Reconstruction and Factorial Consistence: the Elbow Rule Applied to RMSEA, Parallel Analysis and other Confirmatory Techniques

Authors

DOI:

https://doi.org/10.46661/revmetodoscuanteconempresa.5464

Keywords:

multivariate analysis, exploratory factor analysis, maximum Likelyhood, comparison of factor structures, RMSEA scree plot

Abstract

The comparison of surveys presents recurring methodological problems, among which the following stand out particularly: i) the difficulties associated with the change of the questions, either due to the addition of new ones, changing in the mode that are asked, or the elimination of others; ii) the own difficulties selecting the variables to be compared; iii) the need for recoding between mismatched surveys, and iv) the different measurement scales of the variables. Thus, in order to carry on research in quantitative methods, procedures are required to allow for the factorial structure, to compare variables, and to recode the measurement and the scale, all of them in different periods. To evaluate the extent to which the factorial structure is maintained, this work proposes measures of goodness of fit, attached to the confirmatory factorial analysis, where we can find also an original interpretation of the parsimony principle with the RMSEA, FIT and BIC, through the well-known elbow rule in the scree plot. The methodological proposal is validated through two publications, from different years, of the Sociological Research Center (CIS, by its Spanish acronym) and focused on the phenomenon of fiscal fraud.

Downloads

Download data is not yet available.

References

Arsham, H., & Lovric, M. (2011). Bartlett,s Test. In International Encyclopedia of Statistical Science (Issue March, pp. 87-88). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_132

Bandalos, D. L., & Finney, S.J. (2014). The Reviewer,s Guide to Quantitative Methods in the Social Sciences. In G. R. Hancock & R. O. Mueller (Eds.), The Reviewer,s Guide to Quantitative Methods in the Social Sciences (pp. 93-114). Routledge. https://doi.org/10.4324/9780203861554

Bartlett, M.S. (1951). A further note on tests of significance in factor analysis. British Journal of Statistical Psychology, 4(1), 1-2. https://doi.org/10.1111/j.2044-8317.1951.tb00299.x

Bjelland, I., Dahl, A.A., Haug, T.T., & Neckelmann, D. (2002). The validity of the Hospital Anxiety and Depression Scale. Journal of Psychosomatic Research, 52(2), 69-77. https://doi.org/10.1016/S0022-3999(01)00296-3

Bollen, K.A. (1989). Structural Equations with Latent Variables. John Wiley & Sons.

Cerny, B.A., & Kaiser, H.F. (1977). A Study Of A Measure Of Sampling Adequacy For Factor-Analytic Correlation Matrices. Multivariate Behavioral Research, 12(1), 43-47. https://doi.org/10.1207/s15327906mbr1201_3

CIS (Centro de Invetigaciones Sociológicas) (2011a). 2910| Opinión Pública y Política Fiscal (XXVIII). Catálogo de Encuestas.

CIS (2011b). Ficha Técnica 2910| Opinión Pública y Política Fiscal (XXVIII). http://www.cis.es/cis/export/sites/default/-Archivos/Marginales/2900_2919/2910/Ft2910.pdf

CIS (2020). Cuestionario del Estudio: Opinión Pública y Política Fiscal XXXVI SEP 19. http://www.cis.es/cis/export/sites/default/-Archivos/Marginales/3240_3259/3259/cues3259.pdf

CIS (2019a). Estudio No 3259 Opinión Pública y Política Fiscal (XXXVI). http://www.cis.es/cis/opencm/ES/1_encuestas/estudios/ver.jsp?estudio=14464

CIS (2019b). Ficha Técnica Estudio CIS 3259 (pp. 1-2). CIS. http://www.cis.es/cis/export/sites/default/-Archivos/Marginales/3240_3259/3259/FT3259.pdf

Clark, D.A., & Bowles, R.P. (2018). Model Fit and Item Factor Analysis: Overfactoring, Underfactoring, and a Program to Guide Interpretation. Multivariate Behavioral Research, 53(4), 544-558. https://doi.org/10.1080/00273171.2018.1461058

Conway, J.M., & Huffcutt, A.I. (2003). A Review and Evaluation of Exploratory Factor Analysis Practices in Organizational Research. Organizational Research Methods, 6(2), 147-168. https://doi.org/10.1177/1094428103251541

Erdfelder, E., FAul, F., Buchner, A., & Lang, A.G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160. https://doi.org/10.3758/BRM.41.4.1149

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299. https://doi.org/10.1037/1082-989X.4.3.272

Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/BF03193146

Fernández, R., & Cao, R. (2020). Simulación Estadística. Universidad de la Coruña. https://rubenfcasal.github.io/simbook/Simulacion.pdf

Ferrando, P.J., & Anguiano-Carrasco, C. (2010). El análisis factorial como técnica de investigación en psicología. Papeles del Psicólogo, 31(1), 18-33.

