Filipino Nurse Researchers' Knowledge, perception, and attitudes toward ChatGPT and Their Research Productivity
A Descriptive Correlation Study
DOI:
https://doi.org/10.46661/ijeri.10568Keywords:
ChatGPT, research productivity, nurse researchers, PhilippinesAbstract
Understanding how nurse researchers perceive and utilize this technology offers insights into its integration within the nursing education system in the Philippines and globally, The study described Filipino nurse researchers' knowledge, perception, and attitudes toward ChatGPT and research productivity. Using a descriptive correlational design, self-made, validated, and piloted questionnaires were sent to three hundred seventy Filipino nurse researchers, both novice (<5 years of research experience) and seasoned (> 10 years of experience). Descriptive statistics were used for profile characteristics, while an independent sample t-test was used to identify significant differences between the two groups of participants in KPA and research productivity. Pearson's product-moment correlation and a standard linear regression analysis examined the relationship between the independent (KPA) and dependent (research productivity) variables. The level of statistical significance was set at p < 0.05. The largest participant group comprised female Filipino nurse researchers aged 20-30 with Master's degrees in Nursing. They reported having less than 10 years of experience as instructors and having published 1-5 research articles. The KPA scores indicated a general understanding of ChatGPT’s capabilities, as a valuable tool for research and positive regard toward its use. The study findings further revealed that the t-test did not show a statistically significant difference in perception (t=1.28, p=0.20) and research productivity (t=1.28, p=0,20). But knowledge (t=4.73, p=0.00) and attitude (t=1.28,p=0.02) were found to be significant. Further analysis revealed an adjusted R-square of .145, indicating that the independent variables (knowledge, perception, and attitude) can explain approximately 14.5% of the variance in research productivity. A statistically significant positive correlation was found between attitudes toward ChatGPT and research productivity (β = 0.141, p = 0.012). This study comprised female instructors aged 20-30 with Master's degrees in Nursing and less than 10 years of experience. They reported having 1-5 publications, suggesting moderate research activity. While the findings revealed a general understanding of ChatGPT's potential for research, participants hesitated to integrate its use due to ethical concerns, which need further education on the responsible use of ChatGPT in research. Moreover, study findings suggest that Filipino nurse researchers who are more open to using ChatGPT tend to demonstrate greater research output.
Downloads
References
Abdaljaleel, M., Barakat, M., Alsanafi, M., Salim, N. A., Abazid, H., Malaeb, D., Mohammed, A. H., Hassan, B. A. R., Wayyes, A. M., Farhan, S. S., Khatib, S. E., Rahal, M., Sahban, A., Abdelaziz, D. H., Mansour, N. O., AlZayer, R., Khalil, R., Fekih-Romdhane, F., Hallit, R., Hallit, S., & Sallam, M. (2024). A multinational study on the factors influencing university students’ attitudes and usage of ChatGPT. Scientific Reports (Nature Publisher Group), 14(1), 1983. https://doi.org/10.1038/s41598-024-52549-8 DOI: https://doi.org/10.1038/s41598-024-52549-8
Abdelhafiz, A. S., Ali, A., Maaly, A. M., Ziady, H. H., Sultan, E. A., & Mahgoub, M. A. (2024). Knowledge, Perceptions and Attitude of Researchers Towards Using ChatGPT in Research. Journal of Medical Systems, 48(1), 26. https://doi.org/https://doi.org/10.1007/s10916-024-02044-4 DOI: https://doi.org/10.1007/s10916-024-02044-4
Albayati, H. (2024). Investigating undergraduate students' perceptions and awareness of using ChatGPT as a regular assistance tool: A user acceptance perspective study. Computers and Education: Artificial Intelligence, 6, 100203. https://doi.org/10.1016/j.caeai.2024.100203 DOI: https://doi.org/10.1016/j.caeai.2024.100203
Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. https://doi.org/10.61969/jai.1337500 DOI: https://doi.org/10.61969/jai.1337500
Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in healthcare (pp. 25-60). Elsevier. https://doi.org/10.1016/B978-0-12-818438-7.00002-2 DOI: https://doi.org/10.1016/B978-0-12-818438-7.00002-2
Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S., & Sun, L. (2023). A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt. Online information review, 37(5), 583-603. https://doi.org/10.48550/arXiv.2303.04226
Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education: Revista de Universidad y Sociedad del Conocimiento. International Journal of Educational Technology in Higher Education, 20(1), 43. https://doi.org/10.1186/s41239-023-00411-8 DOI: https://doi.org/10.1186/s41239-023-00411-8
Chukwuere, J. E. (2024). Today's academic research: The role of ChatGPT writing. Journal of Information Systems and Informatics, 6(1), 30-46. https://doi.org/10.51519/journalisi.v6i1.639 DOI: https://doi.org/10.51519/journalisi.v6i1.639
Committee on the Robert Wood Johnson Foundation Initiative on the Future of Nursing, at the IOM. (2011). The future of nursing: Leading change, advancing health. National Academies Press.
