Selection of a model to evaluate hydroelectric sustainability through the AHP method

Authors

  • José Andrés Gómez Romero Comisión Federal de Electricidad (México) http://orcid.org/0000-0002-8337-124X
  • Rocío Soto Flores Instituto Politécnico Nacional (México)
  • Susana Garduño Román Instituto Politécnico Nacional (México)

DOI:

https://doi.org/10.46661/revmetodoscuanteconempresa.3835

Keywords:

analytical hierarchical process, sustainable hydropower, sustainability models, multi-criteria decision-making

Abstract

Sustainable development is the theme that has remained in the interest for more than three decades, as the result of which various solutions have been developed that seek to implement and control sustainability development in companies. The hydropower sector seeks to address its environmental and social problems through various models. The objective of this work is to select a sustainable development model to evaluate hydroelectric sustainability through a method of multicriteria decision making.

Through the method of Analytical Hierarchical Process (AHP), and a focus group it is possible to determine the weightings of the criteria, sub-criteria and alternatives of sustainable development models.

Once the AHP method was applied, the sustainable development models were hierarchized, it was found that the hydropower sustainability assessment protocol obtained the highest priority among the models, followed by the BS 8900 standard and the Dow Jones Sustainability Indexes (DJSI). In the sensitivity analysis, the selection of the hydropower sustainability assessment protocol model was validated, as it remained in the first place in three of the four proposed scenarios.

The results showed that the hydropower sustainability assessment protocol is the most appropriate sustainable development model to evaluate hydroelectric sustainability. This provides support to those who seek to justify their decision to select a sustainable development model, using multicriteria methods.

Downloads

Download data is not yet available.

References

AccounAbility (2008). AA1000APS: Norma de Principio de Sostenibilidad. London: AccounAbility.

Afgan, N., & Carvalho, M. (2002). Multi-criteria assessment of new and renewable energy power plants. Energy, 27(8), 739-755 . DOI: 10.1016/S0360-5442(02)00019-1.

Ali, Y., Butt, M., Sabir, M., Mumtaz, U., & Salman, A. (2018). Selection of suitable site in Pakistan for wind power plant installation using analytic hierarchy process (AHP). Journal of Control and Decision, 5(2), 117-128. DOI: 10.1080/23307706.2017.1346490.

Al Garni, H., & Awasthi, A. (2017). Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy, 206, 1225-1240. DOI: 10.1016/j.apenergy.2017.10.024.

Arancibia, S., Contreras, E., Mella, S., Torres, P., & Villablanca, I. (2003). Evaluación Multicriterio: aplicación para la formulación de proyectos de infraestructura deportiva. Memoria de Ingeniero Civil Industrial. Universidad de Chile, Santiago.

Arnaiz, M., Cochrane, T., Dudley, N., & Chang, T. (2018). Facilitating universal energy access for developing countries with micro-hydropower: Insights from Nepal, Bolivia, Cambodia and the Philippines. Energy Research & Social Science, 46, 356-367. DOI: 10.1016/j.erss.2018.07.016.

Ávila, R. (2000). El AHP, proceso analítico jerárquico y su aplicación para determinar los usos de las tierras: El caso de Brasil. Informe técnico. Proyecto Regional Información sobre Tierras y Aguas para un Desarrollo Agrícola Sostenible (Proyecto Gcp/Rla/126/Jpn). Santiago, Chile.

Azizkhani, M., Vakili, A., Noorollahi, Y., & Naseri, F. (2017). Potential survey of photovoltaic power plants using Analytical Hierarchy Process (AHP) method in Iran. Renewable and Sustainable Energy Reviews, 75, 1198-1206. DOI: 10.1016/j.rser.2016.11.103BSI (2013).

BS 8900-1:2013 (2013). Managing sustainable development of organizations. Guide. London: The British Standards Institution.

Banco Mundial (2012). Safeguard Policies. Recuperado de http://go.worldbank.org/WTA1ODE7T0.

Bhandari, R., Saptalena, L.G., & Kusch, W. (2018). Sustainability assessment of a micro hydropower plant in Nepal. Energy, Sustainability and Society, 8(1), 1-15. DOI: 10.1186/s13705-018-0147-2.

