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Abstract: Gene networks have become a powerful tool in the comprehensive analysis of gene
expression. Due to the increasing amount of available data, computational methods for networks
generation must deal with the so-called curse of dimensionality in the quest for the reliability of
the obtained results. In this context, ensemble strategies have significantly improved the precision
of results by combining different measures or methods. On the other hand, structure optimization
techniques are also important in the reduction of the size of the networks, not only improving
their topology but also keeping a positive prediction ratio. In this work, we present Ensemble and
Greedy networks (EnGNet), a novel two-step method for gene networks inference. First, EnGNet
uses an ensemble strategy for co-expression networks generation. Second, a greedy algorithm
optimizes both the size and the topological features of the network. Not only do achieved results
show that this method is able to obtain reliable networks, but also that it significantly improves
topological features. Moreover, the usefulness of the method is proven by an application to a human
dataset on post-traumatic stress disorder, revealing an innate immunity-mediated response to this
pathology. These results are indicative of the method’s potential in the field of biomarkers discovery
and characterization.

Keywords: gene networks; scale-free networks; ensemble networks; graph theory; computational
biology; mutual information networks; biomarkers discovery

1. Introduction

Arising at the beginning of the century, Gene Networks (GN) have become a breakthrough in the
analysis of biological processes in most gene expression studies. Such networks represent relationships
between genes (or gene products) by means of a graph composed of nodes and edges, where nodes
represent genes and edges the relationships among them. GNs have been widely used in both basic
and applied research, such as biology [1], medicine [2], and diagnostics [3], among others.

GNs models also pave the way for hypotheses-making, which can be empirically validated
afterwards. The results show significant reliability of GNs in this sense, since many predicted
interactions have been experimentally confirmed later [4]. Therefore, algorithms and computational
methods for GNs reconstruction have gained relevance among the Bioinformatics community [5].
These methods usually take gene expression datasets as inputs, e.g., microarrays or RNA-Seq data,
for the inference of gene–gene relationships. To a greater extent, the vast amount of genetic information
generated in the last decade has allowed the inference of relationships among DNAs, RNAs, proteins
and other cellular components [6,7].
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In this context, it is possible to classify GNs according to the inference approach used, including
Bayesian, information theory, Boolean, or differential equations models, among others [8]. Consistently
with this classification, co-expression networks, which are based on information theory, appear
as a remarkably relevant approach due to their computational simplicity and low computational
demands [9]. These networks infer relationships between genes that show similar patterns of
expression. This is achieved by measuring the degree of relationship between each pair of genes,
so the relationship is only approved when this degree exceeds a certain threshold. This threshold
value indicates the minimum level of similarity between two expression patterns for the relationship
to be considered significant. Therefore, the higher this threshold is, the sparser inferred GNs will
be [10]. According to the published literature, the main measures to evaluate the co-expression degree
between two genes are correlation measures such as Pearson, Spearman or Kendall coefficients [11,12].
Additionally, other measures have been widely used for the generation of GNs such as Mutual
information [13].

Nevertheless, co-expression networks usually present two main drawbacks: (a) the above-mentioned
measures present some limitations [14], for example, their inability to detect non-linear dependencies
or their dependence on the distribution of the data, as in the case of Spearman and Pearson coefficients,
respectively [15]; and (b) inferred networks are often too densely-connected to perform comprehensive
analyses, being actual GNs known to be sparse [16].

As far as the topology of the networks inferred is concerned, GNs should generally meet
a series of requirements. First, GNs should follow a scale-free topology, as they have been
proven to be sparse [17,18]. Thus far, scale-free GNs reconstruction entails a major challenge as
algorithms themselves show limitations in distinguishing truly-significant interactions, thus providing
densely-connected networks. Second, it is to be highlighted that biological networks contain hubs,
which are genes influenced by a significant number of relationships. Hubs are then key elements in the
control and regulation of the genes comprised in the network, and have proven their importance in
the modeling and analysis of genetic interactions [19–21]. It follows that inferred GNs should contain
hubs. As consequence of these two requirements, GNs topology optimization arises as a major issue to
be faced.

In this work, we propose a novel approach for the reconstruction of large gene co-expression
networks. In particular, we propose a two steps strategy to induce gene networks. In a first phase,
an ensemble approach is used in order to generate co-expression networks. The so-obtained network is
then optimized in a second stage, where a greedy strategy optimizes both the size and the topological
features of the network.

Not only is this method able to overcome the limitations of using a single measure to assess
gene co-expression thanks to an ensemble strategy, it also carries out a greedy heuristic topological
optimization of the inferred GNs. Therefore, we can summarize our contributions as follows:

• The method is able to overcome the limitations of a single information theory measure thanks to
an ensemble strategy.

• The method is also able to perform a topology optimization.
• The experiments carried out show that our approach achieved good results against other state of

the art methods.
• The usefulness of the proposed method becomes evident in an application to a study of a post

traumatic stress disorder on human dataset.
• The method’s results show its potential in the field of biomarkers discovery and characterization.

1.1. Related Work

Co-expression analysis assumes that genes whose mRNAs show similar level of variation upon
perturbations are involved in the same, or closely related, biological processes. Approaches based
on such assumption haven been considered as promising for the discovery of genes implicated in
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biological processes of interest [22]. Particularly, co-expression networks have provided valuable
insights on diseases’ underlying molecular mechanisms, as in the case of cancer [23].

In Reference [24], weighted gene co-expression networks were analyzed to investigate the
role of gene regulation in lung cancer. Using Pearson correlation coefficients for gene pairs,
the authors detected a lung cancer-specific module of co-expressed genes with clear functional
interpretations. Pearson’s measure, and the Weighted Gene Co-expression Network Analysis
(WGCNA) methodology [25], were also used by Ivliev et al. [26] to identify gene co-expression
modules covering a range of known tumour features. The WGCNA methodology implies not only
taking into account the correlation between a gene pair, but also whether these genes are correlated
with similar sets of genes across the entire transcriptome. Other works use different co-expression
measures. For example, Yuejie et al. [27] assumed that two genes that use the same dictionary to
represent their original expression values must share similar co-expression patterns. In this case,
the authors used a sparse coding and dictionary learning algorithms.