Gao, S., Mokhtarian, P.L., & Johnston, R.A. (2008). Nonnormality of data in structural equation models. Transportation Research Record, 2082, 116-124. https://doi.org/10.3141/2082-14

Hofmann, R.J. (1978). Complexity and Simplicity as Objective Indices Descriptive ff Factor Solutions. Multivariate Behavioral Research, 13(2), 247-250. https://doi.org/10.1207/s15327906mbr1302_9

Hogarty, K.Y., Hines, C.V., Kromrey, J.D., Ferron, J.M., & Mumford, K.R. (2005). The Quality of Factor Solutions in Exploratory Factor Analysis: The Influence of Sample Size, Communality, and Overdetermination. Educational and Psychological Measurement, 65(2), 202-226. https://doi.org/10.1177/0013164404267287

Horn, J.L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179-185. https://doi.org/10.1007/BF02289447

Ibar, R. (2014). Nueva Metodología de recogida de información para su tratamiento a través del análisis multivariante y los modelos de ecuaciones estructurales. Aplicación en el ámbito universitario. CEU San Pablo.

IBM Corp. (2017). IBM SPSS Statistics for Windows, Version 25.0. IBM Corp.

Jefatura del Estado. (2003). Legislación Consolidada Ley 58/2003, de 17 de diciembre, General Tributaria. BOE, 302, 1-168.

Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. https://doi.org/10.1186/1471-2156-11-94

Jones, D.H. (1994). Book Review: Statistical Methods, 8th Edition George W. Snedecor and William G. Cochran Ames: Iowa State University Press, 1989. xix + 491 pp. Journal of Educational Statistics, 19(3), 304-307. https://doi.org/10.3102/10769986019003304

Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187-200. https://doi.org/10.1007/BF02289233

Kaiser, H.F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. https://doi.org/10.1007/BF02291575

Kassambara, A. (2019). ggcorrplot: Visualization of a Correlation Matrix using “ggplot2.”

Kaufman, J.D., & Dunlap, W.P. (2000). Determining the number of factors to retain: A Windows-based FORTRAN-IMSL program for parallel analysis. Behavior Research Methods, Instruments, and Computers, 32(3), 389-394. https://doi.org/10.3758/bf03200806

Lawley, R.D., & Maxwell, A.E. (1971). Factor analysis as a statistical method (2a Edición). Butterworths.

Likert, R. (1932). A technique for the measurement of attitudes [Thesis]. In R. S. Woodworth (Ed.), Archives of Psychology (Vol. 22, Issue 140). The Science Press.

Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: Una guía práctica, revisada y actualizada. Anales de Psicologia, 30(3), 1151-1169. https://doi.org/10.6018/analesps.30.3.199361

Lorenzo-Seva, U., Timmerman, M.E., & Kiers, H.A.L. (2011). The Hull Method for Selecting the Number of Common Factors. Multivariate Behavioral Research, 46(2), 340-364. https://doi.org/10.1080/00273171.2011.564527

Mandelbrot, B. (1961). Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (Ingram Olkin, Sudhist G. Ghurye, Wassily Hoeffding, William G. Madow, and Henry B. Mann, eds.). In SIAM Review (Vol. 3, Issue 1). https://doi.org/10.1137/1003016

Marais, I., & Andrich, D. (2007). RUMMss. Rasch Unidimensional Measurement Models Simulation Studies Software, Version 2.0 (2nd ed.). The University of Western Australia.

Martín-Pliego, F.J. (2011). Introducción a la Estadística Económica y Empresarial. Paraninfo.

Microsoft Corporation. (2020). Microsoft Excel.

Muthen, B., & Kaplan, D. (1992). A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of the model. British Journal of Mathematical and Statistical Psychology, 45(1), 19-30. https://doi.org/10.1111/j.2044-8317.1992.tb00975.x

O'Connor, B.P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer,s MAP test. Behavior Research Methods, Instruments, and Computers, 32(3), 396-402. https://doi.org/10.3758/bf03200807

O'Connor, B.P. (2020). EFA.dimensions: Exploratory Factor Analysis Functions for Assessing Dimensionality.

