�cation of the production function because the di¤erent alter-
natives by de�ning how the private and public factors enter the production
function have notable implications on the debate. In particular, whether
this function exhibits constant returns to scale in public and private inputs
(�rm-augmenting public input) or only constant returns to the private factors
(factor-augmenting public input) appear as key issues.
RIM algorithm has been used for solving all the scenarios summarized

in Table 1. Additionally, the case of �rm-augmenting public input has been
solved using the NR algorithm. In such a way, the robustness of our proposal
in this framework is checked. Equivalently, when a factor-augmenting public
input is considered and problems of non-convexities problems can be avoided,
we check whether the results coming from RIM method coincide with those
obtained through the alternative approach by NM. With respect to this, one
must be aware that RIM algorithm presents some advantages over NM, for
instance the guarantee of obtaining the global optimum. The comparisons
of RIM with NR and NM methods show that our approach takes advantages
over both of them, specially when non-convexities arise17.

Firm-augmenting public input

We assume a Cobb-Douglas production function given by F (nl; g) =
(nl)�g1��, where � 2 (0; 1). This speci�cation creates �rm-speci�c rents.
As Pestieau (1976) proved, if these rents are also an argument in the con-
sumer�s indirect utility function, the optimal condition for the provision of
public inputs is not the �rst-best one. However, recall that our model pre-
cisely establishes that all economic rents are taxed away by the government.

17The MATLAB routines used are available at
http://www.upo.es/econ/sanchez_fuentes/docs/research/RIMv2A.zip
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Indeed, the controversy between the �rst-best and second-best level of pu-
blic spending has no sense when the �rm-augmenting public input creates
rents which are completely taxed by the government. Under this scenario,
the analytical solution of our model and its numerical resolution give the
intuitive result that the optimal level of productive public spending must be
exclusively �nanced with the economic rents.
For the simulation, we have taken a 2 f0:1; 0.5; 0:9g, � 2 f0:6; 0.7; 0:8g

and n 2 f1; 100; 1000g as the set of parameters to be used, where the bench-
mark values have been emphasized. The case of �rm-augmenting public in-
put is introduced with the aim of comparing the performance of RIM method
under regular conditions with a widely used methodology, the standard NR
algorithm.
Following the performance of RIM method, precision requirements and

the bandwidth at di¤erent stages are set up (see Table 1). The de�nition
of the vector E should take into consideration not only the aim of a high
precision per se, but also the number of good values detected and others
points which are close to the required precision but not satisfying them. In a
sense, a trade-o¤ between the precision and the number of compatible values
appears.18 The bandwidth is de�ned with the aim of obtaining a new decimal
for the decision variable at each stage. With respect to the NR method, a
standard implementation of this method has been used for solving the same
problem in which the stop criterion equals to the maximum precision required
for RIM algorithm.

INSERT TABLES 2-4 ABOUT HERE

Tables 2-4 compare the results achieved by using di¤erent methods. The
coincidence of results is the main conclusion. As can be seen, a high coin-
cidence of at least four decimals is obtained for each scenario and relevant
variable. Despite of its higher computational costs, the robustness of these
results support the suitable performance of RIM method in optimization
problems with standard conditions.

Factor-augmenting public input

The main di¤erence between the above case and this of factor-augmenting
lies in the assumptions on the returns to scale in the production function.

18A di¤erent intuition of this issue is how the precision requirements can be relaxed
to get good points within an area. RIM algorithm allows here to continue the searching
process in "bad" areas decreasing conveniently the required precision.
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Particularly, we assume again a Cobb-Douglas technology but exhibiting
increasing returns in all the inputs (constant returns in labor): F (nl; g) =
nlg�, where � 2 (0; 1). Under this framework, the debate on the level of
public spending in alternative tax settings is reborn. Indeed, the use of lump-
sum or distorting taxes are necessary as long as rents are null.19 Here we
have considered a 2 f0:1; 0.5; 0:9g, � 2 f0:1; 0.2; 0:3g and n 2 f1; 100; 1000g
as the set of parameters to be taken account, where the benchmark values
have been again emphasized.
Solving the government optimization problem with factor-augmenting pu-

