Inteligencia computacional, robótica educativa e inteligencia artificial en el ámbito educativo. Un estudio bibliométrico y modelación temática

Autores/as

DOI:

https://doi.org/10.46661/ijeri.10369

Palabras clave:

tendencias de investigación, aprendizaje automático LDA, desafíos éticos, análisis de impacto, innovación en educación

Resumen

Este estudio aborda la convergencia entre tecnología y educación, explorando el impacto de paradigmas como la "inteligencia computacional", la "robótica educativa" y la "inteligencia artificial" en la investigación educativa. La metodología se definió en tres etapas. En la primera etapa se eligió la base de datos Web of Science y se desarrolló una cadena de búsqueda. La segunda etapa implicó la selección de estudios mediante criterios de inclusión/exclusión y el uso de PRISMA. La tercera etapa incluyó la extracción y análisis de datos cuantitativos y cualitativos, utilizando software bibliométrico, análisis de contenido y herramientas como R Studio, Bibliometrix, VOSViewer y Python. Se revela un crecimiento anual del 56,51% entre 2019 y 2023, con 208 obras. "Sustainability" lidera las revistas con 39 artículos, lo que indica concentración en revistas altamente productivas. El análisis de la coocurrencia de palabras clave revela áreas temáticas frecuentes, destacando "inteligencia artificial", "educación", "tecnología", "aprendizaje automático" y "Big data". La institución líder es la Universidad China de Hong Kong, mientras que China destaca con 61 trabajos a nivel de país. Destaca la importancia de considerar calidad y cantidad en la producción científica e identifica cinco temas clave en los resúmenes de investigación, sugiriendo áreas de investigación enfocadas en la integración de tecnología e innovación educativa.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Almalki, Y. E., Qayyum, A., Irfan, M., Haider, N., Glowacz, A., Alshehri, F. M., Alduraibi, S. K., Alshamrani, K., Alkhalik Basha, M. A., Alduraibi, A., Saeed, M. K., & Rahman, S. (2021). A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images. Healthcare, 9(5), 522. https://doi.org/10.3390/healthcare9050522

Arís, N., & Orcos, L. (2019). Educational Robotics in the Stage of Secondary Education: Empirical Study on Motivation and STEM Skills. Education Sciences, 9(2), 73. https://doi.org/10.3390/educsci9020073

Bañeres, D., Rodríguez, M. E., Guerrero-Roldán, A. E., & Karadeniz, A. (2020). An Early Warning System to Detect At-Risk Students in Online Higher Education. Applied Sciences, 10(13), 4427. https://doi.org/10.3390/app10134427

Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1(1), 363- 376. https://doi.org/10.1162/qss_a_00018

Chai, C. S., Chiu, T. K. F., Wang, X., Jiang, F., & Lin, X.-F. (2022). Modeling Chinese Secondary School Students’ Behavioral Intentions to Learn Artificial Intelligence with the Theory of Planned Behavior and Self-Determination Theory. Sustainability, 15(1), 605. https://doi.org/10.3390/su15010605

Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering computational thinking through educational robotics: A model for creative computational problem solving. International Journal of STEM Education, 7(1), 39. https://doi.org/10.1186/s40594-020- 00238-z

Chu, C. H., Nyrup, R., Leslie, K., Shi, J., Bianchi, A., Lyn, A., McNicholl, M., Khan, S., Rahimi, S., & Grenier, A. (2022). Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults. The Gerontologist, 62(7), 947-955. https://doi.org/10.1093/geront/gnab167

Cooper, G. (2023). Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial Intelligence. Journal of Science Education and Technology, 32(3), 444-452. https://doi.org/10.1007/s10956-023-10039-y

Demertzis, K., Demertzis, S., & Iliadis, L. (2023). A Selective Survey Review of Computational Intelligence Applications in the Primary Subdomains of Civil Engineering Specializations. Applied Sciences, 13(6), 3380. https://doi.org/10.3390/app13063380

Derviş, H. (2020). Bibliometric Analysis using Bibliometrix an R Package. Journal of Scientometric Research, 8(3), 156-160. https://doi.org/10.5530/jscires.8.3.32

Di Lieto, M. C., Castro, E., Pecini, C., Inguaggiato, E., Cecchi, F., Dario, P., Cioni, G., & Sgandurra, G. (2020). Improving Executive Functions at School in Children with Special Needs by Educational Robotics. Frontiers in Psychology, 10, 2813. https://doi.org/10.3389/fpsyg.2019.02813

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002

García-Valcárcel-Muñoz-Repiso, A., & Caballero-González, Y.-A. (2019). Robotics to develop computational thinking in early Childhood Education. Comunicar, 27(59), 63- 72. https://doi.org/10.3916/C59-2019-06