Despite the good results achieved in previous approaches, the measures used present some
limitations, as mentioned in the previous section. Thus, recent works have been focused on the
possibility of combining different inference methods and co-expression measures. For example,
in [28], an Ensemble-based Network Aggregation method (ENA) is proposed to integrate gene
networks derived from different methods and datasets, in order to improve the accuracy of network
inference. Other works try to combine different pre-processing methods (see, e.g., [29]). In this work,
the network inference problem between g genes is decomposed as g separate regression problems.
Thus, an ensemble of several feature selection algorithms are used to find those genes most suitable
in modeling the expression values of every target gene. Besides looking for the best co-expression
measure, other studies try to use different inference methods. In [30], three normalization methods
and 10 inference methods, including six correlation and four mutual information methods, were
tested. Liue et al. [31] presented a novel inference algorithm, namely Local Bayesian Network (LBN).
This algorithm applies an iterative methodology, in which, firstly, conditional mutual information
is used to generate an initial network. Then, it uses a k-nearest neighbor approach to decompose
the network into smaller sub-networks. Finally, the algorithm identifies and removes redundant
relationships between genes using a Bayesian method. These new sub-network are integrated into
a new gene network and the process restarts until the topological structure of the network remains
unchanged.

In addition, the optimization of gene co-expression networks represents a challenge due to
the size and complexity of the data from which the networks are obtained. Hence, the goal is to
reduce both size and complexity of the final network while maintaining biological relevance. Network
structure optimization is a NP-hard problem, so some works use heuristic algorithms to explore the
possible combinations of all interactions in order to simplify the network structure [32]. However,
these approaches usually present computational limitations due to the high dimensionality of the
networks [33]. Other works use evolutionary techniques to reduce the large search spaces. For example,
in [34], a genetic algorithm is used to reconstruct gene networks from time-series expression profiles
based on fuzzy cognitive maps. Some research works based their optimization efforts on objective
functions and scores (see, e.g., [35]). In this work, an undirected confidence-weighted likelihood
matrix is created using pairwise confidence scores from functional association databases. Using
this matrix, GNs are inferred with a high accuracy level. Other researchers, e.g., Lopes et al. [36],
use a scale-free topology information to prune search space during inference problem. Finally, in
the research presented by Yang et al. [37], a bayesian-based inference process is used to evaluate the
relative importance of nodes.

2. Materials and Methods

In this section, we present the different methods and datasets used in this paper. In particular,
Section 2.1 describes the proposed method for large GNs reconstruction, while, in Section 2.2,
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we describe the datasets used in the experiments. Finally, Section 2.3 introduces the measures used to
assess the performance of the method.

2.1. EnGNet: Gene Network Reconstruction Based on Ensemble Strategy and Greedy Optimization

In this section, we introduce the proposed method for large co-expression networks generation,
which we name Ensemble and Greedy networks (EnGNet). A EnGNet JAVA-based implementation is
available at: https://github.com/fgomezvela/EnGNet (accessed on 15 November 2019). As previously
introduced, EnGNet comprises two main steps, described in Figure 1: (a) an ensemble-based
method to infer gene–gene co-expression relationships; and (b) a greedy strategy for the topological
optimization of the network. As a result, the final network exhibits not only reliable interactions but
also lower topological complexity and sparseness than other techniques that adopt single co-expression
measurements. As stated in Section 1, the spareness in a GN is a desirable feature, involving a significant
improvement over other methodologies.

Gene 1

Gene 2

Gene 3

Gene 4

...

Gene N

Gene Expression data
collection and preprocessing

Testing for all possible
gene pairs

Gene 1 – Gene 2
Gene 1 – Gene 3

...
Gene 1 – Gene N
Gene 2 – Gene 3
Gene 2 – Gene 4

...
Gene 2 – Gene N

...
Gene N – Gene N

Co-expression
measures

Ensemble network
generation

Final network

Greedy-based
optimisation

algorithm

Spearman

Kendall

NMI

Kendall

a b

Figure 1. Global workflow of EnGNet for GNs reconstruction. As shown, the method is based on two
different steps: (a) an ensemble strategy for network inference; and (b) a greedy-based approach for
the final optimization (maximum spanning tree algorithm).

2.1.1. Ensemble Strategy for Network Generation

In the first phase, EnGNet induces a single co-expression network, using three different evaluation
measures. In this case, three widely-used co-expression measures were selected for assessing the
significance of gene–gene interactions. In particular, we used the Spearman, Kendall coefficients
and Normalized Mutual Information (NMI) measures. Our choice is motivated by the following
observations. The Spearman coefficient is able to detect linear dependencies between two genes
unaffected by data distribution. Kendall’s measure is also able to detect linear dependencies but has
advantages over Spearman’s in approaching distribution normality more rapidly [15]. Finally, the NMI
is able to detect linear and also non-linear dependencies between genes [38].

The three measures used provide a value vi, 0 ≤ vi ≤ 1, where 0 represents no dependency and 1
a total dependency between the genes.

The reconstruction process is based on the evaluation of all possible gene pairs. As shown in
Figure 2, the three measures are used for evaluating every gene pair relationship. For each measure,
a significance threshold (Thi, 1 ≤ i ≤ 3) is used in order to determine whether or not the relationship
is considered valid by a specific measure.

https://github.com/fgomezvela/EnGNet
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Kendall
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Figure 2. Schematic representation of the Ensemble step of EnGNet. Three well-known measures
for the generation of co-expression networks are combined, here by Spearman, Kendall and NMI, by
means of an ensemble strategy.

The final significance assessment is carried out through a voting system. Thus, a relationship is
confirmed if it is considered significant by at least two measures (see Table 1).

Table 1. Example representation of the major voting strategy to evaluate gene pairs.

Gene Pair Spearman Kendall NMI Final

g1, g2 Correct Correct Correct Correct
g2, g3 Incorrect Correct Correct Correct
g4, g5 Incorrect Correct Incorrect Incorrect
g5, g2 Correct Incorrect Incorrect Incorrect

Hence, a relationship is added to the final network if it is considered correct, and its final weight,
denoted as wen, is set to the average value vi of the three measures. Doing so, we subsume the
information of the three measures in a single value. The so-created network represent the input to the
second step of the proposed strategy.