blic inputs is not as straightforward as before. Indeed, the NR algorithm
presents some caveats when non-convex sets of constraints are involved. Note
that this is our case because we have increasing returns in the production
side of the model. Consequently, there is scope for a method such a RIM
algorithm.
Recall that Table 1 described the parameters and method implemented

under each scenario. In such a way, the speci�c properties of each one are
used to solve the problem according to di¤erent criteria of selection between
the points evaluated within each stage. First, RIM2 method follows the
standard description of section 2. Second, RIM1u shows how RIM algorithm
is adapted to solve an unconstrained optimization problem with one decision
variable. The criterion followed consists of comparing consecutive values of
the objective function with the aim of detecting changes in its monotonicity.20

These changes could indicate the presence of local optima. Therefore, RIM
method is adapted to obtain global optima within this framework, going
beyond other direct-search methods which usually only ensure local optima.21

INSERT TABLES 5-7 ABOUT HERE

Tables 5-7 report the optimal levels of public inputs and other informa-
tion in each scenario for each utility function. First-best levels are always
higher than the second-best ones in line with the mainstream of previous
literature on public goods, despite the feedback e¤ect.22 Several comments
can be drawn regarding these tables. Firstly, the very di¤erent scale for the

19This fact justi�es our exclusion of the cero from the initial sets, considering a minimum
tax rate to be applied.
20As we are interested in maximizing our objective function, we will control for changes

from increasing to decreasing areas.
21Variants of the original Nelder-Mead method are focused on avoiding problems related

to this one. For further details, see Burmen et al (2005).
22The feedback e¤ect could mitigate the distorsion caused by the tax according to some

authors. For further information, see Martinez and Sanchez (2008).
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tax rate obtained in each tax setting requires a previous knowledge for se-
arching the optimal values. In other words, optimal values could be found in
a more e¢ cient way whether the search is done in the most suitable areas.
Secondly, the coincidence of the results achieved with RIM1u and NM me-
thods show the well performance of RIM algorithm for solving unconstrained
optimization problems.

INSERT TABLES 8-9 ABOUT HERE

Tables 8 and 9 show the optimal path followed by RIM2 method in the
di¤erent stages of the benchmark scenario for Quasi-linear and CES utility
functions. The optimum achieved for each stage could be interpreted as
the best choice according to the required level of precision. In addition,
the values of elasticities indicate the percentage of change in the objective
function caused by a deviation of 1 % from the optimal value of our decision
variable. The decreasing optimal values obtained most of the times for the
objective function in the di¤erent stages (Vmax) come from the existence
of a trade-o¤ between the level of precision and the number of compatible
values. The more precise results are demanded, the less points satisfy these
requirements.
An additional advantage of RIM approach from standard methodologies,

the detection of multiple optimal values, is observed within these tables.
Mainly, we observe two di¤erent situations. On one hand, the same point may
be evaluated twice whether it is separating two di¤erent intervals (see Table
8). This result can be explained as a redudant but unavoidable evaluation
of our method. On the other hand, the same value of the objective function
can be obtained using di¤erent values of the decision variables (Table 9).
This result allows us to present how the additional information collected by
RIM method during the resolution process is useful to decide which optimal
value should be considered. Di¤erent criteria could be applied in our case to
choose either the highest tax rate (to maximize the level of public input) or
the lowest tax rate (with the aim of minimizing the damage caused by the
tax), depending on the policy-maker preferences.

INSERT FIGURES 1-2 ABOUT HERE

Figures 1-2 show a complementary view of the searching process followed
by RIM2 algorithm (recall that this approach only is implemented when non-
convexities appear) and already reported in Tables 8 and 9. They contain the
good values found for each decision variable (marked by asterisks) and for
some of the stages. Particularly, we show the �rst stage which allows to ob-
tain a general perception of the initial set obtained and the three last stages,
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to observe how each stage continues the search on the �good areas�found in
the previous one. Alternatively, the �bad�or exhausted areas are not taken
into account. Again, the RIM method obtains more precise solutions as the
level of precision increases and simultaneously avoids non-e¢ cient compu-
tations. In addition, a crucial characteristic of RIM approach is exposed.
According to the good areas detected in the �rst stage, non-convex sets of
compatible points are detected. Under these conditions, standard methodo-
logies fail out to solve these problems. By contrast, RIM method does not
present any additional di¢ culty to solve them.