Garrido Merchán, E., & Lumbreras, S. (2023). Can Computational Intelligence Model Phenomenal Consciousness? Philosophies, 8(4), 70. https://doi.org/10.3390/philosophies8040070

Gastaldo, P., Pinna, L., Seminara, L., Valle, M., & Zunino, R. (2014). Computational Intelligence Techniques for Tactile Sensing Systems. Sensors, 14(6), 10952-10976. https://doi.org/10.3390/s140610952

Gupta, P., Maji, S., & Mehra, R. (2022). Stress and Machine Learning: Future with Possibilities- A Bibliometric Approach. Journal of Scientometric Research, 11(1), 37-46. https://doi.org/10.5530/jscires.11.1.4

Gupta, S., Motlagh, M., & Rhyner, J. (2020). The Digitalization Sustainability Matrix: A Participatory Research Tool for Investigating Digitainability. Sustainability, 12(21), 9283. https://doi.org/10.3390/su12219283

Hariri, R. H., Fredericks, E. M., & Bowers, K. M. (2019). Uncertainty in big data analytics: Survey, opportunities, and challenges. Journal of Big Data, 6(1), 44. https://doi.org/10.1186/s40537-019-0206-3

Jia, F., Sun, D., Ma, Q., & Looi, C.-K. (2022). Developing an AI-Based Learning System for L2 Learners’ Authentic and Ubiquitous Learning in English Language. Sustainability, 14(23), 15527. https://doi.org/10.3390/su142315527

Kosan, E., Krois, J., Wingenfeld, K., Deuter, C. E., Gaudin, R., & Schwendicke, F. (2022). Patients’ Perspectives on Artificial Intelligence in Dentistry: A Controlled Study. Journal of Clinical Medicine, 11(8), 2143. https://doi.org/10.3390/jcm11082143

Krath, J., Schürmann, L., & Von Korflesch, H. F. O. (2021). Revealing the theoretical basis of gamification: A systematic review and analysis of theory in research on gamification, serious games and game-based learning. Computers in Human Behavior, 125, 106963. https://doi.org/10.1016/j.chb.2021.106963

Kraus, S., Breier, M., Lim, W. M., Dabić, M., Kumar, S., Kanbach, D., Mukherjee, D., Corvello, V., Piñeiro-Chousa, J., Liguori, E., Palacios-Marqués, D., Schiavone, F., Ferraris, A., Fernandes, C., & Ferreira, J. J. (2022). Literature reviews as independent studies: Guidelines for academic practice. Review of Managerial Science, 16(8), 2577- 2595. https://doi.org/10.1007/s11846-022-00588-8

Kurata, K., Miyashita, S., Sengoku, S., Kodama, K., & Lim, Y. J. (2023). A Comparative Analysis of Social Entrepreneurship and Entrepreneurship: An Examination of International Co-Authorship Networks. Sustainability, 15(22), 15873. https://doi.org/10.3390/su152215873

Lee, H. S., & Lee, J. (2021). Applying Artificial Intelligence in Physical Education and Future Perspectives. Sustainability, 13(1), 351. https://doi.org/10.3390/su13010351

Liu, Y., Zhou, Y., Liu, X., Dong, F., Wang, C., & Wang, Z. (2019). Wasserstein GAN-Based Small-Sample Augmentation for New-Generation Artificial Intelligence: A Case Study of Cancer-Staging Data in Biology. Engineering, 5(1), 156-163. https://doi.org/10.1016/j.eng.2018.11.018

Liu, Y.-L., Yuan, W.-J., & Zhu, S.-H. (2022). The state of social science research on COVID- 19. Scientometrics, 127(1), 369-383. https://doi.org/10.1007/s11192-021-04206-4

Luckin, R., & Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences‐driven approach. British Journal of Educational Technology, 50(6), 2824-2838. https://doi.org/10.1111/bjet.12861

Mhlanga, D. (2021). Artificial Intelligence in the Industry 4.0, and Its Impact on Poverty, Innovation, Infrastructure Development, and the Sustainable Development Goals: Lessons from Emerging Economies? Sustainability, 13(11), 5788. https://doi.org/10.3390/su13115788

Miró-Nicolau, M., Moyà-Alcover, G., & Jaume-i-Capó, A. (2022). Evaluating Explainable Artificial Intelligence for X-ray Image Analysis. Applied Sciences, 12(9), 4459. https://doi.org/10.3390/app12094459

Murshed, B. A. H., Mallappa, S., Abawajy, J., Saif, M. A. N., Al-ariki, H. D. E., & Abdulwahab, H. M. (2023). Short text topic modelling approaches in the context of big data: Taxonomy, survey, and analysis. Artificial Intelligence Review, 56(6), 5133- 5260. https://doi.org/10.1007/s10462-022-10254-w

