Segmentación de mercado basada en las preferencias: aplicación de las Escalas de Máximas Diferencias y las Clases Latentes como estrategia para predecir el comportamiento del mercado. Una aplicación al Marketing de bebidas no alcohólicas.
Palabras clave:
Best Worst Scaling, Segmentación, Clases Latentes, Análisis Clúster, Modelos de elecciónResumen
El estudio de las preferencias del consumidor y su proceso de decisión ha sido una de las áreas de estudio más activas en la última década. La elevada tasa de fracasos en los productos de consumo frecuente, así como el aumento de la heterogeneidad de la demanda, han hecho que tanto académicos como profesionales busquen modelos y técnicas que sean capaces de entender la complejidad de los mercados, y desvelar las intenciones de los consumidores. En este trabajo se propone la combinación de las escalas de máximas diferencias o “best-worst scaling” con el análisis de Clases Latentes. La primera de ellas permite extraer el valor o “utilidad” que tiene una determinada alternativa de compra para el consumidor, mientras que la segunda usa esa información para detectar grupos de consumidores de forma eficiente. Para ilustrar el procedimiento se ha aplicado a una muestra de 575 individuos en el mercado de las bebidas no alcohólicas, en el que se revela la utilidad y eficiencia de este tipo de modelos de análisis de segmentación.
Abstract
The study of consumer preferences and their decision process has been one of the most active areas of research in the last decade. The high failure rate of products of frequent consumption, as well as the increasing heterogeneity of demand, have led both academics and practitioners to search for models and techniques that are able to understand the complexity of markets and to unveil consumers' purchase intentions. This paper proposes the combination of “best-worst scaling” with latent class analysis. The former makes it possible to extract the value or "utility" that a given purchase alternative has for the consumer, while the latter uses this information to detect groups of consumers efficiently. To illustrate the procedure, it has been applied to a sample of 575 individuals in the soft drinks market, which reveals the usefulness and efficiency of this type of segmentation models.
Descargas
Citas
Akaike, H. (1987). Factor Analysis and AIC. Psychometrika--vol. 52, no. 3, 317-332 September
Allenby, G. M., Arora, N., and Ginter, J. L. (1995) "Incorporating Prior Knowledge into the
Analysis of Conjoint Studies," Journal of Marketing Research, 32 (May) 152-62.
Böckenholt, Ulf (2006). “Thurstonian-based analyses: past, present, and future utilities”,
Psychometrika—Vol. 71, No. 4, pgs 615–629. DOI: 10.1007/s11336-006-1598-5
Chrzan, K. y Patterson, M (2006) Testing for the Optimal Number of Attributes in MaxDiff
Questions, disponible en https://sawtoothsoftware.com/resources/technical-papers/testing-for-the-optimal-number-of-attributes-in-maxdiff-questions recuperado el 27-05-2021
Chrzan, K y Orme, B. (2019) “Applied MaxDiff: A Practitioner’s Guide to Best-Worst
Scaling”. Sawtooth Software Inc. 3210 N Canyon Rd Ste 202 Provo, UT 84604-6508 USA. ISBN 978-0-9993677-2-8 (full text, paper) ISBN 978-0-9993677-3-5 (full text, electronic) pag 5-8.
Chrzan, K y Orme, B. (2019) “Applied MaxDiff: A Practitioner’s Guide to Best-Worst
Scaling”. Sawtooth Software Inc. 3210 N Canyon Rd Ste 202 Provo, UT 84604-6508 USA. ISBN 978-0-9993677-2-8 (full text, paper) ISBN 978-0-9993677-3-5 (full text, electronic). pag 49 a 53
Cohen, S.H. Maximum diference scaling: Improved measures of importance and
preference for segmentation In Proceedings of the Sawtooth Software Conference Proceedings, Sequim, WA, USA, 15–17 April 2003.
Cohen, S. H., & Ramaswamy, V. (1998). Latent segmentation models. Marketing
Research, 10(2), 14-21. Retrieved from disponible en https://search.proquest.com/scholarly-journals/latent-segmentation-models/docview/202690069/se 2?accountid=43860, 15-22.
DeSarbo, W., Wedel, M., Vriens, M., Ramaswamy, V., Latent Class Metric Conjoint Analysis
Marketing Letters 3:3, (1992): 273-288
DeSarbo, W., Ramaswamy, V., and Cohen, S. (1995) “Market
Segmentation with choice-based conjoint analysis.” Marketing Letters, 6 (2), 137-47.