2.1.2. Topological Optimization Based on Greedy MST Algorithm

In this step, the topological features of the network obtained in the first step described in previous
section are optimized by means of two phases: pruning and adding relevant edges (see Figure 3).
In the first phase, the ensemble network is pruned using a greedy-based heuristic algorithm, which
takes into account the most relevant interactions, i.e., those showing the highest co-expression weight
according to ensemble step. In particular, we used the modification of the Kruskal’s minimum
spanning tree (MST) algorithm presented in [7] to obtain the longest path between each pair of genes.
This modification consists of selecting the most significant edges, instead the less relevant ones, until
all nodes are connected with no cycles. Thanks to this, the method obtains the most significant path
between each pair of nodes that comprising the network [39].
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Figure 3. Graphical description of the second step of EnGNet. First the previously-obtained ensemble
network is pruned by a MST (minimum spanning tree)greedy algorithm. In a second phase, the most
relevant edges, which were initially pruned, are evaluated with a threshold (Thβ), and added to the
final network again.

As a result, the method computes a pruned network (see “Pruned network” in Figure 3), which
contains the same number of nodes as the original network, albeit keeping only most relevant
relationships. This reduction in edges significantly improves the sparseness of the network.

However, not all removed relationships are necessarily irrelevant to the network. For this reason,
in the second phase, a topological analysis of the pruned network is performed in order to identify
network’s hubs. As stated in Section 1, hubs play a crucial role in how the information is distributed
through the network and usually these are key regulators of the genes involved. For this reason,
hubs are selected as those nodes whose connection degree exceeds the average network connectivity
(see “Pruned network” in Figure 3 where the hub is highlighted as the node showing the greatest
number of relationships).

Once the hubs have been identified upon the pruning process, they are independently processed.
For each hub, its linking edges that were removed in the ensemble network are again evaluated
using a threshold Thβ. This threshold is a user set parameter, which is employed to determine the
biological relevance level of the removed edges. Each individual edge will be added to the network if
its weight wen (calculated in the ensemble step) exceeds Thβ. Note edges are not recalculated as they
are preserved from the first step (Section 2.1.1).

Note that, after pruning, those nodes exceeding the average node’s degree are selected as potential
hubs. In addition, the pruning step drastically reduces the average node degree. After the second step,
where edges are added using the threshold Thβ, hubs are enriched in edges so these greatly exceed
the average network connectivity. The final network generated by EnGNet is obtained after this step
(see Figure 3).
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A complete pseudo-code of EnGNet is described in Algorithm 1 and 2.

Algorithm 1: A general pseudocode of EnGNet. The method is divided into two different
steps: (a) the ensemble network generation; and (b) a structure optimization by means of MTS
algorithm. The pseudocode of the function ensembleEdge is given in Algorithm 2

input : Input Dataset, D
gi ∈ D (gi :Gene i)

input : Relevant measures Thresholds:Th1, Th2,Th3

input : Relevance level Threshold: Thβ

output : Final network, Gβ :=< V, Eε >
, where Eε ∈ E

/*Step 1: Ensemble generation of the network */

Let G ← EmptyGraph

for gi ∈ D do
for gj∈ D ∧ gi 6= gj do

if ensembleEdge(gi , gj , Th1, Th2, Th3) then
ei ← newEdge(gi , gj);

G ← addEdge(ei);
end

end
end
/*Step 2: Topological optimization based on MST algorithm*/

Gβ ← MTSKruskal(G);

i← 0;
for vi ∈ V do

if isHub(vi) then
j← 0;
for ej ∈ E do

if contains(ej , vi) ∧ ej .wen ≥ Thβ then
Gβ ← addEdge(ei);

end
j← j + 1

end
end
i← i + 1

end
Return Gβ ;

Algorithm 2: A general pseudocode of ensembleEdge function.

input : gi , gj

input : Input data for gi and gj

input :Thresholds: Th1, Th2, Th3

input :Weight of ensembleEdge: wi

output :Weight of ensembleEdge: wi

output :Boolean value: true or f alse depending on whether the edge is labeled as correct or not.

v1 ← Spearman(gi , gj);

v2 ← Kendall(gi , gj);

v3 ← NMI(gi , gj);

wi ← average(v1, v2, v3);

vote← 0;

if v1 ≥ Th1 then
vote← vote + 1;

end
if v2 ≥ Th2 then

vote← vote + 1;
end
if v3 ≥ Th3 then

vote← vote + 1;
end
isCorrect← f alse;

if vote ≥ 2 then
isCorrect← true;

end
Return isCorrect;
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2.2. Datasets

In this section, the datasets used to test the usefulness of the proposed method are described.
To this aim, we selected three datasets related to two different organisms that present different features:
Saccharomyces cerevisiae and Homo sapiens. These organisms represent evolutionary-distant species,
showing increasing complexity.

Saccharomyces cerevisiae cell cycle dataset The dataset presented by Spellman et al. [40] was selected,
which has been widely used for gene networks inference. This dataset contains the information
about yeast cell cycle-related genes through a microarray analysis of the expression level of 5521
genes. RNA samples were collected from yeast cultures, which were synchronized by means of
three different methods: α factor arrest, elutriation, and cdc15 thermosensible mutant.

Homo sapiens SNP dataset The first selected human dataset, which was presented by Hodo et al. [41],
was used in a study of the associations between interleukin 28B SNPs and recurrence of
hepatocellular carcinoma (HCC) in patients with chronic hepatitis C (CHC). For the original
purpose, the effects of a certain IL-28B genotype were tested by comparison of microarray data
of 20 HCC patients vs. 91 CHC patients. The mentioned dataset stores expression levels of 54,616
human genes.

Homo sapiens Post-Traumatic Stress Disorder (PTSD) Finally, a dataset testing PTSD, presented in
the work by Breen et al. [42], was selected. This dataset was obtained to compare lymphocytic
gene expression levels between PTSD-diagnosed US marines and control cases. Samples were
collected from 94 marines (47 cases and 47 controls) both previously and subsequently to
battlefield deployment. Thus, the dataset is divided into pre-deployment samples (controls) and
post-deployment samples (cases). For the sake of simplicity, they are named “Pre” and “Post”
for the rest of the paper. The dataset, harboring 27974 genes, were normalized as they comprise
microarray (pre-deployment samples) and RNA-Seq (post-deployment samples) expression
data. Additionally, this dataset was comprehensively analyzed to test the biological utility of the
EnGNet tool in the experiment section.