BMV (2013). Guía de ayuda para las Empresas Emisoras que cotizan en la Bolsa Mexicana respecto de la información que deberá estar disponible de manera pública y ser susceptible de evaluación para el Índice IPC Sustentable. México: Bolsa Mexicana de Valores.

BSI (2013). BS 8900-1. Managing sustainable development of organizations. London: The British Standards Institution.

Caballero, R., & Romero, C. (2006). Teoría de la Decisión Multicriterio: Un Ejemplo de Revolución Científica Kuhniana. Boletín de Estadística e Investigación Operativa, 22 (4), 9-15.

Calabrese, A., Costa, R., Levialdi, N., & Menichini, T. (2016). A fuzzy analytic hierarchy process method to support materiality assessment in sustainability reporting. Journal of Cleaner Production, 121, 248-264. DOI: 10.1016/j.jclepro.2015.12.005.

Casañ, A. (2013). La desición multicriterio; aplicación en las selección de ofertas competitivas en edificación (Tesis de maestría), Universidad Politecnica de Valencia, Valencia.

Castillo, M., Álvarez, A., Alfaro, M., Sánchez, J., & Quezada, I. (2018). Factores clave en el desarrollo de la capacidad emprendedora de estudiantes universitarios. Revista de Métodos Cuantitativos para la Economía y la Empresa, (25), 111-129.

CMMAD (1987). Nuestro Futuro Común. Madrid: Alianza Editorial.

De Prada, J., Degioanni, A., Cisneros, J. Cantero, A., Gil, H., Tello, D., .Pereyra, C., & Giayetto, O. (2018). Planificación territorial: elección multicriterio interactiva del patrón de urbanización. Estudio de caso: Río Cuarto, Córdoba, Argentina. Revista de Métodos Cuantitativos para la Economía y la Empresa, (26), 25-51.

Escobar, M., & Moreno, J. (1994). Técnicas multicriterio discretas en la planificación de cuencas fluviales. Estudios de Economía Aplicada, (1), 7-30.

FTSE (s.f.). Índice FTSE4Good IBEX: Informe de Investigación y análisis. Madrid: Grupo FTSE.

Gil, A., & Barcellos, L. (2011). Los desafíos para la sostenibilidad empresarial en el siglo XXI. Revista Galega de Economía, 20 (2), 1-22.

Global Compact (2019). Global Compact. Who we are. Recuperado de https://www.unglobalcompact.org/what-is-gc

Gold, S., & Awasthi, A. (2015). Sustainable global supplier selection extended towards sustainability risks from (1+ n) th tier suppliers using fuzzy AHP based approach. IFAC-PapersOnLine, 48(3), 966-971. DOI: 10.1016/j.ifacol.2015.06.208.

Gómez, T., García, M., Guijarro, F., & Preuss, M. (2018). Methodology to assess the market value of companies according to their financial and social responsibility aspects: An AHP approach. Journal of the Operational Research Society, 69(10), 1599-1608. DOI: 10.1057/s41274-017-0222-7.

Gómez, J., Soto, R., & Garduño, S. (2019). Determinación de las Ponderaciones de los Criterios de Sustentabilidad Hidroeléctrica mediante la Combinación de los Métodos AHP y GP Extendida. Ingeniería, 24(2), 116-142. DOI: 10.14483/23448393.14469.

González, C., Garza, R., & Pérez, E. (2014). Enfoque híbrido simulación-proceso analítico jerárquico: caso de estudio del rediseño de un restaurante. Revista de Métodos Cuantitativos para la Economía y la Empresa, (17), 23-41.

Goyal, P., & Rahman, Z. (2014). Corporate sustainability performance assessment: an analytical hierarchy process approach. International Journal of Intercultural Information Management, 4 (1), 1–14. DOI: 10.1504/IJIIM.2014.065285.

Grande, I., & Abascal, E. (2014). Fundamentos y Técnicas de Investigación Comercial. Madrid: ESIC Editorial.

GRI (2019). Information. About GRI. Recuperado de https://www.globalreporting.org/information/about-gri/Pages/default.aspx

Grisales, E., & Murillo, J. (2014). El mercado de bonos de carbono y su aplicación para proyectos hidroeléctricos. Revista CINTEX, 18, 131-143.