Elrod, Terry; Kumar, Krishna: “Bias in the First Choice Rule for Predicting
Share”. Proceedings of the Sawtooth Software Conference Vol 1 1989, pag 259-71
Finn, A y Louviere, J: Determining the Appropriate Response to Evidence of Public
Concern: The Case of Food Safety. Journal of Public & Policy & Marketing, Vol 11(1), 1992
Green, Paul E. Srinivasan, V.:” Conjoint Analysis in Marketing:
NewDevelopments with Implications for Research and Practice”, Journal of Marketing, October 1990.
Lockshin, L., Cohen, E., Using product and retail choice attributes for cross‐national
segmentation. European Journal of Marketing 2009
Louviere, J.J.;Woodworth, G. Design and Analysis of Simulated Consumer Choice or
Allocation Experiments: An Approach Based on Aggregate Data. J. Mark. Res. 1983, 20, 350–367
Louviere, J.J.;Woodworth, G. (1990), "Best-Worst Scaling: A Model for Largest Difference
Judgments," working paper, Faculty of Business,University of Alberta.
The Latent Class Technical Paper Version 4.8, Sawtooth Software, Inc, disponible en
https://sawtoothsoftware.com/resources/technical-papers/latent-class-technical-paper
Lighthouse Studio, disponible en https://sawtoothsoftware.com/lighthouse-studio
The MaxDiff System Technical Paper Version 9 Sawtooth Software, Inc. disponible en
https://sawtoothsoftware.com/resources/technical-papers/maxdiff-technical-paper
Mueller, S.,y Rungie, C. Is there more information in best-worst choice data?. Using the
attitude heterogeneity structure to identify consumer segments. International Journal of Wine Business Research Vol. 21 No. 1, 2009 pp. 24-40.
Naldi1, L and Cazzaniga S., Research Techniques Made Simple: Latent Class Analysis. Journal
of Investigative Dermatology (2020) 140, 1676e1680; https://doi.org/10.1016/j.jid.2020.05.079
Nielsen (2018) “Setting the record straight on innovation failure”. The Nielsen Company.
Orme, Bryan: “Getting Started with Conjoint Analysis, Strategies for Product Design and
Pricing Research”. 2014, pag 111
Orme, Bryan: “Getting Started with Conjoint Analysis, Strategies for Product Design and
Pricing Research”. 2014, pag 93-109
Orme, B. y Chrzan, K; Become an Expert in Conjoint Analysis. Choice Modeling for Pros.
Sawtooth Software, 2017, pag 207-212
Orme, B. y Chrzan, K; Become an Expert in Conjoint Analysis. Choice Modeling for Pros.
Sawtooth Software, 2017, pag 144-155
Marley, A. A. y Louviere, J. J. (2005). “Some Probabilistic Models of Best- Worst and
Best-Worst Choices”, Journal of Mathematical Psichology, 49, pgs. 464-480.
Sánchez Herrera, J; Talledo, H.: “Del Análisis Conjunto a las Escalas
de Máximas Diferencias: un Estudio Comparativo entre Maxdiff y Escalas Monádicas, desde la Validez Convergente y Discriminante”, 2007, disponible en http://www.aemarkcongresos.com/congreso2007/investigacion/IM04-P.pdf , recuperado el 25 de abril de 2020.
Shaosheng Jin, Rao Yuan, Yan Zhang, ay Xin Jin (2019) “Chinese Consumers’ Preferences
for Attributes of Fresh Milk: A Best–Worst Approach” International Journal of Environmental Research and Public Health
Schwarz, G. E. (1978): Estimating the dimension of a Model. Annals of Statistics. 6(2): 461-
Thurstone, L. L. (1928). “Attitudes can be Measured”, American Journal of Sociology, Vol. 33,
pgs. 529-554.
Vázquez Casielles, Rodolfo:” Investigación de las Preferencias del Consumidor Mediante
“Análisis Conjunto” Importancia para el Diseño de Nuevos Productos., ICE, págs. 149-163, Julio 1990
Vermunt, J.K., and Magidson, J. (2002). Latent class cluster analysis. In: J. A. Hagenaars and
A. L. McCutcheon (Eds.), Applied Latent Class Analysis, 89-106. Cambridge: Cambridge University Press.
Descargas
Publicado
Versiones
- 2022-01-05 (2)
- 2021-08-03 (1)
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 GECONTEC: Revista Internacional de Gestión del Conocimiento y la Tecnología

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.