2.3. Performance Evaluation of Gene Association Network

To assess the quality of our proposal, we present a comparison of the results obtained by EnGNet
with those obtained from different methods from the literature on the datasets described in the
previous section. To do so, we selected GeneMANIA [43] as the gold-standard to obtain different
quality measures of the evaluated networks.

GeneMANIA is a gene interactions web-repository, which stores information presented in the
form of web application for generating hypotheses about gene functions. It is possible to access online
and freely the information stored in GeneMANIA. The genetic relationships identified in this database
range from curated relationships that have been experimentally demonstrated to others that have been
predicted in silico. A gene–gene relation is maintained in the database if at least one piece of evidence
of such relationship exists in the literature. We selected GeneMANIA since it is a reliable source to
test the correctness of gene–gene interactions [7,44,45], and it has demonstrated its suitability for this
purpose in multiple previous works.

In this paper, the information stored for the two used organisms, i.e., S. cerevisiae and Human,
was selected. The final networks obtained from GeneMANIA database are composed by 6462 nodes
and 4,833,480 edges for yeast, and 19,551 nodes with 6,979,630 relationships for Human network.In
particular, we based the comparison on two well known measures, namely precision and recall [9,15],
which are defined as in the following equations:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)
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where

• True positives (TP) is the number of edges contained in both the network obtained by EnGNet
and in GeneMANIA.

• False positives (FP) is the number of edges that are contained in the network obtained by EnGNet
but not in GeneMANIA.

• False negatives (FN) is the number of edges appearing in GeneMANIA but not in the network
obtained by EnGNet.

2.4. Topological Features of Biological Networks

With the aim of evaluating the biological attributes of the networks that are presented
(from a topological point of view), various criteria can be used. In the following, we present the
most commonly used topological feature criteria of scale-free networks [6,46]:

Average Clustering Coefficient : Calculated as the number of edges linking nodes within its
neighborhood divided by the number of links that are possible among them. A low clustering
coefficient for a network is an indicator of the existence of biological relationships, as the lower
this parameter, the sparser the network. Sparseness is also considered a main feature of GRNs.

Characteristic Path Length (CPL): Indicates the average length of the shortest paths between each
pair of nodes comprising the network. A high path length indicates that the network is in a linear
chain, while a lower value means that it is more compact. Scale-free networks usually have
larger CPLs.

Diameter : Indicates the maximum distance between two nodes. As in the case of CPL, a high value
indicates that the network follows a biological pattern.

Graph Density: Defines the ratio between the number of edges of a network and the number of all
possible edges. Gene networks are generally sparsely connected so a low density is indicative of
a biologically-meaningful pattern.

Node Degree Distribution: Defined as the number of edges linking a node. The larger is the degree.
the more relevant is the node in a certain network. A distribution function P(k) defines the
spread of node degrees over a network. This function represents the probability of finding
a degree of k in a randomly-selected node. The degree distribution usually follows a power
law of the form P(k) ∼ k−γ, where γ is a constant (≥ 0). A high γ is indicative of a scale-free
topology [47].

3. Results and Discussion

In this section, we present the results of the experimentation carried out in order to assess the
reliability and usefulness of EnGNet. We first compared EnGNet with three standard information
theory approaches commonly used in the literature to infer large GNs (based on NMI, Spearman
and Kendall measures). Moreover, we compared our proposal with the ensemble strategy of these
methods (i.e., only the first step of EnGNet). The aim of these experiments was to test the performance
of EnGNet against other classical methods from the literature to infer large co-expression networks,
and also to test the relevance of the prune step in the final results obtained. Thus, we not only tested the
reliability of the inferred networks, but also the ability of EnGNet to reduce the size of final networks
and their topological features.

In the second experiment, we also tested the performance of EnGNet against different algorithms
from the literature for generating small gene networks. In particular, we present a study on 20 yeast
genes that encode the Cell Cycle G1 phase.

Finally, with the aim of proving the effectiveness of our proposal in a biomedical study, we applied
EnGNet to a human dataset regarding post traumatic stress disorder (PTSD).



Entropy 2019, 21, 1139 10 of 24

3.1. Comparative Analysis Of EnGNet For Large Gene Networks

In the experiments, we used five approaches to generate networks from each dataset. In particular,
we used EnGNet, the first phase of EnGNet, i.e., only the ensemble strategy without the pruning phase,
and three information theory based methods. These last three methods are based on the NMI, Kendall
and Spearman measures, in a similar way as the experiments presented in [7,15]. These approaches
have been widely used in the biomedical literature for studying with gene co-expression networks
(e.g., Xu et al. [48], Johnson et al. [49] and Liu et al. [50]).

For each information theory method used, we needed to set a validity threshold, and in the case of
EnGNet, we needed four thresholds (see Section 2.1). For this experiment, we selected three different
thresholds for all methods: 0.7, 0.8, 0.9. For a fair comparison, EnGNet and the ensemble approach
also used the same thresholds for Th1,2,3 and Thβ. These thresholds represent a complete full spectrum
from a mid correlation (0.7) to a very strong one (0.9). Thus, 60 networks were generated and analyzed
(5 methods × 3 thresholds × 4 datasets).

3.1.1. Networks Performance Against GeneMANIA

As mentioned above, we first tested the biological significance of the obtained networks in a direct
comparison with GeneMANIA database. The results obtained, in terms of nodes, edges, precision and
recall, are presented in Tables 2–5, respectively.

Table 2 shows how EnGNet achieved the second best results of the experiment (only behind
Kendall’s) in terms of average precision. However, it is important to notice that EnGNet is the method
that presents the most stable precision and size values for the different thresholds, obtaining the sparser
networks for all methods considered (almost half the average size compared to Kendall’s). This result
confirms the overall stability of EnGNet.

The experiment carried out on the Human SNP dataset shows that EnGNet obtains the best results
in terms of average precision (see last row of Table 4). We can also notice that the NMI approach infers
smaller networks than EnGNet. However, the precision is so low that these networks do not appear to
be biologically significant.

For the experiments with “Pre” and “Post” PTSD datasets (Tables 3 and 5, respectively), the results
present the same pattern: EnGNet obtains the best results in term of precision and size of the networks.

Table 2. The results obtained by different gene networks on the yeast dataset using different thresholds.
The precision and recall results were obtained using GeneMANIA database as gold standard. The last
row presents the average results in terms of precision and size of the network for the experiment.