4 Concluding remarks

This paper has introduced a new numerical method, the Rational Iterative
Multisection algorithm, which is able to obtain optimal values of optimiza-
tion problems, even when they face some non-standard properties. In fact,
we have dealt with two optimization problems: a problem with enough re-
gularity properties and a non-convex problem as examples of its application.
The method is based on a multisection iterative process of the initial set
that evaluates the objetive function, obtaining compatible values of the de-
cision variables under several precision requirements. The more stages are
considered, the more precise values are obtained. Moreover, there exists a
trade-o¤ between the number of compatible values and the precision require-
ment imposed.
We have used a simple general equilibrium model with public inputs and

two di¤erent tax settings: a lump-sum tax and a speci�c tax on labor. We
have placed this exercise on the debate upon whether the �rst-best level of pu-
blic inputs is higher than the second-best level. The government chooses the
values of �scal variables to maximize the utility of representative household.
First, we have compared the new method to the well-known algorithm of
Newton-Raphson, when the problem has enough regularity properties. This
scenario refers to the case of �rm-augmenting public inputs. The coincidence
of the results is extremely high.
Second, an optimization problem where non-convex sets of constraints are

involved has been also considered. This is the case of factor-augmenting pu-
blic inputs. Under these conditions, RIM algorithm has relative advantages
with respect to standard methods because the problems derived from multi-
ple equilibria and corner solutions are avoided. In addition, an adaptation of
RIM method for solving unconstrained optimization problems has been done
which allows us to conclude that RIM algorithm goes beyond NM to ensure
global optima in this framework. Our numerical results are clear: the level of
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public input in the �rst-best scenario always exceeds that of the second-best,
in line with the mainstream of literature dealing with public inputs.
All in all, RIM approach becomes a useful tool for solving constrained op-

timization problems, in which relaxing the constraints is a relevant issue. An
example of this could be a problem in which legal or constitutional arrange-
ments imply that the government budget constraint has not to be ful�lled
strictu sensu. Other applications of RIM algorithm could study the sensi-
tivity of equilibrium values with respect to calibrated parameters in general
equilibrium models. This goal can be carried out by RIM approach without
the need of solving again the model, which will be necessary if other numerical
approaches are used. Finally, RIM method could be implemented according
as a paralell computing algorithm, with which the higher computational are
mitigated.
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A Appendix

An intuitive explanation of the inter-stages procedure of RIM2 algorithm,
supported by a graphical tool, is presented next. The �gure below shows the
transition from stage 1 to stage 2. In the �rst stage, the initial set of two
decision variables, !� t, has been discretized as a matrix 4� 10.23 All these
points are candidates to be solutions of the optimization problem. Assume
the points A;K;C; J and F are the points in which the restriction is ful�lled
with the minimum precision E1. Looking for more precise solutions, the areas
1; 2; 3; 4 and 5 are built to form the initial set to be considered in the second
stage.

INSERT FIGURE A1 ABOUT HERE

The way through which these areas 1-5 are formed is illustrated taking
the coordinate !2 as a reference. The set of good values for the other decision
variable t where the constraints are satis�ed with a precisionE1 isG(t2; E1) =
ft3; t4; t7g. Grouping the consecutive subsequences of t, the minimum and
maximum coordinates are, respectively: h

¯
2
1 = 3;

�h21 = 4; h¯
2
2 =

�h22 = 7. Hence,
the area to be used for the next stage coming from !2 will be [!1; !3]�[t2; t5][
[!1; !3]� [t6; t8].
However, areas 1-5 are not achieved following strictu sensu the theoretical

nomenclature explained above or considering directly the area obtained from
any of the above points. By contrast, an "e¢ cient" reorganization of the
areas relative to each point is done. Obviously, the total areas are identical
in both cases.
Next, the main features of this reorganization are described. We explain

them by using some particular situations regarding the above �gure.

� The areas where di¤erent coordinates are involved should be
integrated to optimize the procedure. For instance, area 2 has
been built on the basis of points A and J , which have di¤erent coor-
dinates in t. Hence, our method does not duplicate some evaluations
corresponding to the common area [!1; !2]� [t7; t8].

