Computational intelligence, educational robotics, and artificial intelligence in the educational field. A bibliometric study and thematic modelling

Authors

DOI:

https://doi.org/10.46661/ijeri.10369

Keywords:

research trends, LDA machine learning, ethical challenges, impact analysis, innovation in education

Abstract

This study addresses the convergence between technology and education, exploring the impact of paradigms such as "computational intelligence," "educational robotics," and "artificial intelligence" in educational research. The methodology was defined in three stages. In the first stage, the Web of Science database was chosen, and a search string was developed. The second stage involved the selection of studies through inclusion/exclusion criteria and the use of PRISMA. The third stage included the extraction and analysis of quantitative and qualitative data, using bibliometric software, content analysis, and tools such as R Studio, Bibliometrix, VOSViewer, and Python. An annual growth of 56.51% between 2019 and 2023, with 208 works, is revealed. "Sustainability" leads the journals with 39 articles, indicating concentration in highly productive journals. The analysis of keyword co-occurrence reveals frequents thematic areas, highlighting "artificial intelligence," "education," "technology," "machine learning," and "Big data." The lead institution is the Chinese University of Hong Kong, while China stands out with 61 papers at the country level. It emphasizes the importance of considering quality and quantity in scientific production and identifies five key topics in research summaries, suggesting areas of research focused on the integration of technology and educational innovation.

Downloads

Download data is not yet available.

References

Almalki, Y. E., Qayyum, A., Irfan, M., Haider, N., Glowacz, A., Alshehri, F. M., Alduraibi, S. K., Alshamrani, K., Alkhalik Basha, M. A., Alduraibi, A., Saeed, M. K., & Rahman, S. (2021). A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images. Healthcare, 9(5), 522. https://doi.org/10.3390/healthcare9050522

Arís, N., & Orcos, L. (2019). Educational Robotics in the Stage of Secondary Education: Empirical Study on Motivation and STEM Skills. Education Sciences, 9(2), 73. https://doi.org/10.3390/educsci9020073

Bañeres, D., Rodríguez, M. E., Guerrero-Roldán, A. E., & Karadeniz, A. (2020). An Early Warning System to Detect At-Risk Students in Online Higher Education. Applied Sciences, 10(13), 4427. https://doi.org/10.3390/app10134427

Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1(1), 363- 376. https://doi.org/10.1162/qss_a_00018

Chai, C. S., Chiu, T. K. F., Wang, X., Jiang, F., & Lin, X.-F. (2022). Modeling Chinese Secondary School Students’ Behavioral Intentions to Learn Artificial Intelligence with the Theory of Planned Behavior and Self-Determination Theory. Sustainability, 15(1), 605. https://doi.org/10.3390/su15010605

Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering computational thinking through educational robotics: A model for creative computational problem solving. International Journal of STEM Education, 7(1), 39. https://doi.org/10.1186/s40594-020- 00238-z

Chu, C. H., Nyrup, R., Leslie, K., Shi, J., Bianchi, A., Lyn, A., McNicholl, M., Khan, S., Rahimi, S., & Grenier, A. (2022). Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults. The Gerontologist, 62(7), 947-955. https://doi.org/10.1093/geront/gnab167

Cooper, G. (2023). Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial Intelligence. Journal of Science Education and Technology, 32(3), 444-452. https://doi.org/10.1007/s10956-023-10039-y

Demertzis, K., Demertzis, S., & Iliadis, L. (2023). A Selective Survey Review of Computational Intelligence Applications in the Primary Subdomains of Civil Engineering Specializations. Applied Sciences, 13(6), 3380. https://doi.org/10.3390/app13063380

Derviş, H. (2020). Bibliometric Analysis using Bibliometrix an R Package. Journal of Scientometric Research, 8(3), 156-160. https://doi.org/10.5530/jscires.8.3.32

Di Lieto, M. C., Castro, E., Pecini, C., Inguaggiato, E., Cecchi, F., Dario, P., Cioni, G., & Sgandurra, G. (2020). Improving Executive Functions at School in Children with Special Needs by Educational Robotics. Frontiers in Psychology, 10, 2813. https://doi.org/10.3389/fpsyg.2019.02813

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002

García-Valcárcel-Muñoz-Repiso, A., & Caballero-González, Y.-A. (2019). Robotics to develop computational thinking in early Childhood Education. Comunicar, 27(59), 63- 72. https://doi.org/10.3916/C59-2019-06

Garrido Merchán, E., & Lumbreras, S. (2023). Can Computational Intelligence Model Phenomenal Consciousness? Philosophies, 8(4), 70. https://doi.org/10.3390/philosophies8040070