Thr EnGNet NMI Kendall Spearman Ensemble

0.7

Nodes 3123 2684 2581 5371 3123
Rods 7129 26,633 14771 455,776 33,715

Precision 0.480 0.365 0.541 0.334 0.43
Recall 0.002 0.01 0.009 0.041 0.01

0.8

Nodes 1057 1070 544 4180 620
Rods 1296 4518 599 88,508 781

Precision 0.555 0.416 0.773 0.412 0.514
Recall 0.005 0.012 0.011 0.016 0.001

0.9

Nodes 258 1032 8 1375 258
Rods 176 4398 4 3471 245

Precision 0.657 0.409 1 0.639 0.651
Recall 0.012 0.013 0.04 0.008 0.015

Avg. Precision 0.56 0.39 0.77 0.46 0.53
Avg. Size 2808.51 10,383.8 5123.59 181,428.13 11,498.83
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Table 3. The results obtained by different gene networks on the Pre-deployment samples of the PTSD
dataset using different thresholds. The precision and recall results were obtained using GeneMANIA
database as gold standard. The last row presents the average results in terms of precision and size of
the network for the experiment.

Thr EnGNet NMI Kendall Spearman Ensemble

0.7

Nodes 1104 1026 941 5407 1098
Rods 1222 9299 10,055 605,409 10,274

Precision 0.407 0.112 0.294 0.138 0.294
Recall 0.009 0.023 0.068 0.08 0.053

0.8

Nodes 131 823 98 2716 131
Rods 110 8971 110 108,861 142

Precision 0.635 0.112 0.611 0.195 0.633
Recall 0.06 0.034 0.1 0.073 0.081

0.9

Nodes 5 775 0 624 5
Rods 3 8943 0 4177 4

Precision 1 0.112 0 0.301 1
Recall 0.333 0.037 0 0.059 0.444

Avg. Precision 0.67 0.11 0.30 0.21 0.64
Avg. Size 462.66 9071 3388.33 239,482.33 3473.33

Table 4. The results obtained by different gene networks on the Human SNP dataset using different
thresholds. The precision and recall results were obtained using GeneMANIA database as gold
standard. The last row presents the average results in terms of precision and size of the network for
the experiment.

Thr EnGNet NMI Kendall Spearman Ensemble

0.7

Nodes 1553 259 1595 20,668 1544
Rods 1963 202 5314 725,553 5049

Precision 0.653 0.380 0.675 0.200 0.684
Recall 0.020 0.023 0.043 0.022 0.044

0.8

Nodes 280 59 251 6853 241
Rods 467 39 403 50309 381

Precision 0.840 0.190 0.7607 0.398 0.771
Recall 0.074 0.032 0.101 0.020 0.1120

0.9

Nodes 30 37 32 813 30
Rods 16 26 25 2023 21

Precision 0.6 0.15 0.5 0.727 0.428
Recall 0.1875 0.0338 0.1818 0.0610 0.1875

Avg. Precision 0.69 0.24 0.64 0.44 0.62
Avg. Size 815.33 89 1914 259,295 1817

Finally, Figure 4 shows the average values of precision and size of the networks for all experiments
presented above. Considering the precision results presented in Figure 4a, we can observe that our
algorithm is the one that obtains the best values, followed by the Ensemble approximation and
Kendall’s. Regarding the size of the networks, it can be verified in Figure 4bthat EnGNet obtains the
smallest networks (approximately 271 times smaller than Spearman’s network or six times smaller
than Ensemble’s network, which is the second approximation in precision values) with the highest
precision values.
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Table 5. The results obtained by different gene networks on the Post-deployment samples of the PTSD
dataset using different thresholds. The precision and recall results were obtained using GeneMANIA
database as gold standard. The last row presents the average results in terms of precision and size of
the network for the experiment.

Thr EnGNet NMI Kendall Spearman Ensemble

0.7

Nodes 1723 1303 1508 5958 1715
Rods 2491 7381 37912 1718641 38641

Precision 0.318 0.125 0.253 0.104 0.252
Recall 0.006 0.012 0.091 0.147 0.075

0.8

Nodes 352 882 273 3516 351
Rods 347 6479 753 325270 855

Precision 0.456 0.119 0.522 0.155 0.503
Recall 0.02 0.02 0.079 0.109 0.057

0.9

Nodes 9 750 4 982 9
Rods 5 6375 2 14635 5

Precision 1 0.116 1 0.294 1
Recall 0.71 0.028 0.667 0.086 0.714

Avg. Precision 0.59 0.12 0.59 0.18 0.58
Avg. Size 947.66 6745 12889 686182 13167
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Figure 4. Visual comparison of the average results presented in the tables for all datasets. As it is
possible to see in the chart, EnGNet obtains smaller networks with the best results in the precision
experiments and the sparsest networks. As discussed above, these are desirable features for any method
that infer large gene networks: (a) average precision values; and (b) average size of the networks.
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In summary, we can conclude that EnGNet is successful in reducing the size of the networks
while keeping competitive results in terms of precision and recall (against other methods studied). In
fact, networks generated by EnGNet are significantly sparser than those obtained by other methods
(see Figure 4). As stated above, this is a significant result, since sparseness is a desirable feature in GNs
reconstruction from a large dataset. In fact, the smaller is the networks, the easier is their analysis [51].
Additionally, although networks are sparser in terms of the number of edges, precision and recall
values do not suffer a relevant loss. This observation is confirmed from the results presented, since
EnGNet obtains average precision values above 0.5 in all the cases studied (presented in the tables).

Finally, Figure 4 shows that EnGNet obtains the best average precision value, whilst the size of
the network is significantly reduced (especially against the Spearman’s approach). This result indicates
that EnGNet networks do not lose biological significance upon pruning. As a conclusion, we can affirm
that EnGNet is a competitive and reliable method for the generation of large gene networks.

3.1.2. Topological Features Analysis

In addition to network sparseness, the topological properties of gene networks should be
considered in order to estimate the performance of EnGNet upon network reconstruction [7,9,16].
As discussed in Section 1, biological networks tend to be sparse and to follow a scale-free topology.
Therefore, it is desirable for the reconstruction methods to provide networks that present such
topological features.

With the aim of performing a topological analysis of the generated networks, we extracted the
topological features presented in Section 2.4 for all networks discussed in Section 3.1. The results are
shown in Tables 6–9.

Table 6. Yeast feature.