� The good areas found for the interval of coordinates [!i�1; !i+1]
must be considered in separate intervals. A good example of
this is the situation of the areas 4 and 5. As long as this rule of
reorganization had not taken place, the area [!3; !4] � [t6; t7] would

23For the sake of simplicity, the notation of decision variables is based on the nomen-
clature of section 3.

21

 
 

 
 

 
http://www.upo.es/econ 

 



have been included in the second stage, and the objective function and
the constraints would have been evaluated in this area, where it is
unlikely to �nd a compatible value in the second stage.

� The consecutive coordinates in t, which belong to the same
coordinate in !, are jointly considered in the de�nition of the
area to be used in the next stage. An illustration of this situation is
given by areas 1 and 3. PointsK andC belong to the same subsequence
in t, with !2 as vertical coordinate.

At this point, areas 1-5 are used as the initial set in the second stage and
RIM2 algorithm goes on searching for more precise solutions using the new
grid of points subdividing these areas according to the parameters B and E.
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Figures

Figure 1: RIM2. Benchmark scenario. Good areas detected.
Factor-augmenting public input. Quasi-linear utility. Distorting tax.
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Figure 2: RIM2. Benchmark scenario. Good areas detected.
Factor-augmenting public input. CES utility. Distorting tax.
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Figure A1: Inter-stages procedure.
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Tables

Table 1: Simulation scenarios and methods

Scenarios Methods
Firm-augmenting public input

LS ! QL, CD and CES.
D ! QL, CD and CES.

RIM1
! 2 [0:3; 0:6]
B =

�
10�2; 10�3; 10�4; 10�5; 10�6; 10�7; 10�8; 10�9

�
E =

�
40; 10; 1; 10�1; 10�2; 10�3; 10�4; 10�5

�
Newton-Raphson

!0 = 0:5
E = 10�5

Factor-augmenting public input

LS ! QL, CD and CES.
D ! CD.

RIM1u
c 2

�
10�4; 350 + 10�4

�
; c = T; �

B =
�
1; 10�1; 10�2; 10�3; 10�4; 10�5; 10�6; 10�7

�
E = [1; 1; 1; 1; 1; 1; 1; 1]

Nelder-Mead
TQL0 = TCES0 = 10

TCD0 = 0:5
E = 10�5

D ! QL and CES.

RIM2
(!; �) 2

�
10�4; 20 + 10�4

�
�
�
10�4; 5 + 10�4

�
B =

�
10�1; 10�2; 10�3; 10�4; 10�5; 10�6

�
E =

�
500; 50; 0:5; 0:05; 0:005; 10�4

�
Notes: 1) Tax settings: LS=Lump-sum, D=Distorting. 2) Utility functions: QL=Quasi-linear, CD=Cobb-

Douglas, CES = CES utility function(� = 0:5). 3) RIMu indicates that a di¤erent criterion for selection

of points between stages has been used.

Table 2: Firm-augmenting. Quasi-linear utility.

Vmax g l �

Benchmark
n = 100; � = 0:7

12.4214
(****)

327.2065
(****)

18.2722
(****)

327.2065
(****)

� = 0:6
10.8876
(****)

316.4998
(****)

14.5749
(****)

316.4998
(****)

� = 0:8
14.7090
(****)

274.2657
(****)

20.5061
(****)

274.2657
(****)

n = 10
12.4214
(****)

32.7207
(****)

18.2722
(****)

32.7207
(****)

n = 1000
12.4214
(****)

3272.0647
(****)

18.2722
(****)

3272.0647
(****)

Note: The number of asteriks (from 1 to 4 or more) indicate how many decimals are coincident between

RIM and NR resolutions.
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Table 3: Firm-augmenting. Cobb-Douglas utility.

Vmax g l �

Benchmark
n = 100; � = 0:7; a = 0:5

2.04858
(****)

214.888
(****)

12
(****)

214.8877
(****)

a = 0:1
2.7657
(****)

42.9776
(****)

2.4
(****)

42.9776
(****)

a = 0:9
2.0676
(****)

386.7979
(****)

21.6
(****)

386.7979
(****)

� = 0:6
1.9241
(****)

260.5841
(****)

12
(****)

260.5841
(****)

� = 0:8
2.1722
(****)

160.4977
(****)

12
(****)

160.4977
(****)

n = 10
2.0486
(****)

21.4888
(****)

12
(****)

21.4888
(****)

n = 1000
2.0486
(****)

2148.8773
(****)

12
(****)

2148.8773
(****)

Note: The number of asteriks (from 1 to 4 or more) indicate how many decimals are coincident between

RIM and NR resolutions

Table 4: Firm-augmenting. CES utility (� = 0:5).