Hart, S., & Milstein, M. (2003). Creating Sustainable Value. The Academy of Management Executive, 17(2), 56-67. DOI: 10.5465/AME.2003.10025194.

Heo, E., Kim, J., & Boo, K. (2010). Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP. Renewable and Sustainable Energy Reviews, 14(8), 2214-2220. DOI: 10.1016/j.rser.2010.01.020.

Hernández, R., Fernández, C. & Baptista, P. (2010). Metodología de la Investigación. México: McGraw-Hill.

IFC (2019). About IFC. Overview. Recuperado de https://www.ifc.org/wps/wcm/connect/corp_ext_content/ifc_external_corporate_site/about+ifc_new

IHA (2010). Protocolo de Evaluación de la Sostenibilidad de la Hidroelectricidad. London: Asociación Internacional de la Energía Hidroeléctrica.

Ishfaq, S., Ali, S., & Ali, Y. (2018). Selection of Optimum Renewable Energy Source for Energy Sector in Pakistan by Using MCDM Approach. Process Integration and Optimization for Sustainability, 2(1), 61-71. DOI: 10.1007/s41660-017-0032-z.

Kocaoglu, D., Daim, T., Iskin, I., & Alizadeh, Y. (2016). Technology Assessment: Criteria for Evaluating a Sustainable Energy Portfolio. In T. U. Daim (Ed.), Hierarchical Decision Modeling: Essays in Honor of Dundar F. Kocaoglu (pp. 3-34). Cham: Springer International Publishing.

Márquez, H. (1999). Métodos matemáticos de evaluación de factores de riesgo para el Patrimonio Arqueológico: una aplicación Gis del método de jerarquías analíticas de TL Saaty. Spal, 6, 21-37.

Maurtua, D. (2006). Criterios de Selección de Personal mediante el uso del proceso de análisis jerárquico. Aplicación en la selección de personal para la Empresa Exotic Foods SAC. (Licenciado en Investigación Operativa), Universidad Nacional Mayor de San Marcos, Lima, Perú.

Meixner, O. (2009). Fuzzy AHP group decision analysis and its application for the evaluation of energy sources. In Proceedings of the 10th International Symposium on the Analytic Hierarchy/Network Process, Pittsburgh, PA, USA.

Menichini, T., & Rosati, F. (2014). A fuzzy approach to improve CSR reporting: an application to the Global Reporting Initiative indicators. Procedia-Social and behavioral Sciences, 109, 355-359. DOI: 10.1016/j.sbspro.2013.12.471.

Mike, J. (2013). Reflections from EGOS 2012: culture, design and sustainability. South Asian Journal of Global Business Research, 2(1), 33-42. DOI: 10.1108/20454451311303275.

Moreno, J., & Vargas, L. (2018). Decisión Multicriterio Cognitiva y el Legado del Proceso Analítico Jerárquico. Estudios de Economía Aplicada, 36, 67-80.

MRC (s.f.). RSAT Overview: The Basin-wide Hydropower Sustainability Assessment Tool. Mekong River Commission. Recuperado de http://www.mrcmekong.org/about-mrc/programmes/initiative-on-sustainable-hydropower/rsat-overview-the-basin-wide-hydropower-sustainability-assessment-tool/

Olcese, A., Rodríguez, M., & Alfaro, J. (2008). Manual de la empresa responsable y sostenible: Conceptos y herramientas de la Responsabilidad Social Corporativa o de la Empresa. Madrid: McGraw-Hill.

Özçelik, F., & Öztürk, B. (2014). Evaluation of Banks’ Sustainability Performance in Turkey with Grey Relational Analysis. Muhasebe ve Finansman Dergisi, (63), 189-209.

Patel, J., & Rana, S. (2018). A Selection of the Best Location for a Small Hydro Power Project using the AHP-Weighted Sum and PROMETHEE Method. Pertanika Journal of Science and Technology, 26(4), 1591-1603.

Patole, M., Bandyopadhyay, S., Foo, D., & Tan, R. (2017). Energy sector planning using multiple-index pinch analysis. Clean Technologies and Environmental Policy, 19(7), 1967-1975. DOI: 10.1007/s10098-017-1365-6.