Thr EnGNet NMI Kendall Spearman Ensemble

0.7

Clust. Coef 0.114 0.282 0.262 0.416 0.272
CPL 7.201 6.947 5.406 2.978 4.358

Diameter 29 28 22 10 20
Density 0.001 0.007 0.004 0.032 0.007
Gamma 1.413 0.958 1.529 0.915 1.286

0.8

Clust. Coef 0.283 0.524 0.162 0.342 0.163
CPL 4.567 2.011 5.56 4.083 6.984

Diameter 18 10 19 13 23
Density 0.004 0.008 0.004 0.01 0.004
Gamma 1.203 0.823 2.223 1.202 1.825

0.9

Clust. Coef 0.409 0.549 - 0.239 0.167
CPL 2.401 1.007 1 6.726 2.57

Diameter 6 2 1 24 7
Density 0.007 0.008 0.143 0.004 0.007
Gamma 0.934 0.66 - 1.782 1.981

Average

Clust. Coef 0.27 0.45 0.21 0.33 0.20
CPL 4.72 3.32 3.99 4.60 4.64

Diameter 17.67 13.33 14.00 15.67 16.67
Density 0.004 0.008 0.050 0.015 0.01
Gamma 1.18 0.81 1.88 1.30 1.70
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Table 7. HUMANSNP.

Thr EnGNet NMI Kendall Spearman Ensemble

0.7

Clust. Coef 0.055 0.119 0.235 0.219 0.239
CPL 9.469 1.719 6.605 3.685 6.687

Diameter 24 6 18 13 18
Density 0.001 0.006 0.003 0.03 0.003
Gamma 1.415 2.124 1.31 1.272 1.305

0.8

Clust. Coef 0.145 0.169 0.25 0.224 0.24
CPL 2.543 1.026 2.551 5.231 2.573

Diameter 8 2 8 23 7
Density 0.007 0.022 0.009 0.02 0.009
Gamma 1.01 1.98 1.447 1.374 1.486

0.9

Clust. Coef 0 0.27 0.073 0.238 0.1
CPL 1.111 1.037 1.174 4.429 1.056

Diameter 2 2 2 14 2
Density 0.037 0.039 0.038 0.004 0.039
Gamma 3.807 1.72 1.712 1.407 2.221

Average

Clust. Coef 0.07 0.19 0.19 0.23 0.19
CPL 4.37 1.26 3.44 4.45 3.44

Diameter 11.33 3.33 9.33 16.67 9.00
Density 0.015 0.022 0.017 0.018 0.02
Gamma 2.08 1.94 1.49 1.35 1.67

Table 8. Pre-deployment samples of the PTSD dataset.

Thr EnGNet NMI Kendall Spearman Ensemble

0.7

Clust. Coef 0.031 0.689 0.499 0.615 0.444
CPL 6.315 1.464 3.346 3.191 3.72

Diameter 28 11 16 14 18
Density 0.002 0.018 0.023 0.041 0.017
Gamma 1.589 0.252 1.043 0.748 1.081

0.8

Clust. Coef 0.13 0.797 0.171 0.581 0.195
CPL 2.859 1.001 2.721 3.485 2.785

Diameter 9 3 6 15 8
Density 0.012 0.027 0.023 0.03 0.017
Gamma 1.426 0.142 1.571 0.847 1.681

0.9

Clust. Coef 0 0.843 0 0.449 0.6
CPL 1.25 1 0 3.041 1

Diameter 2 1 0 10 1
Density 0.03 0.03 0 0.021 0.4
Gamma 2 0.107 0 1.125 0.585

Average

Clust. Coef 0.05 0.78 0.22 0.55 0.41
CPL 3.47 1.16 2.02 3.24 2.50

Diameter 13.00 5.00 7.33 13.00 9.00
Density 0.01 0.03 0.02 0.03 0.14
Gamma 1.67 0.17 0.87 0.91 1.12
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Table 9. Post-deployment samples of the PTSD dataset.

Thr EnGNet NMI Kendall Spearman Ensemble

0.7

Clust. Coef 0.069 0.572 0.556 0.694 0.51
CPL 5.207 7.142 3.17 2.592 3.309

Diameter 17 22 12 13 12
Density 0.002 0.009 0.033 0.097 0.026
Gamma 1.301 0.862 0.859 0.507 0.763

0.8

Clust. Coef 0.245 0.706 0.344 0.632 0.295
CPL 4.085 1.16 3.325 2.998 3.418

Diameter 13 10 8 20 8
Density 0.008 0.017 0.02 0.053 0.014
Gamma 1.206 0.321 1.266 0.707 1.399

0.9

Clust. Coef 0 0.813 - 0.515 0
CPL 1.167 1 1 3.523 1.167

Diameter 2 1 1 13 2
Density 0.139 0.023 0.333 0.03 0.139
Gamma 3 0.218 - 0.954 3

Average

Clust. Coef 0.10 0.70 0.45 0.61 0.27
CPL 3.49 3.10 2.50 3.04 2.63

Diameter 10.67 11.00 7.00 15.33 7.33
Density 0.05 0.02 0.13 0.06 0.06
Gamma 1.84 0.47 1.06 0.72 1.72

From these results, we can observe that EnGNet obtains the most stable results over the
experiments carried with respect to the majority of the topological features studied (see “Average”
rows in the tables). To clarify these results, we also calculated the average values for all datasets and
thresholds presented. These results are reported in Table 10. In the table, it is possible to observe that,
for all topological features studied, EnGNet is the algorithm achieving the best results, except for the
network diameter. For the network’s diameter, only the Spearman’s method obtains better results.
This is a logical result since Spearman’s method generates the biggest networks (271 times bigger than
EnGNet). It is remarkable, from a topological point of view, that our method reaches a diameter in
a similar range with a significantly smaller size than Spearman’s network.

Table 10. Average topological feature results for all methods in all datasets.

EnGNet NMI Kendall Spearman Ensemble

Clust. Coef 0.123 0.528 0.268 0.430 0.269
CPL 4.015 2.210 2.988 3.830 3.302

Diameter 13.167 8.167 9.417 15.167 10.500
Density 0.021 0.018 0.053 0.031 0.057
Gamma 1.692 0.847 1.325 1.070 1.551

In summary, EnGNet obtains the best results on all topological features, for all the networks,
indicating that EnGNet networks follow a biological pattern (scale-free topology). Furthermore,
EnGNet-generated networks improve the results obtained by information theory methods and
ensemble networks. Bearing this in mind and the results presented in the comparison with the network
contained in GeneMANIA, we can affirm that EnGNet is a suitable tool for large co-expression GNs
reconstruction in biomedical research.