Peña, D. (2002). Análisis de Datos Multivariantes. McGraw-Hill.

Pettersson, E., & Turkheimer, E. (2010). Item selection, evaluation, and simple structure in personality data. Journal of Research in Personality, 44(4), 407-420. https://doi.org/10.1016/j.jrp.2010.03.002

Price, L.R. (2014). Investigating Perfect Model Fit in Higher-Order Confirmatory Factor Analysis through Exploratory / Confirmatory and Bayesian Approaches HCFA 1 Investigating Perfect Model Fit in Higher-Order Confirmatory Factor Analysis through Exploratory / Confirmatory. May.

R Core Team. (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

Rahmer, B.D.J., Garzón Saénz, H., & Solana, J. (2020). Análisis comparativo de indicadores de capacidad multivariante. El caso del clúster manufacturero cartagenero Comparative analysis of multivariate capacity indicators. The case of the Cartagena manufacturing cluster. Revista de Métodos Cuantitativos para la Economía y la Empresa, 29, 172-189.

Revelle, W. (2020). psych: Procedures for Psychological, Psychometric, and Personality Research.

Revelle, W., & Rocklin, T. (1979). Very Simple Structure: An Alternative Procedure For Estimating The Optimal Number Of Interpretable Factors. Multivariate Behavioral Research, 14(4), 403-414. https://doi.org/10.1207/s15327906mbr1404_2

Rstudio Team (2020). RStudio: Integrated Development for R. Rstudio,PBC. http://www.rstudio.com

Shapiro, S.S., & Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3-4), 591-611. https://doi.org/10.1093/biomet/52.3-4.591

Sharma, S. (1996). Applied Multivariate Techniques. John Wiley and Sons Inc.

Smith, E.P. (1997). Methods of multivariate analysis. In Journal of Statistical Planning and Inference (Vol. 59, Issue 1). https://doi.org/10.1016/S0378-3758(96)00098-5

Smith, R.M., Schumacker, R.E., & Bush, M.J. (1998). Using item mean squares to evaluate fit to the Rasch model. Journal of Outcome Measurement, 2(1), 66-78.

Spearman, C. (1927). The Abilities of Man their Nature and Measurement. Nature, 120(3014), 181-183. https://doi.org/10.1038/120181a0

Stegmann, M.B., Sjöstrand, K., & Larsen, R. (2006). Sparse modeling of landmark and texture variability using the orthomax criterion. Medical Imaging 2006: Image Processing, 6144, 61441G. https://doi.org/10.1117/12.651293

Steiger, J.H. and Lind, J. (1980). Statistically-based tests for the number of common factors. Paper Presented at the Annual Spring Meeting of the Psychometric Society.

Tennant, A., & Pallant, J. F. (2012). The Root Mean Square Error of Approximation (RMSEA) as a supplementary statistic to determine fit to the Rasch model with large sample sizes. Rasch Measurement Transactions, 25(4), 1348-1349. https://www.rasch.org/rmt/rmt254d.htm

Thurstone, L.L. (1947). Multiple-factor Analysis. The University of Chicago Press.

Velicer, W.F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41(3), 321-327. https://doi.org/10.1007/BF02293557

Welch, B.L. (1947). The Generalization of Student's, Problem when Several Different Population Variances are Involved. Biometrika, 34(1/2), 28. https://doi.org/10.2307/2332510

Welch, B.L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29(3-4), 350-362. https://doi.org/10.1093/biomet/29.3-4.350

West, S.G., Finch, J.F., & Curran, P.J. (1995). Structural Equation Models with Non Normal Variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural Equation Modeling: Concepts, Issues, and Applications (pp. 56-75). Sage Publications.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (New York). Springer-Verlag New York. https://ggplot2.tidyverse.org

Published

2022-06-02

How to Cite

Rabadán-Pérez, F., Berumen, S. A., Guiance-Lapido, J., & Hernández Mora, C. (2022). Reconstruction and Factorial Consistence: the Elbow Rule Applied to RMSEA, Parallel Analysis and other Confirmatory Techniques. Journal of Quantitative Methods for Economics and Business Administration, 33, 353–385. https://doi.org/10.46661/revmetodoscuanteconempresa.5464

Issue

Section

Articles