PNUMA (s.f.). Dams and development project. United Nations Environment Programmes: The World Commission on Dams.

Principios de Ecuador (2013). Una referencia del sector financiero para determinar, evaluar y gestionar los riesgos ambientales y sociales de los proyectos. Equar Principles.

Quintana, G. (2011). Antecedentes y Marco Conceptual del Desarrollo Sustentable. Villavicencio, M. (Ed.): Desarrollo Sustentable en el contexto actual (pp. 7-48). México.

Ren, J., Xu, D., Cao, H., Wei, S., Dong, L., & Goodsite, M. (2016). Sustainability decision support framework for industrial system prioritization. AIChE Journal, 62(1), 108-130. DOI: 10.1002/aic.15039.

RobecoSAM’s (2014). Corporate Sustainability Assessment Methodology. Zurinch: RobecoSAM’s AG.

Romanelli, J., Silva, L., Horta, A., & Picoli, R. (2018). Site Selection for Hydropower Development: A GIS-Based Framework to Improve Planning in Brazil. Journal of Environmental Engineering, 144(7), 1-10 . DOI: 10.1061/(ASCE)EE.1943-7870.0001381.

RSAT (2013). Draff The Manual Rapid Basin-wide Hydropower Sustainability Assessment Tool Version 4.

Saaty, T. (1980). Multicriteria decision Making:The Analytic Hierarchy Process. New York: McGraw Hill.

Saaty, T. (1997). Toma de Decisiones para Líderes: El proceso analítico jerárquico la toma de decisiones en un mundo complejo. Pittsburgh: RWS Publications.

Saaty, T. & Vargas, L. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. Springer.

San Cristóbal, J. (2012). Multi criteria analysis in the renewable energy industry. Springer, London: Springer Science & Business Media.

Sagbansua, L., & Balo, F. (2017). Decision making model development in increasing wind farm energy efficiency. Renewable Energy, 109, 354-362. DOI: 10.1016/j.renene.2017.03.045.

Schwab, R. (1995). Twenty years of policy recommendations for indigenous education: overview and research implications. Australian: Australian National University.

Strantzali, E., & Aravossis, K. (2016). Decision making in renewable energy investments: A review. Renewable and Sustainable Energy Reviews, 55, 885-898. DOI: 10.1016/j.rser.2015.11.021.

Supriyasilp, T., Pongput, K., & Boonyasirikul, T. (2009). Hydropower development priority using MCDM method. Energy Policy, 37(5), 1866-1875. DOI: 10.1016/j.enpol.2009.01.023.

Van Marrewijk, M. (2010). A Typology of Institutional Frameworks for Organizations. Technology and Investment, 1(02), 101-109. DOI: 10.4236/ti.2010.12012.

Wang, Z., Fung, R., Li, Y., & Pu, Y. (2016). A group multi-granularity linguistic-based methodology for prioritizing engineering characteristics under uncertainties. Computers & Industrial Engineering, 91, 178-187. DOI: 10.1016/j.cie.2015.11.012.

WCD (2000). Dams and Development: A New Framework for Decision-Making The Report of the World Commission on Dams. London: World Commission on Dams.

WEB-Hipre: Global decision support (Version 1.22) [software de computación] (2007). Helsinki University of Technology: Systems Analysis Laboratory.

Yue, H., Wei, Z., Junshan, G., Yihe, M., Junqi, D., Lingkai, Z., & Yanpeng, Z. (2018). Evaluation of the Three Gorges Dam project using multi-criteria analysis (MCA) based on a sustainable perspective. IOP Conference Series: Earth and Environmental Science, 121(5), 1-7. DOI:10.1088/1755-1315/121/5/052066.

Zdanyte, K., & Neverauskas, B. (2014). Ensuring of sustainable development for contemporary organizations development. Economics and management, 19(1), 120-128. DOI: 10.5755/j01.em.19.1.5737.

Published

2020-12-01

How to Cite

Gómez Romero, J. A., Soto Flores, R., & Garduño Román, S. (2020). Selection of a model to evaluate hydroelectric sustainability through the AHP method. Journal of Quantitative Methods for Economics and Business Administration, 30, 117–141. https://doi.org/10.46661/revmetodoscuanteconempresa.3835

Issue

Section

Articles