Gastaldo, P., Pinna, L., Seminara, L., Valle, M., & Zunino, R. (2014). Computational Intelligence Techniques for Tactile Sensing Systems. Sensors, 14(6), 10952-10976. https://doi.org/10.3390/s140610952

Gupta, P., Maji, S., & Mehra, R. (2022). Stress and Machine Learning: Future with Possibilities- A Bibliometric Approach. Journal of Scientometric Research, 11(1), 37-46. https://doi.org/10.5530/jscires.11.1.4

Gupta, S., Motlagh, M., & Rhyner, J. (2020). The Digitalization Sustainability Matrix: A Participatory Research Tool for Investigating Digitainability. Sustainability, 12(21), 9283. https://doi.org/10.3390/su12219283

Hariri, R. H., Fredericks, E. M., & Bowers, K. M. (2019). Uncertainty in big data analytics: Survey, opportunities, and challenges. Journal of Big Data, 6(1), 44. https://doi.org/10.1186/s40537-019-0206-3

Jia, F., Sun, D., Ma, Q., & Looi, C.-K. (2022). Developing an AI-Based Learning System for L2 Learners’ Authentic and Ubiquitous Learning in English Language. Sustainability, 14(23), 15527. https://doi.org/10.3390/su142315527

Kosan, E., Krois, J., Wingenfeld, K., Deuter, C. E., Gaudin, R., & Schwendicke, F. (2022). Patients’ Perspectives on Artificial Intelligence in Dentistry: A Controlled Study. Journal of Clinical Medicine, 11(8), 2143. https://doi.org/10.3390/jcm11082143

Krath, J., Schürmann, L., & Von Korflesch, H. F. O. (2021). Revealing the theoretical basis of gamification: A systematic review and analysis of theory in research on gamification, serious games and game-based learning. Computers in Human Behavior, 125, 106963. https://doi.org/10.1016/j.chb.2021.106963

Kraus, S., Breier, M., Lim, W. M., Dabić, M., Kumar, S., Kanbach, D., Mukherjee, D., Corvello, V., Piñeiro-Chousa, J., Liguori, E., Palacios-Marqués, D., Schiavone, F., Ferraris, A., Fernandes, C., & Ferreira, J. J. (2022). Literature reviews as independent studies: Guidelines for academic practice. Review of Managerial Science, 16(8), 2577- 2595. https://doi.org/10.1007/s11846-022-00588-8

Kurata, K., Miyashita, S., Sengoku, S., Kodama, K., & Lim, Y. J. (2023). A Comparative Analysis of Social Entrepreneurship and Entrepreneurship: An Examination of International Co-Authorship Networks. Sustainability, 15(22), 15873. https://doi.org/10.3390/su152215873

Lee, H. S., & Lee, J. (2021). Applying Artificial Intelligence in Physical Education and Future Perspectives. Sustainability, 13(1), 351. https://doi.org/10.3390/su13010351

Liu, Y., Zhou, Y., Liu, X., Dong, F., Wang, C., & Wang, Z. (2019). Wasserstein GAN-Based Small-Sample Augmentation for New-Generation Artificial Intelligence: A Case Study of Cancer-Staging Data in Biology. Engineering, 5(1), 156-163. https://doi.org/10.1016/j.eng.2018.11.018

Liu, Y.-L., Yuan, W.-J., & Zhu, S.-H. (2022). The state of social science research on COVID- 19. Scientometrics, 127(1), 369-383. https://doi.org/10.1007/s11192-021-04206-4

Luckin, R., & Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences‐driven approach. British Journal of Educational Technology, 50(6), 2824-2838. https://doi.org/10.1111/bjet.12861

Mhlanga, D. (2021). Artificial Intelligence in the Industry 4.0, and Its Impact on Poverty, Innovation, Infrastructure Development, and the Sustainable Development Goals: Lessons from Emerging Economies? Sustainability, 13(11), 5788. https://doi.org/10.3390/su13115788

Miró-Nicolau, M., Moyà-Alcover, G., & Jaume-i-Capó, A. (2022). Evaluating Explainable Artificial Intelligence for X-ray Image Analysis. Applied Sciences, 12(9), 4459. https://doi.org/10.3390/app12094459

Murshed, B. A. H., Mallappa, S., Abawajy, J., Saif, M. A. N., Al-ariki, H. D. E., & Abdulwahab, H. M. (2023). Short text topic modelling approaches in the context of big data: Taxonomy, survey, and analysis. Artificial Intelligence Review, 56(6), 5133- 5260. https://doi.org/10.1007/s10462-022-10254-w

Nadarzynski, T., Miles, O., Cowie, A., & Ridge, D. (2019). Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study. DIGITAL HEALTH, 5, 205520761987180. https://doi.org/10.1177/2055207619871808