3.2. Comparative Analysis Of EnGNet For Small Networks

The ability of our approach to infer small gene networks was also tested. To do so, we performed
a similar experiment to the one presented by Gallo et al. [52]. In this experiment, precision was used
as quality measure to rate the reliability of the input GNs. The main objective of the experiment
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is to compare the precision values of different gene networks algorithms from the literature on the
same dataset.

To obtain the input networks, we used different methods from the literature, which are described
in the works by:

• Soinov et al. [53], a C4.5-based method;
• Bulashevska et al. [54], a Bayesian-based method;
• Ponzoni et al. [55], a combinatorial optimization algorithm (GRNCOP);
• Gallo et al. [52], an upgraded version of the previous algorithm named GRNCOP2; and
• Gomez-Vela et al. [15], a fuzzy method to infer gene co-expression networks named FyNe.

These methods were applied to the same dataset from the Yeast Cell Cycle—more specifically,
to a subset of 20 well-described genes. These genes code for key proteins in cell-cycle regulation, as
presented by Martinez-Ballesteros et al. [56].

As in the experiment performed by Gallo et al. [52], the quality of the networks was assessed
regarding the precision values obtained against the data stored in YeastNet [57]. YeastNet is
a repository that comprises a probabilistic functional GN generated from verified protein-coding open
reading frames (ORFs) of the yeast genome. This repository combines protein–protein interactions,
protein–DNA interactions, co-expression, phylogenetic conservation and literature information, in total
covering more than 102,803 linkages among 5483 yeast proteins (95% of the validated proteome).

The results of the experiment are presented in Figure 5a,b, where it can be verified that EnGNet
yields the best results amongst all studied methods, and again with the smaller network. Note that the
inference of small gene networks usually provides higher precision results than in the case of large
ones, as detailed in Hecker et al. [16]. The results show that not only is EnGNet suitable for large gene
networks studies, but also obtains competitive results for studies with small datasets.
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Figure 5. (a) Results from different methods on the 20 genes from the yeast cell cycle dataset. The
results show that EnGNet is also a reliable method for inference of small co-expression networks with
a high precision. (b) Size in terms of number of relationships. Note that EnGNet is again the method
that obtain the smaller network.

3.3. Application to the Study of Human Post Traumatic Stress Disorder

The second objective of this study was to prove the usefulness of EnGNet in actual life sciences
research. To do so, EnGNet was applied to a human PTSD dataset obtained by Breen et al. [42], so as
to shed some light over the genes involved in this pathology.

In this case-control study, expression data were obtained from US marines peripheral blood
leukocytes both before and after deployment to conflict zones (that called “Pre” and “Post”). As stated
above, 94 marines (47 cases and 47 controls) were analyzed. According to the original article by
Breen et al. [42], controls refer to selected marines who did not show signs of PTSD. These are used
as a reference for cases, which are marines who show a broad spectrum of signs that classify them
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as under PTSD after battlefield deployment. PTSD was scored through a diagnostic interview and
annotated in the Clinician Administered PTSD Scale (CAPS) [58]. In the experimental design, cases
are analogous to controls prior to battlefield deployment, i.e., none are under PTSD symptomatology.
On the other hand, after battlefield deployment cases significantly differ from controls in terms of the
CAPS score (see the original article by Breen et al. [42] for further details).

Overall, PTSD signs may be observed in the second group when compared to the first one.
An exploratory multidimensional scaling (MDS) plot or Principal Coordinates Analysis (PCoA) was
performed in order to roughly examine these differences. MDS assisted the examination of sample
similarity. On this occasion, the classical MDS method was applied, assuming Euclidean distances.
An illustrative distribution of this dataset is shown in Figure 6, in which differences can be observed
between post- and pre-deployment marines. However, these differences are fuzzy and there is
a spectrum of sample states between pre- and post-deployment situations.
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Figure 6. Non-supervised exploratory MDS plot showing differences between the input samples.
RNA-seq (cases, squares in the figure) and microarray data (controls, triangles in the figure) were
normalized and joined in a single dataset. Thus, no significant differences were expected between them.
However, two groups for pre-deployment (red) and post-deployment (blue) are modestly differentiated,
although cases in between are also appreciated.

First, a differential gene expression analysis was carried out to verify the mentioned differences
using the DESeq2 [59] R package, a tool for the estimation of differentially-expressed genes (DEGs).
The information on gene up- or down-regulation was of especial interest in the analysis of the biological
processes underlying PTSD development. Hence, data provided by DESeq2 were latter imported into
Cytoscape for network interpretation purposes.

EnGNet was used to reconstruct two different networks corresponding to pre-deployment and
post-deployment samples, respectively. To this aim, the EnGNet Th1,2,3 thresholds were set to the values
that yield the best results in the experimentation presented in Section 2.3, namely Th1 = 0.7, Th2 = 0.8
and Th3 = 0.9. As far as the Thβ threshold is concerned, a new analysis was carried out to determine
the optimal threshold for each sample. The results of this study are presented in Table 11 and show the
values of the precision and recall measure obtained by different networks against GeneMANIA.
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Table 11. Analysis to determine the Thβ optimal value.

Thβ Values

0.7 0.8 0.9

Pre

Nodes 116 105 105
Rods 119 90 87

Precision 0.59 0.63 0.61
Recall 0.07 0.07 0.06

Post

Nodes 437 298 298
Rods 945 295 272

Precision 0.313 0.481 0.5
Recall 0.002 0.002 0.002

Therefore, considering the results presented in the table, candidate networks for this study
correspond to Thβ = 0.8 in the pre-deployment case and Thβ = 0.9 in the post-deployment situation.

Once the networks were generated, a significant increase in the number of genes was found in
the post-deployment network compared to its pre-deployment counterpart, which is indicative of
gene up-regulation in lymphocytes upon PTSD development. Pre- and post-deployment networks are
shown in Appendix A (see Figure A1). Remarkably, the reconstructed networks for pre-deployment
and post-deployment samples were significantly different, which is indicative for the discrimination
power of the GN reconstruction approach over other unsupervised techniques such as PCoA.