Vmax g l �

Benchmark
n = 100; � = 0:7

34.0281
(****)

126.6550
(****)

7.0728
(****)

126.6550
(****)

� = 0:6
31.8175
(****)

128.0503
(****)

5.8968
(****)

128.0503
(****)

� = 0:8
36.8398
(****)

111.8768
(****)

8.3647
(****)

111.8768
(****)

n = 10
34.0281
(****)

12.6655
(****)

7.0728
(****)

12.6655
(****)

n = 1000
34.0281
(****)

1266.5501
(****)

7.0728
(****)

1266.5501
(****)

Note: The number of asteriks (from 1 to 4 or more) indicate how many decimals are coincident between

RIM and NR resolutions
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Table 5: Factor-augmenting. Quasi-linear utility.

n = 100 n = 100 � = 0:2
� = 0:2 � = 0:1 � = 0:3 n = 10 n = 1000

Vmax: LS
90.0830
(****)

40.2563
(****)

281.8203
(****)

50.9174
(****)

159.9329
(****)

D 90.0564 40.2491 281.8022 50.8935 159.2948

T; � : LS
22.4139
(****)

4.3519
(****)

120.7290
(****)

12.5391
(****)

39.9232
(****)

D 0.8999 0.1809 4.9566 0.5248 1.3531

g: LS
2241.3885
(****)

435.1883
(****)

12072.9012
(****)

125.3912
(****)

39923.1558
(****)

D 2153.2517 427.4710 11914.3832 124.7701 32443.8427

l: LS
23.9543
(****)

23.7033
(****)

23.9964
(****)

23.8552
(****)

23.9856
(****)

D 23.9286 23.6335 23.9927 23.7734 23.9773

Notes: 1) Benchmark scenario: n = 100; � = 0:2. LS=Lump-sum, D=Distorting. 2) The number of

asteriks (from 1 to 4 or more) indicate how many decimals are coincident between RIM1u and NM

resolutions .

Table 6: Factor-augmenting. Cobb-Douglas utility.

n = 100; a = 0:5 n = 100; � = 0:2 n = 100; a = 0:5 � = 0:2; a = 0:5
� = 0:2 a = 0:1 a = 0:9 � = 0:1 � = 0:3 n = 10 n = 1000

Vmax: LS
3.0654
(****)

2.9300
(****)

4.0200
(****)

2.6997
(****)

3.5869
(****)

2.7776
(****)

3.3532
(****)

D
3.0584
(****)

2.9274
(****)

4.0175
(****)

2.6982
(****)

3.5679
(****)

2.7706
(****)

3.3462
(****)

T; � : LS
10.7761
(****)

1.6191
(****)

20.1986
(****)

2.1625
(****)

56.5836
(****)

6.0598
(****)

19.1629
(****)

D
0.7872
(****)

0.5264
(****)

0.9118
(****)

0.1702
(****)

3.7383
(****)

0.4427
(****)

1.3999
(****)

g: LS
1077.6083
(****)

161.9140
(****)

2019.8639
(****)

216.2484
(****)

5658.3633
(****)

60.5984
(****)

19162.8846
(****)

D
944.6350
(****)

126.3431
(****)

1969.4941
(****)

204.2685
(****)

4486.0149
(****)

53.1207
(****)

16798.2513
(****)

l: LS
13.3333
(****)

2.9268
(****)

22.0408
(****)

12.6316
(****)

14.1176
(****)

13.3333
(****)

13.3333
(****)

D
12

(****)
2.4

(****)
21.6
(****)

12
(****)

12
(****)

12
(****)

12
(****)

Notes: 1) Benchmark scenario: n = 100; � = 0:2 LS=Lump-sum, D=Distorting. 2) The number of asteriks