Dergaa, I., Chamari, K., Zmijewski, P., & Saad, H. B. (2023). From human writing to artificial intelligence generated text: examining the prospects and potential threats of ChatGPT in academic writing. Biology of sport, 40(2), 615-622. https://doi.org/10.5114/biolsport.2023.125623 DOI: https://doi.org/10.5114/biolsport.2023.125623
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., & Ahuja, M. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642 DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102642
Frieder, S., Pinchetti, L., Griffiths, R.-R., Salvatori, T., Lukasiewicz, T., Petersen, P., & Berner, J. (2024). Mathematical capabilities of chatgpt. Advances in Neural Information Processing Systems, 36. https://doi.org/10.48550/arXiv.2301.13867
Fuchs, K. (2023). Exploring the opportunities and challenges of NLP models in higher education: is Chat GPT a blessing or a curse? Frontiers in Education,8, https://doi.org/10.3389/feduc.2023.1166682 DOI: https://doi.org/10.3389/feduc.2023.1166682
Fuller, K. A., Morbitzer, K. A., Zeeman, J. M., Persky, A. M., Savage, A. C., & McLaughlin, J. E. (2024). Exploring the use of ChatGPT to analyze student course evaluation comments. BMC Medical Education, 24, 1-8. https://doi.org/10.1186/s12909-024-05316-2 DOI: https://doi.org/10.1186/s12909-024-05316-2
George, A. S., & George, A. H. (2023). A review of ChatGPT AI's impact on several business sectors. Partners Universal International Innovation Journal, 1(1), 9-23. https://doi.org/10.5281/zenodo.7644359
Guo, Y., Hao, Z., Zhao, S., Gong, J., & Yang, F. (2020). Artificial intelligence in health care: bibliometric analysis. Journal of medical Internet research, 22(7), e18228. https://doi.org/10.2196/18228 DOI: https://doi.org/10.2196/18228
Haleem, A., Javaid, M., & Singh, R. P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil transactions on benchmarks, standards and evaluations, 2(4), 100089. https://doi.org/10.1016/j.tbench.2023.100089 DOI: https://doi.org/10.1016/j.tbench.2023.100089
Hosseini, M., Gao, C. A., Liebovitz, D. M., Carvalho, A. M., Ahmad, F. S., Luo, Y., MacDonald, N., Holmes, K. L., & Kho, A. (2023). An exploratory survey about using ChatGPT in education, healthcare, and research. Plos One, 18(10). https://doi.org/https://doi.org/10.1371/journal.pone.0292216 DOI: https://doi.org/10.1371/journal.pone.0292216
Huh, S. (2023). Ethical consideration of the use of generative artificial intelligence, including ChatGPT in writing a nursing article. Child Health Nursing Research, 29(4), 249-251. https://doi.org/10.4094/chnr.2023.29.4.249 DOI: https://doi.org/10.4094/chnr.2023.29.4.249
Khlaif, Z. N., Mousa, A., Hattab, M. K., Itmazi, J., Hassan, A. A., Sanmugam, M., & Ayyoub, A. (2023). The potential and concerns of using AI in scientific research: ChatGPT performance evaluation. JMIR Medical Education, 9, e47049. https://doi.org/10.2196/47049 DOI: https://doi.org/10.2196/47049
Kocoń, J., Cichecki, I., Kaszyca, O., Kochanek, M., Szydło, D., Baran, J., Bielaniewicz, J., Gruza, M., Janz, A., & Kanclerz, K. (2023). ChatGPT: Jack of all trades, master of none. Information Fusion, 99, 101861. https://doi.org/10.1016/j.inffus.2023.101861 DOI: https://doi.org/10.1016/j.inffus.2023.101861
Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: how may AI and GPT impact academia and libraries? Library hi tech news, 40(3), 26-29. https://doi.org/10.1108/LHTN-01-2023-0009 DOI: https://doi.org/10.1108/LHTN-01-2023-0009