Pre- and post-deployment networks were merged in order to graphically observe the differences
in gene expression upon PTSD development. Overall, 73.8% of the nodes in this merged network
were found to be upregulated in the post-deployment situation compared to pre-deployment, which
suggest the importance of gene activation upon PTSD development. Genes up/down-regulation in
the merged network is shown in Appendix A (see Figure A2).

Enrichment analysis was performed by means of Cytoscape’s plugins ClueGO [60] and
CluePedia [61], which shows over-represented GO-terms in a ensemble of genes. ClueGO + CluePedia
analyses provided useful information about the biological processes in which the genes comprised at
the pre-deployment and post-deployment networks were involved.

Regarding the pre-deployment network (105 nodes), three different GO groups were identified,
corresponding to ribosomal biogenesis, neutrophil activation and establishment of protein localization
to endoplasmic reticulum (Figure 7a). Group p-values observed were of the order of 10−6.

In the case of the post-deployment network (298 nodes), 10 GO groups were identified, mostly
corresponding to leukocyte activation, amide transport and hematopoietic or lymphoid organ
development (Figure 7b). Observed group P-values were of the order of 10−25, thus representing
a dramatic increase in significancy compared to the pre-deployment GO groups. Further exploration of
the main GO group in the post-deployment revealed GO terms such as leukocyte activation involved in
immune response, myeloid cell activation involved in immune response, myeloid leukocyte activation,
and leukocyte degranulation. Main GO terms comprised in the main GO group of the post-deployment
network are shown in Figure 8.

Enrichment analyses thus revealed a dramatically different situation in the post-deployment
network compared to pre-deployment one, in terms of the biological processes these represent.
Whereas the pre-deployment network shows biological processes more related to an unexcited
steady-state immune system, the post-deployment network displays several GO groups and GO
terms which lie under the context of immunoenhancement. Reconstructed GNs thereby model two
different situations in terms of the biological context. This also suggests the potential use of GNs for
diagnostic purposes.
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Figure 7. Bar plots showing the different groups of analogous GO terms that were identified in:
(a) the pre-deployment network; and (b) the post-deployment network. The main GO term of each
identified group, i.e., the one with lowest term P-value, is presented as group label. Group P-value was
corrected with Bonferroni step-down. Note the lower is the P-value, the more the over-represented is
the GO term.
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Figure 8. Top GO terms in the main GO group of the post-deployment network. Term P-value was
corrected with Bonferroni step-down. Note the lower is the P-value, the more over-represented is the
GO term.

With regard to differential expression, a considerable gene up-regulation is observed, which
correlates to immunoenhancement upon PTSD development. In general, the above mentioned GO
terms are indicative of a nonspecific immune response, characteristic of innate immunity, suggesting
the potential role of myeloid leukocytes in PTSD. Quite significant is also the GO group “hematopoietic
or lymphoid organ development”, as the immune system is generated from multipotent hematopoietic
stem cells, which branch in myeloid and lymphoid progenitors. This myeloid cell line comprises cells
such as basophils, neutrophils, eosinophils and macrophages, which through immunosurveillance are
responsible for the so-called unspecific or innate immunity. This is consistent with the results found by
Breen et al. [42], who predicted the intrinsic role of innate immunity upon PTSD. These findings were
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also highlighted in a previous study by Watson et al. [62], who observed enhanced immunological
features in PTSD-diagnosed Vietnam combat veterans in comparison with civilians.

4. Conclusions

In this paper, we introduce EnGNet, an ensemble-based novel method for the inference of large
gene co-expression networks. First, EnGNet applies an ensemble approach for large co-expression
networks reconstruction. Second, a greedy strategy optimizes both the size and topological features of
the final network.

When compared with other standard approaches from the literature, EnGNet-inferred networks
were smaller in size than those of other approaches, regarding the number of edges. In addition
to achieving competitive results in terms of the presented biological information, EnGNet-inferred
networks showed better performance in respect of networks topological, and thus biological, features.
Among these features, sparseness and scale-free topology are to be highlighted as a major convenience
of EnGNet networks, in concordance with actual GRN. In addition, EnGNet was demonstrated to be
a competitive solution for studies on small datasets, by means of the experiments carried out. Moreover,
topological features of EnGNet networks enable friendlier interpretation and hypothesis-making by
life scientists.

Finally, the biological relevance of EnGNet was successfully tested in the application to human
PTSD dataset. EnGNet inferred gene association networks from the gene expression dataset, revealing
an innate immunity-mediated response in PTSD cases, which was accompanied by considerable gene
upregulation. In particular, myeloid cells activation was detected in PTSD cases when compared to
non-PTSD ones. Such PTSD-associated genes could then be considered as potential biomarkers, which
can be used as pathology indicators. Besides, the GN inference approach distinguished between two
different biological situations basing on gene expression, whereas analyses such as PCoA did not.
These results demonstrate the usefulness of EnGNet in the field of biomarkers discovery, a field that
has become one of the most relevant in personalized medicine.
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Appendix A. PTSD Application Reconstructed Networks

Pre- and post-deployment networks, respectively, comprising 105 and 298 nodes, are shown in
Figure A1. An increase is observed in the number of genes involved in post-deployment samples
compared to pre-deployment ones. Such increase may well be the result of the genetic regulation upon
PTSD that is addressed along Section 3.3. Gene FC is also represented in Figure A2, which revealed
an overall genetic upregulation.
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(a) (b)
Figure A1. Inferred networks corresponding to: (a) pre-deployment samples; and (b) post-deployment
samples. Log2 FC is represented by node color, so blue and red intensities are related to gene up- or
down-regulation, respectively. Node size is represented according to their rank. Edge transparency
is represented according to edge weight. Note both networks show a major connected module and
exhibit a scale-free topology.

The union of the reconstructed networks is shown in Figure A2. Among the 310 genes comprised
in this merged network, 229 showed an upregulation in the post-deployment situation compared to
the pre-deployment samples.

Figure A2. Union of pre- and post-deployment reconstructed networks. Nodes are sorted depending
on whether they are exclusively present at the pre-deployment network (far left), exclusively present at
the post-deployment network (far right) or present at both networks (center). Node size is represented
according to their degree. Edges transparency is represented according to their weight. Upregulated
and downregulated genes in post-deployment samples compared to pre-deployment samples are,
respectively, shown in shades of blue and red.
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