(from 1 to 4 or more) indicate how many decimals are coincident between RIM1u and NM resolutions
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Table 7: Factor-augmenting. CES utility (� = 0:5).

n = 100 n = 100 � = 0:2
� = 0:2 � = 0:1 � = 0:3 n = 10 n = 1000

Vmax: LS
109.4471
(****)

61.7688
(****)

298.7085
(****)

70.3698
(****)

179.2329
(****)

D 108.4150 61.5920 295.7230 69.4549 178.1280

T; � : LS
18.3059
(****)

2.7861
(****)

113.7856
(****)

8.8778
(****)

35.5307
(****)

D 0.90038 0.17532 4.84211 0.47327 1.57368

g: LS
1830.5908
(****)

278.6116
(****)

11378.5635
(****)

88.7784
(****)

35530.7014
(****)

D 1682.5437 256.8082 10677.9327 74.3357 32679.6423

l: LS
20.3724
(****)

15.8672
(****)

23.0218
(****)

18.0974
(****)

21.8501
(****)

D 18.6871 14.6481 22.0522 15.7007 20.7664

Notes: 1) Benchmark scenario: n = 100; � = 0:2: LS=Lump-sum, D=Distorting. 2) The number of

asteriks (from 1 to 4 or more) indicate how many decimals are coincident between RIM1u and NM

resolutions.

Table 8: Optimal path of RIM2 in di¤erent stages. Factor-augmenting public input.
Quasi-linear utility. Distorting tax setting.

Stage Interval ! � Vmax R E eV! eV�
1 1 4.40010 0.50010 93.85641 452.3976 500 1.12206 -0.12753
2 45 4.63010 0.87010 90.50596 45.81765 50 1.22417 -0.23005
3 54 4.63010 0.88910 90.05131 0.41608 0.5 1.23032 -0.23626
3 53 4.63010 0.88910 90.05131 0.41608 0.5 1.23031 -0.23625
4 1 4.63030 0.88910 90.05609 0.02895 0.05 1.23296 -0.23890
5 47 4.64104 0.89983 90.05633 0.00184 0.005 1.23316 -0.23909
5 46 4.64097 0.89976 90.05633 0.00328 0.005 1.23314 -0.23907
6 9 4.64108 0.89987 90.05638 9 � 10�6 0.0001 1.23316 -0.23910
6 8 4.64108 0.89987 90.05638 0.00008 0.0001 1.23316 -0.23910

Note: Benchmark scenario: n = 100; � = 0:2. R is the precision with which the constraints are satis�ed.

eVX is the elasticity of the objective function V with respect to X = !; � .
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Table 9: Optimal path of RIM2 in di¤erent stages. Factor-augmenting public input.
CES utility (� = 0:5). Distorting tax setting.

Stage Interval ! � Vmax R E eV! eV�
1 1 4.00010 0.30010 112.8000 457.1306 500 0.8511 -0.0639
2 77 4.40010 0.86010 108.9600 39.7881 50 0.9692 -0.1894
2 75 4.33010 0.79010 108.9600 43.6968 50 0.9538 -0.1740
2 73 4.29010 0.75010 108.9600 49.5277 50 0.9450 -0.1652
3 48 4.37110 0.85410 108.4080 0.3253 0.5 0.9677 -0.1891
3 47 4.36110 0.84410 108.4080 0.1918 0.5 0.9655 -0.1869
3 46 4.35810 0.84110 108.4080 0.3793 0.5 0.9648 -0.1862
3 34 4.43010 0.91310 108.4080 0.0620 0.5 0.9808 -0.2021
3 33 4.42510 0.90810 108.4080 0.2022 0.5 0.9797 -0.2010
4 13 4.37560 0.85830 108.4152 0.0267 0.05 0.9686 -0.1900
5 217 4.41740 0.90010 108.4152 0.0045 0.005 0.9779 -0.1993
6 15 4.37595 0.85866 108.4150 0.00009 0.0001 0.9687 -0.1900
6 6 4.41767 0.90038 108.4150 0.00008 0.0001 0.9779 -0.1993

Note: Benchmark scenario: n = 100; � = 0:2. R is the precision with which the constraints are satis�ed.

eVX is the elasticity of the objective function V with respect to X = !; � .
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