Poria, S., Majumder, N., Mihalcea, R., & Hovy, E. (2019). Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent Advances. IEEE Access, 7, 100943-100953. https://doi.org/10.1109/ACCESS.2019.2929050

Prendes Espinosa, M. P., & Cerdán Cartagena, F. (2020). Tecnologías avanzadas para afrontar el reto de la innovación educativa. RIED. Revista Iberoamericana de Educación a Distancia, 24(1), 35. https://doi.org/10.5944/ried.24.1.28415

Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126(6), 5113-5142. https://doi.org/10.1007/s11192-021-03948-5

Suhaila, J., & Hamdan, M. F. (2023). Research Trends on Functional Data Analysis Using Scopus Database: A Bibliometric Analysis. Malaysian Journal of Fundamental and Applied Sciences, 19(4), 494-512. https://doi.org/10.11113/mjfas.v19n4.2863

Tam, W., Huynh, T., Tang, A., Luong, S., Khatri, Y., & Zhou, W. (2023). Nursing education in the age of artificial intelligence powered Chatbots (AI-Chatbots): Are we ready yet? Nurse Education Today, 129, 105917. https://doi.org/10.1016/j.nedt.2023.105917

Thiebes, S., Lins, S., & Sunyaev, A. (2021). Trustworthy artificial intelligence. Electronic Markets, 31(2), 447-464. https://doi.org/10.1007/s12525-020-00441-4

Van de Schoot, R., de Bruin, J., Schram, R., Zahedi, P., de Boer, J., Weijdema, F., Kramer, B., Huijts, M., Hoogerwerf, M., Ferdinands, G., Harkema, A., Willemsen, J., Ma, Y., Fang, Q., Hindriks, S., Tummers, L., & Oberski, D. L. (2021). An open-source machine learning framework for efficient and transparent systematic reviews. Nature Machine Intelligence, 3(2), 125-133. https://doi.org/10.1038/s42256-020-00287-7

Van Eck, N. J., & Waltman, L. (2014). Visualizing Bibliometric Networks. En Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring Scholarly Impact (pp. 285-320). Springer International Publishing. https://doi.org/10.1007/978-3-319-10377-8_13

Van-Eck, N. J., & Waltman, L. (2023). VOSviewer Manual. Univeristeit Leiden. http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf

Wallace, M., & Poulopoulos, V. (2022). Pursuing Social Justice in Educational Robotics. Education Sciences, 12(8), 565. https://doi.org/10.3390/educsci12080565

Wang, X., Yin, N., & Zhang, Z. (2021). Smart design of intelligent companion toys for preschool children. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 35(2), 151-164. https://doi.org/10.1017/S0890060420000499

Yang, J., Chen, Y., Yao, G., Wang, Z., Fu, X., Tian, Y., & Li, Y. (2022). Key factors selection on adolescents with non-suicidal self-injury: A support vector machine-based approach. Frontiers in Public Health, 10, 1049069. https://doi.org/10.3389/fpubh.2022.1049069

Yang, M., Zhang, H., Liu, W., Yong, K., Xu, J., Luo, Y., & Zhang, H. (2023). Knowledge graph analysis and visualization of artificial intelligence applied in electrocardiogram. Frontiers in Physiology, 14, 1118360. https://doi.org/10.3389/fphys.2023.1118360

Yang, Y., Qin, J., Lei, J., & Liu, Y. (2023). Research Status and Challenges on the Sustainable Development of Artificial Intelligence Courses from a Global Perspective. Sustainability, 15(12), 9335. https://doi.org/10.3390/su15129335

Yau, K. W., Chai, C. S., Chiu, T. K. F., Meng, H., King, I., & Yam, Y. (2023). A phenomenographic approach on teacher conceptions of teaching Artificial Intelligence (AI) in K-12 schools. Education and Information Technologies, 28(1), 1041- 1064. https://doi.org/10.1007/s10639-022-11161-x

Zhan, Z., Shen, W., & Lin, W. (2022). Effect of product-based pedagogy on students’ project management skills, learning achievement, creativity, and innovative thinking in a high-school artificial intelligence course. Frontiers in Psychology, 13, 849842. https://doi.org/10.3389/fpsyg.2022.849842

Downloads

Published

2024-12-03

How to Cite

Colina Vargas, A. M., Espinoza Mina, M. A., López Catálan, L., & López Catalán, B. (2024). Computational intelligence, educational robotics, and artificial intelligence in the educational field. A bibliometric study and thematic modelling . IJERI: International Journal of Educational Research and Innovation, (22), 1–19. https://doi.org/10.46661/ijeri.10369

Issue

Section

Artículos

Most read articles by the same author(s)