Nadarzynski, T., Miles, O., Cowie, A., & Ridge, D. (2019). Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study. DIGITAL HEALTH, 5, 205520761987180. https://doi.org/10.1177/2055207619871808

Poria, S., Majumder, N., Mihalcea, R., & Hovy, E. (2019). Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent Advances. IEEE Access, 7, 100943-100953. https://doi.org/10.1109/ACCESS.2019.2929050

Prendes Espinosa, M. P., & Cerdán Cartagena, F. (2020). Tecnologías avanzadas para afrontar el reto de la innovación educativa. RIED. Revista Iberoamericana de Educación a Distancia, 24(1), 35. https://doi.org/10.5944/ried.24.1.28415

Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126(6), 5113-5142. https://doi.org/10.1007/s11192-021-03948-5

Suhaila, J., & Hamdan, M. F. (2023). Research Trends on Functional Data Analysis Using Scopus Database: A Bibliometric Analysis. Malaysian Journal of Fundamental and Applied Sciences, 19(4), 494-512. https://doi.org/10.11113/mjfas.v19n4.2863

Tam, W., Huynh, T., Tang, A., Luong, S., Khatri, Y., & Zhou, W. (2023). Nursing education in the age of artificial intelligence powered Chatbots (AI-Chatbots): Are we ready yet? Nurse Education Today, 129, 105917. https://doi.org/10.1016/j.nedt.2023.105917

Thiebes, S., Lins, S., & Sunyaev, A. (2021). Trustworthy artificial intelligence. Electronic Markets, 31(2), 447-464. https://doi.org/10.1007/s12525-020-00441-4

Van de Schoot, R., de Bruin, J., Schram, R., Zahedi, P., de Boer, J., Weijdema, F., Kramer, B., Huijts, M., Hoogerwerf, M., Ferdinands, G., Harkema, A., Willemsen, J., Ma, Y., Fang, Q., Hindriks, S., Tummers, L., & Oberski, D. L. (2021). An open-source machine learning framework for efficient and transparent systematic reviews. Nature Machine Intelligence, 3(2), 125-133. https://doi.org/10.1038/s42256-020-00287-7

Van Eck, N. J., & Waltman, L. (2014). Visualizing Bibliometric Networks. En Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring Scholarly Impact (pp. 285-320). Springer International Publishing. https://doi.org/10.1007/978-3-319-10377-8_13

Van-Eck, N. J., & Waltman, L. (2023). VOSviewer Manual. Univeristeit Leiden. http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf

Wallace, M., & Poulopoulos, V. (2022). Pursuing Social Justice in Educational Robotics. Education Sciences, 12(8), 565. https://doi.org/10.3390/educsci12080565

Wang, X., Yin, N., & Zhang, Z. (2021). Smart design of intelligent companion toys for preschool children. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 35(2), 151-164. https://doi.org/10.1017/S0890060420000499

Yang, J., Chen, Y., Yao, G., Wang, Z., Fu, X., Tian, Y., & Li, Y. (2022). Key factors selection on adolescents with non-suicidal self-injury: A support vector machine-based approach. Frontiers in Public Health, 10, 1049069. https://doi.org/10.3389/fpubh.2022.1049069

Yang, M., Zhang, H., Liu, W., Yong, K., Xu, J., Luo, Y., & Zhang, H. (2023). Knowledge graph analysis and visualization of artificial intelligence applied in electrocardiogram. Frontiers in Physiology, 14, 1118360. https://doi.org/10.3389/fphys.2023.1118360

Yang, Y., Qin, J., Lei, J., & Liu, Y. (2023). Research Status and Challenges on the Sustainable Development of Artificial Intelligence Courses from a Global Perspective. Sustainability, 15(12), 9335. https://doi.org/10.3390/su15129335

Yau, K. W., Chai, C. S., Chiu, T. K. F., Meng, H., King, I., & Yam, Y. (2023). A phenomenographic approach on teacher conceptions of teaching Artificial Intelligence (AI) in K-12 schools. Education and Information Technologies, 28(1), 1041- 1064. https://doi.org/10.1007/s10639-022-11161-x

Zhan, Z., Shen, W., & Lin, W. (2022). Effect of product-based pedagogy on students’ project management skills, learning achievement, creativity, and innovative thinking in a high-school artificial intelligence course. Frontiers in Psychology, 13, 849842. https://doi.org/10.3389/fpsyg.2022.849842

Descargas

Publicado

2024-12-03

Cómo citar

Colina Vargas, A. M., Espinoza Mina, M. A., López Catálan, L., & López Catalán, B. (2024). Inteligencia computacional, robótica educativa e inteligencia artificial en el ámbito educativo. Un estudio bibliométrico y modelación temática. IJERI: International Journal of Educational Research and Innovation, (22), 1–19. https://doi.org/10.46661/ijeri.10369

Número

Sección

Artículos

Artículos más leídos del mismo autor/a