Nakavachara, V., Potipiti, T., & Chaiwat, T. (2024). Experimenting with Generative AI: Does ChatGPT Really Increase Everyone's Productivity? Artificial Intelligence in healthcare. https://doi.org/10.48550/arXiv.2403.01770 DOI: https://doi.org/10.2139/ssrn.4746770
Raman, R., Mandal, S., Das, P., Kaur, T., Sanjanasri, J., & Nedungadi, P. (2023). University students as early adopters of ChatGPT: Innovation Diffusion Study. https://doi.org/10.21203/rs.3.rs-2734142/v1 DOI: https://doi.org/10.21203/rs.3.rs-2734142/v1
Raosoft, I. (2004). Sample size calculator. In http://www.raosoft.com/samplesize.html
Renjith, G. P., Kyaw Soe Htoo, H., Donald Preethy, M., Samson, R. S., & Hj Ismail Abdul, R. (2024). ChatGPT for Academic Purposes: Survey Among Undergraduate Healthcare Students in Malaysia. Cureus, 16(1). https://doi.org/https://doi.org/10.7759/cureus.53032 DOI: https://doi.org/10.7759/cureus.53032
Rice, S., Crouse, S. R., Winter, S. R., & Rice, C. (2024). The advantages and limitations of using ChatGPT to enhance technological research. Technology in Society, 76, 102426. https://doi.org/10.1016/j.techsoc.2023.102426 DOI: https://doi.org/10.1016/j.techsoc.2023.102426
Sallam, M., Salim, N. A., Barakat, M., Al-Mahzoum, K., Al-Tammemi, A. a. B., Malaeb, D., Hallit, R., & Hallit, S. (2023). Assessing Health Students' Attitudes and Usage of ChatGPT in Jordan: Validation Study. JMIR Medical Education, 9, 1. https://doi.org/https://doi.org/10.2196/48254 DOI: https://doi.org/10.2196/48254
Stahl, B. C., & Eke, D. (2024). The ethics of ChatGPT–Exploring the ethical issues of an emerging technology. International Journal of Information Management, 74, 102700. https://doi.org/10.1016/j.ijinfomgt.2023.102700 DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102700
Thi Thuy An, N. (2023). The Perception by University Students of the Use of ChatGPT in Education. International Journal of Emerging Technologies in Learning (Online), 18(17), 4-19. https://doi.org/10.3991/ijet.v18i17.39019 DOI: https://doi.org/10.3991/ijet.v18i17.39019
van Dis, E. A., Bollen, J., Zuidema, W., Van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226. https://doi.org/10.1038/d41586-023-00288-7 DOI: https://doi.org/10.1038/d41586-023-00288-7
Whitford, E. (2022). A Computer Can Now Write Your College Essay, Maybe Better Than You Can. Forbes com.
Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., & Tang, Y. (2023). A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA Journal of Automatica Sinica, 10(5), 1122-1136. https://doi.org/10.1109/JAS.2023.123618 DOI: https://doi.org/10.1109/JAS.2023.123618
Yenduri, G., Ramalingam, M., Selvi, G. C., Supriya, Y., Srivastava, G., Maddikunta, P. K. R., Raj, G. D., Jhaveri, R. H., Prabadevi, B., & Wang, W. (2024). Gpt (generative pre-trained transformer)–a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3389497 DOI: https://doi.org/10.1109/ACCESS.2024.3389497
Zhang, M., & Li, J. (2021). A commentary of GPT-3 in MIT Technology Review 2021. Fundamental Research, 1(6), 831-833. https://doi.org/10.1016/j.fmre.2021.11.011 DOI: https://doi.org/10.1016/j.fmre.2021.11.011
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Cyruz P. Tuppal, Marina Magnolia G. Nnobla, Richard D. Loresco, Mara R. Cabradilla, Shanine Mae P. Tuppal, Leah Kalayaan A. Pellacouer, Mary Nellie T. Roa, Judith Mary Ann R. Chan, Iril I. Panes, Anna Libabel U. Ferreras

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.